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A theoretical model of the reactions eþe− → KþK−γ and eþe− → K0K̄0γ has been derived. The strong
interaction between kaons is taken into account using a general form of the KK̄ scattering amplitude. It is
shown that some models formulated in the past are particular cases of the present approach. The formulas for
theKK̄ effective mass dependence of the differential cross section as well as for the angular kaon and photon

distributions and for the branching fractions of the ϕð1020Þ → KþK−γ and ϕð1020Þ → K0K̄0γ decays have
been obtained.We present numerical results for the functions entering into transition amplitudes,KK̄ effective
mass distributions, total cross sections, and branching fractions. Finally, themodel is generalized to treat other
reactions with two pseudoscalar mesons accompanying a photon in the final state.
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I. INTRODUCTION

In the standard classification of the quark-antiquark
states the scalar meson nonet is not yet uniquely determined
and the scalar resonances constitute the least known group
of mesons (for reviews see, for example, Refs. [1,2]). There
are many different hypotheses about their internal structure.
Besides the interpretation as qq̄ mesons [3], these particles
were also proposed to be the qqq̄q̄ tetraquark states [4],
mixtures of qq̄ and meson-meson systems [5] or even
quarkless gluonic hadrons [6]. Since both f0ð980Þ and
a0ð980Þ masses are very close to the sum of the K and K̄
masses, they have been considered as KK̄ quasi-bound
states [7]. Verification of these hypotheses requires a
precise information about the elastic and inelastic ampli-
tudes of the kaon-antikaon interaction. Existing data from
the KK̄ phase analyses are not yet sufficiently precise even
tomake a statement whether the kaon-antikaon interaction in
the S-wave near the threshold is attractive or repulsive [8,9].
Since the kaonic targets are not available and the

colliding kaon beams do not exist as well, the only way
to study the kaon-kaon interaction is a production of kaon
pairs with low relative momenta and analysis of their
rescattering. This type of studies was conducted, for
example, in the pp → ppKþK− reaction at the COSY
synchrotron in Jülich, Germany. However, small cross
sections and the presence of strongly interacting protons
in the final state, made it impossible to accurately estimate
the scattering length of the KþK− interaction [10–12].
Thus, it seems that it is much better to study less
complicated final states produced, for example, in heavy

meson decays J=ψ → ϕKþK− [13], B0
s → J=ψf0ð980Þ

[14] or in the eþe− → KþK−γ and eþe− → K0K̄0γ reac-
tions. The latter processes are suitable to study the strong
interactions between kaon pairs since no other hadrons
exist in the final state.
Radiative ϕð1020Þ decays into KK̄γ states via the

intermediate production of scalar mesons f0ð980Þ and
a0ð980Þ have been theoretically studied already in the late
eighties and in nineties of the 20th century [15–24]. Then,
after a construction of the Φ-factory in Italy at Frascati
other papers appeared [25–34]. The KLOE Collaboration
has searched for the decay ϕð1020Þ → K0K̄0γ and obtained
an upper limit of the branching fraction equal to 1.9 × 10−8

[35]. For a full description of the kaon-antikaon interaction
also other coupled decay channels have to be considered.
Thus KLOE has carried out a series of analyses [36] to
study the properties of scalar mesons in the π0π0γ, ηπ0γ,
and πþπ−γ final states [37–39]. Earlier, the ϕ radiative
decays into πþπ−γ, π0π0γ, and ηπ0γ have been measured in
Novosibirsk by SND and CMD-2 Collaborations (see, for
example, Refs. [40–43]). However, there are no data for the
ϕð1020Þ decay into KþK−γ, even the branching ratio is not
known. This decay could be studied, in principle, also using
the KLOE data set.
Three theoretical models have been used in the analysis

of the KLOE data for the eþe− → πþπ−γ reaction [39].
In the first model a phenomenological parametrization of
the reaction amplitude by a suitable combination of the
elastic pion-pion amplitude and the transition amplitude
from two kaons in the intermediate state to two pions in the
final state is made [44]. A direct ϕ meson coupling to the
f0ð980Þ resonance and a photon without any assumption
about the internal structure of the scalar meson is postulated*leonard.lesniak@ifj.edu.pl
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in the second model [45]. The total and differential cross
sections for the eþe− → KþK−γ process predicted by this
model can be found in [46].1 An essential ingredient of the
third model, called the kaon-loop model, is a formation of a
loop of two charged kaons to which photons can couple
[47]. The best fits to data [39] have been obtained for the
former two models. It turned out, however, that important
quantities like the f0ð980Þmass and the coupling constants
of that resonance to the KþK− and πþπ− pairs, obtained
from fits to data, are in mutual disagreement.
One of the reasons for this unsatisfactory situation could

lie in lack of information on theKþK−γ channel. Moreover,
one should try to describe simultaneously all the mentioned
coupled channels. Transition amplitudes of the reactions
coupled to the KþK− channel were described, for example,
in Refs. [48–51]. As it will be shown later, they can be
incorporated in a more general scheme taking into account
all the relevant channels. Some threshold properties of the
KK̄ amplitudes have been already examined in [52] and a
new parametrization of the resonant production amplitudes
near inelastic thresholds has been proposed in Refs. [53,54].
These results could be useful in analyses of the experimental
data in which the KK̄ pairs are present the final state.
In the construction of the theoretical models of the

reaction eþe− → KþK−γ one should take into account
an important role playing by scalar mesons f0ð980Þ or
a0ð980Þ in an intermediate production step: eþe− →
ϕð1020Þ → γðf0 þ a0Þ → KþK−γ. At the eþe− center-
of-mass energies close to 1 GeV the ϕð1020Þ meson
contribution to the reaction cross section is dominant.
The ϕ meson decays most frequently into a pair of charged
kaons, the corresponding branching fraction is 49.2% [1].
The charged kaons can interact strongly and electromag-
netically emitting photons. Thus the kaon-loop mechanism
has been frequently used to construct models of the reaction
amplitude.
Very often in literature the scalarmesons have been treated

as pointlike particles (see, for example, Refs. [15–18,21]).
However, Close, Isgur and Kumano in Ref. [20] have
modeled the scalar mesons as extended objects, formed of
the KK̄ quasi bound molecules. It has been found that the
branching fraction for the decay ϕð1020Þ → f0γ depends
sensitively on the molecule radius which in turn is related to
the KK̄ binding energy. The model presented in Ref. [20] is
essentially nonrelativistic in treatment of the KK̄ interaction
but the reaction amplitude for the radiative ϕ decay can be
“relativized” in some manner explained in the article.
InRef. [22], using a specific distribution of the relativeKK̄

momenta given in Ref. [20], numerical calculations of the
branching fractions and the mass spectra for the radiative ϕ
decays into scalar mesons a0 and f0 with subsequent decays
of a0 into πη andKþK− and f0 into ππ andKþK− have been

performed. The relevant KK̄ molecule radius was equal to
1.2 fm (see Eq. (4.13) in Ref. [20]).
In 2001 Achasov and Gubin calculated the differential

cross sections for the reactions eþe− → ϕ → KþK−γ and
eþe− → ϕ → K0K̄0γ [27]. In this case the KþK− loop
function from Ref. [16] has been used. Formally, this
choice corresponds to the limit of vanishing KK̄ molecule
radius.
In the above mentioned models of the reaction amplitude

the KK̄ scattering amplitude has always a resonant char-
acter due to a presence of scalar mesons in the intermediate
states. We know, however, that the KK̄ amplitude can have
an additional non-resonant part which is not included in
the approaches discussed above. So, the idea is to extend
the existing models of the radiative ϕ decays into KK̄γ by
inclusion of a more general form of the KK̄ scattering
amplitude. Our aim is to construct a model which will be
suitable in the coupled-channel analyses of different
radiative ϕ meson decays.
As the first step the amplitude for the eþe− → KK̄γ

reaction with the charged kaon loop is considered. Other
contributions to the reaction amplitudes like the loops of
other particles than the KþK− ones can be added later in
future model developments.
The paper is structured as follows. In Sec. II we formulate

an extended version of the theoretical model describing
the eþe− → KþK−γ reaction. Then in Subsection II B
we discuss the limit of vanishing photon energy. In
Subsection II C we show examples of models which are
particular cases of the model described in Sec. II. In Sec. III
some properties of the on-shell and off-shell elastic KþK−

amplitudes are outlined. The formulae for the differential
cross sections and for the branching fraction of the decay
ϕð1020Þ → KþK−γ are written in Sec. IV. In Sec. V we give
the results of numerical calculations performed for this
reaction. In Sec. VI we briefly show how to generalize the
model to the description of other reactions with two
pseudoscalar meson pairs accompanying photon in the
final-state. Section VII is devoted to an application of the
model to the eþe− → K0K̄0γ channel. The conclusions are
given in Sec. VIII. Finally, in Appendix A an amplitude
approximation is explained and in Appendix B some longer
formulas are gathered.

II. THEORETICAL MODEL OF THE AMPLITUDE
FOR THE REACTION e+ e − → K +K − γ

A. Model derivation

Below we present a derivation of the theoretical model
for the reaction eþe− → KþK−γ.
One can start from a set of three amplitudes describing the

so-called final state radiation (FSR) process. In the lowest
order of quantumelectrodynamics a virtual photon is initially
emitted from the incoming eþe− pair [see Fig. 1(a)], then the
final photon can be coupled to the vertex connectingKþ,K−

1The parameters of this model, called the no-structure model,
have been taken from Table 1 of Ref. [39] (label NS).
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and that virtual photon, or directly fromKþ orK− [Figs. 1(b)
and 1(c)]. The diagram in Fig. 1(a) represents the so-called
contact term which is needed to satisfy the gauge invariance
of the FSR amplitude. The form of the FSR amplitude is
well known. For example, for the eþe− → πþπ−γ reaction
the corresponding expression for the FSR amplitude can be
found in Eq. (1) of Ref. [55].
In the FSR amplitude strong interactions between kaons

are not yet included. However, it is possible to formulate a
model of the final-state kaon interactions. It has been
outlined in Ref. [56] and it is presented below in more
detail. The corresponding diagrams are shown in Fig. 2.
The diagrams in Figs. 2(a,b,c) are directly connected to the
diagrams present in Figs. 1(a)–1(c), respectively. Here one
includes a strong interaction between theKþK− pairs in the
final state. The elastic KþK− scattering amplitude denoted
by T follows a kaon loop with a variable four-momentum k
over which one has to integrate. The initial four-momenta
of the positron eþ and of the electron e− are denoted by peþ

and pe− , respectively. The K−, Kþ and photon four-
momenta in the final state are labeled by k1, k2, and q,
respectively.
The amplitudes for the eþe− → KþK−γ reaction, cor-

responding to diagrams (a), (b), (c) in Fig. 2 are given by:

A1 ¼ 2i
Z

d4k
ð2πÞ4

Jνϵν�TðkÞ
DðkÞDð−kþ p − qÞ ; ð1Þ

A2 ¼ −4i
Z

d4k
ð2πÞ4

Jμϵν�kνðkμ þ qμÞTðkÞ
Dðkþ qÞDðkÞDð−kþ p − qÞ ; ð2Þ

A3 ¼ −4i
Z

d4k
ð2πÞ4

Jμϵν�ðkν − pνÞkμTðkÞ
Dðp − kÞDðkÞDð−kþ p − qÞ ; ð3Þ

where DðkÞ ¼ k2 −m2
K þ iδ, δ → þ0, is the inverse of the

kaon propagator, mK is the charged kaon mass and ϵν is the
photon polarization four-vector. In the above expressions
p ¼ peþ þ pe− , Jμ is defined as

Jμ ¼
e3

s
FKðsÞv̄ðpeþÞγμuðpe−Þ; ð4Þ

where e is the electron charge, s ¼ ðpeþ þ pe−Þ2, v and u
are the eþ and e− bispinors, respectively, γμ are the Dirac
matrices, and FKðsÞ is the kaon electromagnetic form
factor. Appearance of the factor e3 in Eq. (4) is related
to a presence of the three photon couplings which are most
easily seen in Figs. 2(b) and 2(c). The factor 1=s is the
intermediate photon propagator. The virtual photon γ�
couples to the KþK− pair leading to a presence of the
kaon form factor. The KþK− elastic scattering amplitude is
given by

TðkÞ ¼ hK−ðk1ÞKþðk2ÞjT̃ðmÞjK−ð−kþ p − qÞKþðkÞi;
ð5Þ

wherem2 ¼ ðk1 þ k2Þ2 is the square of the KþK− effective
mass and T̃ðmÞ is the KK̄ scattering operator. The ampli-
tude TðkÞ depends not only on the Kþ four-momentum k
but also on the four-momenta k1, k2, p and q which satisfy
the relation k1 þ k2 ¼ p − q. So TðkÞ is a shorthand
notation which underlines the dependence of the KþK−

off-shell amplitude T on the kaon-loop momentum variable
k over which one has to integrate in Eqs. (1)–(3). Let us
denote by TSðkÞ the following sum of amplitudes:

TSðkÞ ¼ TðkÞ þ Tð−kþ p − qÞ: ð6Þ

Then one can rewrite Eqs. (1)–(3) as:

A1 ¼ i
Z

d4k
ð2πÞ4

Jνϵν�TSðkÞ
DðkÞDð−kþ p − qÞ ; ð7Þ

(a) (b)

(c)

FIG. 1. Diagrams corresponding to the final-state radiation in
the eþe− → KþK−γ reaction.

(a) (b)

(c) (d)

FIG. 2. Diagrams including the final-stateKþK− interactions in
the process eþe− → KþK−γ. T denotes the KþK− elastic
scattering amplitude, R stands for the difference of the KþK−

amplitudes present in Eq. (11).
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A2 þ A3 ¼ −4iJμϵν�

×
Z

d4k
ð2πÞ4

kνðkμ þ qμÞTSðkÞ
Dðkþ qÞDðkÞDð−kþ p − qÞ : ð8Þ

Oppositely to the sum of the FSR amplitudes shown in
Fig. 1, the sum S3 of the amplitudes presented in Figs. 2(a)–
2(c) is not gauge-invariant. This can be seen by the
substitution ϵν → qν into the sum S3 ≡ A1 þ A2 þ A3

which after some algebra leads to the following result:

S3ðϵν → qνÞ ¼ 2i
Z

d4k
ð2πÞ4

J · k½Tðk − qÞ − TðkÞ�
DðkÞDðp − kÞ : ð9Þ

Thus, in order to satisfy the gauge invariance condition of
the total amplitude:

A≡ A1 þ A2 þ A3 þ A4 ð10Þ

we postulate the following form of the additional term A4

which should be added to S3

A4 ¼−2i
Z

d4k
ð2πÞ4

J ·kϵ� · k̃
DðkÞDðp−kÞ

½Tðk−qÞ−TðkÞ�
q · k̃

: ð11Þ

Here the four-vector k̃ ¼ ð0; k̂Þ and the unit three-vector
k̂ ¼ k=jkj.

The integrals over the energy k0 in Eqs. (7), (8), (11) can
be done analytically in the KþK− center-of-mass frame and
the results are

A1 ¼ −J⃗ · ϵ⃗�
Z

d3k
ð2πÞ3

1

2Ekm

�
T1ðkÞ
m − 2Ek

þ T2ðkÞ
mþ 2Ek

�
;

ð12Þ

A2 þ A3 ¼ 2J⃗ · ϵ⃗�
Z

d3k
ð2πÞ3 ½jkj

2 − ðk · q̂Þ2�

×

�
T1ðkÞ
M1ðkÞ

þ T2ðkÞ
M2ðkÞ

−
T3ðkÞ
M3ðkÞ

�
ð13Þ

and

A4 ¼ J⃗ · ϵ⃗�
Z

d3k
ð2πÞ3

jkj2 − ðk · q̂Þ2
k · q

×

�
R1ðkÞ
M4ðkÞ

þ R2ðkÞ
M5ðkÞ

�
: ð14Þ

Here ϵ⃗ and J⃗ are the three-component vectors of ϵν and
Jμ, respectively, and q̂ is the unit vector pointing in the
direction of the emitted photon momentum. In order to
derive the formulas (12) and (13) one applies the relation:

J · kϵ� · k̃ ¼ 1

2
½jkj2 − ðk · q̂Þ2�J⃗ · ϵ⃗�: ð15Þ

The numerators in Eqs. (12)–(14) are given by the follow-
ing expressions:

T1ðkÞ ¼ hK−ðk1ÞKþðk2ÞjT̃ðmÞjK−ðEk;−kÞKþðm − Ek;kÞi
þ hK−ðk1ÞKþðk2ÞjT̃ðmÞjK−ðm − Ek;−kÞKþðEk;kÞi; ð16Þ

T2ðkÞ ¼ hK−ðk1ÞKþðk2ÞjT̃ðmÞjK−ðmþ Ek;−kÞKþð−Ek;kÞi
þ hK−ðk1ÞKþðk2ÞjT̃ðmÞjK−ð−Ek;−kÞKþðmþ Ek;kÞi; ð17Þ

T3ðkÞ ¼ hK−ðk1ÞKþðk2ÞjT̃ðmÞjK−ðmþ Ekþq þ ω;−kÞKþð−Ekþq − ω;kÞi
þ hK−ðk1ÞKþðk2ÞjT̃ðmÞjK−ð−Ekþq − ω;−kÞKþðmþ Ekþq þ ω;kÞi; ð18Þ

R1ðkÞ ¼ hK−ðk1ÞKþðk2ÞjT̃ðmÞjK−ðEk−q;−kþ qÞKþðm − Ek−q;k − qÞi
− hK−ðk1ÞKþðk2ÞjT̃ðmÞjK−ðEk−q − ω;−kÞKþðp0 − Ek−q;kÞi; ð19Þ

R2ðkÞ ¼ hK−ðk1ÞKþðk2ÞjT̃ðmÞjK−ðEk þm − ω;−kþ qÞKþð−Ek − ω;k − qÞi
− hK−ðk1ÞKþðk2ÞjT̃ðmÞjK−ðEk þm;−kÞKþð−Ek;kÞi; ð20Þ
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where Ek�q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk� qÞ2 þm2

K − iδ
p

, ω is the photon
energy and Ek ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

K − iδ
p

. Below we write ex-
pressions for the denominators in Eqs. (13) and (14):

M1ðkÞ ¼ 2Ekmðm − 2EkÞð2p0Ek − sþ 2k · qÞ; ð21Þ

M2ðkÞ ¼ 2Ekmðmþ 2EkÞð2ωEk þ 2k · qÞ; ð22Þ

M3ðkÞ ¼ 2Ekþqðp2
0 þ ω2 þ 2p0Ekþq þ 2k · qÞ

× ð2ω2 þ 2ωEkþq þ 2k · qÞ; ð23Þ

M4ðkÞ ¼ 2Ek−qðp2
0 þ ω2 − 2p0Ek−q − 2k · qÞ; ð24Þ

M5ðkÞ ¼ 2Ekð2p0Ek þ sþ 2k · qÞ: ð25Þ

In the KþK− center-of-mass frame the energy p0 equals to
mþ ω, and the photon energy ω ¼ ðs −m2Þ=ð2mÞ. The
formulas (12)–(14) and (16)–(25) constitute a full set of
expressions for the general form of the reaction amplitude
A for the process eþe− → KþK−γ. In Sec. VI one can find
an extension of this formalism to processes with other
pseudoscalar meson pairs in the final state.
Nowwe can examine some approximations to the reaction

amplitude A. Let us denote by TKþK−ðmÞ¼hK−ðk1ÞKþðk2Þ
jT̃ðmÞjK−ðk1ÞKþðk2Þi the on-shell KþK− amplitude. In
the KþK− center-of-mass frame k1 ¼ ðm=2;−kfÞ, k2 ¼
ðm=2;kfÞ andkf ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2=4 −m2

K

p
is the kaonmomentum in

the final-state. As seen from Eq. (16)k is equal to the half of
the difference between the Kþ and K− momenta, so it is the
relative momentum of the kaon pair in their center-of-mass
frame. For the valueEk ¼ m=2 the amplitude T1ðkÞ is equal
to the doubled on-shell KþK− amplitude. Therefore we can
assume that T1ðkÞ is related to TKþK−ðmÞ as follows:

T1ðkÞ ≈ 2gðkÞTKþK−ðmÞ; ð26Þ

where gðkÞ as a real function of k≡ jkj takes into account the
off-shell character of T1ðkÞ.2 We note here that the function
gðkÞ satisfies the condition gðkfÞ ¼ 1.
If Ek ¼ m=2 then the denominator M1ðkÞ ¼ 0, so the

first terms in parentheses in Eqs. (12) and (13) have a pole.
Thus, at not too large values of jkj one expects a dominance
of these terms over the other ones which depend on T2ðkÞ
or T3ðkÞ in Eqs. (12) and (13). So, omitting temporarily the
terms with T2ðkÞ and T3ðkÞ, one derives the approximate
sum of the first three amplitudes of our reaction in the
following form:

A1 þ A2 þ A3 ≈ J⃗ · ϵ⃗�TKþK−ðmÞIðmÞ; ð27Þ

where the integral IðmÞ reads

IðmÞ ¼ −2
Z

d3k
ð2πÞ3

gðkÞ
2Ekmðm − 2EkÞ

×
�
1 − 2

jkj2 − ðk · q̂Þ2
2p0Ek − sþ 2k · qÞ

�
: ð28Þ

One can expect that the function gðkÞ decreases for the
momenta k going to infinity. In order to make the integral in
Eq. (28) finite, the function gðkÞ should decrease at large k
steeper than 1=k2. If this is not a case for a particular model
of the KþK− amplitude, then one has to replace gðkÞ by
another function g̃ðkÞ to warrant an integral convergence.
One can also choose an upper limit cut-off kcut parameter
for the integral over k.
There is an alternative form of the approximate sum of

the amplitudes A1, A2, and A3. One can notice that the
relative kaon momenta in the expressions (17) and (18)
for the amplitudes T2ðkÞ and T3ðkÞ are the same as the
momentum k in T1ðkÞ. So, similarly to Eq. (26) the
following approximation can be chosen:

T2ðkÞ ≈ T3ðkÞ ≈ 2gðkÞTKþK−ðmÞ: ð29Þ

Thus one can write an alternative form of the amplitude
sum:

A1 þ A2 þ A3 ≈ J⃗ · ϵ⃗�TKþK−ðmÞIrðmÞ; ð30Þ

where

IrðmÞ ¼ −2
Z

d3k
ð2πÞ3 gðkÞ

�
1

Ekðm2 − 4E2
kÞ

− 2½jkj2 − ðk · q̂Þ2�
�

1

M1ðkÞ
þ 1

M2ðkÞ
−

1

M3ðkÞ
��

:

ð31Þ

Due to a presence of the pole at m2 ¼ 4E2
k in the integrand

of IrðmÞ, one can call it the “relativistic” version of IðmÞ.
Both the integrals I and Ir will be called the kaon-loop
functions. It should be mentioned here that the imaginary
parts of these functions are identical and only the real parts
differ. The equality ofImIðmÞ andImIrðmÞ follows from
the structure of the denominators in Eqs. (12) and (13).
Only two poles of M1ðkÞ give contributions to the
imaginary parts, namely the first one at m ¼ 2Ek and
the second at 2p0Ek − sþ 2k · q ¼ 0. The pole of the
amplitude A1 coincides with the first one.
For the real part of the second kaon-loop function IrðmÞ

one gets much better convergence of the integrand than for
IðmÞ. If one makes an expansion of the corresponding
integrand in series of the photon energy ω then due to
specific cancellations between the three terms in Eq. (31) at
high k momenta one gets a proportionality to 1=k3 while
the integrand of IðmÞ without gðkÞ is directly proportional

2For some specific KþK− amplitudes Eq. (26) is exact. This is
a case of separable interactions discussed in Sec. III.
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to k. This happens when we take into account the part of the
integrand linearly proportional to ω. The term proportional
to ω2 is proportional to 1=k5, so the convergence of
ReIrðmÞ at the infinite k is even better. A limit ω going
to zero will be discussed in Subsection II B.
After this general discussion we can pass to examination

of the effective mass dependence of the kaon-loop func-
tions. It is possible to perform analytically two integrations
over the angles of the vector k in the expression for the
function IðmÞ in Eq. (28). The results for the real and
imaginary parts are:

ReIðmÞ¼−
1

2π2
P
Z

∞

0

dk
k2gðkÞ

2Ekmðm−2EkÞ

×

�
2−

1

ωk

�
2ykþðk2−y2Þ ln

				yþk
y−k

				
��

; ð32Þ

where P standing before the integral symbol denotes the
principal value part,

y ¼ 1

ω

�
p0Ek −

s
2

�
; ð33Þ

ImIðmÞ ¼ ImIaðmÞ þImIbðmÞ; ð34Þ

ImIaðmÞ ¼ kf
8πm

×

�
2þ 1

ωkf

�
mkf þm2

K ln
m − 2kf
mþ 2kf

��
gðkfÞ

ð35Þ

and

ImIbðmÞ ¼ 1

2πω

Z
k00

k0
dk

k3gðkÞð1 − y2=k2Þ
2Ekmðm − 2EkÞ

: ð36Þ

In Eq. (36) k0 ¼ ðp0vL − ωÞ=2, k00 ¼ ðp0vL þ ωÞ=2 and
vL ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

K=s
p

is the kaon velocity in the eþe− center-
of-mass frame at m2 ¼ s. The first term in the numerator of
this equation corresponds to a pole contribution at Ek ¼
m=2 in the first denominator of the integrand in Eq. (28)
and the second term, proportional to y2=k2, is related to a
pole of the second denominator. In the latter case the
position of the pole depends on the angle between the
vectors k and q which leads to an integration over a range
of k between the limiting values k0 and k00. It can be checked
that both k0 and k00 values are slightly larger than kf. If the
function gðkÞ is equal to 1 in the k range below k00, then one
can perform integral in Eq. (36), so the second term of
ImIðmÞ reads:

ImIbðmÞ ¼ −
1

8πωm

�
1

2
vLsþm2

K ln
1 − vL
1þ vL

�
: ð37Þ

In addition, if m is approaching its maximum value of
ffiffiffi
s

p
,

or equivalently in the limit of vanishing photon energy ω,
the function ImIðmÞ goes to zero since ImIaðmÞ ¼
−ImIbðmÞ.
Let us now pass to a discussion of the properties of the

amplitude A4 given by Eq. (14). Using the similar
assumption as that leading to Eq. (26) one can approximate
R1 and R2 as

R1 ≈ R2 ≈ ½gðjk − qjÞ − gðjkjÞ�TKþK−ðmÞ: ð38Þ

At small values of jqj with respect to jkj, R1 and R2 can be
further approximated as

R1 ≈ R2 ≈ −q · k̂g0ðjkjÞTKþK−ðmÞ; ð39Þ

where g0ðjkjÞ is the derivative of the function gðjkjÞ
responsible for the off-shell character of the KK̄ scattering.
In this way the amplitude A4ðmÞ from Eq. (14) reads

A4ðmÞ ≈ J⃗ · ϵ⃗�TKþK−ðmÞI4ðmÞ; ð40Þ

where

I4ðmÞ ¼ −
Z

d3k
ð2πÞ3 g

0ðjkjÞjkj½1

− ðk̂ · q̂Þ2�
�

1

M4ðkÞ
þ 1

M5ðkÞ
�
: ð41Þ

For the imaginary part of I4ðmÞ the integration over the two
angles of the vector k can be performed and the result is

ImI4ðmÞ ¼ 1

16πω

Z
k00

k0
dk

g0ðkÞðk2 − y2Þ
Ek

: ð42Þ

Here the variable y is defined by Eq. (33) and the integral
limits k0 and k00 are defined just below Eq. (36).
The amplitude A4ðmÞ from Eq. (40) has to be added to the

sum of the amplitudes A1, A2, and A3 in Eqs. (27) or (30).
Then the total reaction amplitude A is formed [Eq. (10)].

B. Limit ω → 0

In the limit of vanishing photon energy ω≡ jqj → 0 and
at s equal to the square of the ϕð1020Þ meson mass mϕ one
gets the following relation for the imaginary part of I4ðmÞ
given by Eq. (42):

ImI4ðmϕÞ ¼
g0ðjkϕjÞk2

ϕ

12πmϕ
; ð43Þ

where the momentum kϕ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

ϕ=4 −m2
K

q
. It is interesting

to find a close relation of this formula to the imaginary part
of the loop function IðmÞ [Eq. (28)], calculated in the limit
m → mϕ, which is equivalent to the limit ω → 0:
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ImI4ðmϕÞ ¼ −ImIðmϕÞ: ð44Þ

Below we show that the above relation is valid also for
the real parts of the above functions which leads to a
relation between the four amplitudes at ω ¼ 0:

A4ðmϕÞ ¼ −½A1ðmϕÞ þ A2ðmϕÞ þ A3ðmϕÞ�: ð45Þ

Let us sketch a derivation of this formula. Going back
to Eq. (11) we use Eqs. (19), (20), (38), (39) to get the
approximate expression for the amplitude A4 valid for
small ω:

A4ðmÞ ≈ −2iTKþK−ðmÞ

×
Z

d4k
ð2πÞ4

J · kϵ · k̃
DðkÞDðp − kÞ g

0ðjkjÞ: ð46Þ

Knowing that in the KþK− center-of-mass-frame the
momenta p and q are equal we can assume as in
Eq. (26) that the sum of the amplitudes TSðkÞ in Eq. (6)
can be expressed in terms of the function gðjkjÞ of the
relative kaon momentum as TSðkÞ ≈ 2gðjkjÞTKþK−ðmÞ.
Then, from Eqs. (7) and (8), one gets the following
amplitudes in the limit ω → 0:

A1ðmϕÞ ≈ Jνϵν�2iTKþK−ðmϕÞ
Z

d4k
ð2πÞ4

gðjkjÞ
DðkÞDðp − kÞ ;

ð47Þ

A2ðmϕÞ þ A3ðmϕÞ ≈ −Jμϵν�8iTKþK−ðmϕÞ

×
Z

d4k
ð2πÞ4

kνkμgðjkjÞ
½DðkÞ�2Dðp − kÞ : ð48Þ

Next, after an integration over energy and in the next step
by integrating the amplitude A4ðmÞ in Eq. (46) by parts
over jkj, one finds that Eq. (45) is satisfied. To get this
result one has to assume that the function gðjkjÞ tends to 0
when jkj goes to infinity. In consequence, the full reaction
amplitude A≡ A1 þ A2 þ A3 þ A4 vanishes in the limit
ω → 0. This is a consequence of the gauge invariance of the
total reaction amplitude A.
In Appendix A we show that the amplitude A4ðmÞ

depends weakly on the variable m or ω, so to a very good
approximation A4ðmÞ ≈ A4ðmϕÞ.
Recalling the relations given in Eqs. (10), (27), and (45)

for
ffiffiffi
s

p ¼ mϕ we can write the following expression for the
reaction amplitude AðmÞ:

AðmÞ ¼ J⃗ · ϵ⃗�TKþK−ðmÞ½IðmÞ − IðmϕÞ�; ð49Þ

where the loop function IðmÞ is given by Eq. (28) or by
Eq. (31). We stress here that the imaginary parts of IðmÞ
and IrðmÞ are equal and the corresponding formulae are

given by Eqs. (34)–(36). The real part of the function IðmÞ
is seen in Eq. (32) and the formulas for the real part of
the kaon-loop function Ir are written in Appendix B. The
integrand of the real part of the function IðmÞ is simpler
than the corresponding integrand of ReIrðmÞ but on the
other hand the convergence at high k is much better for the
latter function.

C. Comparison of the present model with
other approaches

We may see some similarity of the formulas presented
above with the expressions for the amplitudes of the
radiative ϕmeson decays derived in Ref. [20]. In particular,
Eq. (46) can be compared with Eq. (4.24) of Ref. [20] if we
replace the current J by the ϕ meson polarization vector ϵϕ
and the function gðkÞ by the function ϕðkÞ. One has also to
multiply the amplitude A4 by i. The same multiplication
factor i should be applied to the amplitudes A1, A2, and A3

in order to make a comparison with Eqs. (4.21)–(4.23) of
Ref. [20]. Thus the model of Close, Isgur, and Kumano for
the ϕ radiative decay amplitudes is a special case of the
present model in which the reaction amplitudes are given
by Eqs. (1)–(3) and (11), and the photon momentum q is
small (soft photon limit).
One can notice a difference in the normalization of the

functions gðkÞ and ϕðkÞ. The latter function is defined by
Eq. (4.14) of Ref. [20] as follows:

ϕðkÞ ¼ μ4

ðk2 þ μ2Þ2 ; ð50Þ

where the parameter μ ¼ 141 MeV. The function gðkÞ has
to be normalized to 1 at the finalKþK− relative momentum
k ¼ kf while ϕðkÞ ¼ 1 at k ¼ 0, so the function gðkÞ
related to ϕðkÞ should be defined as

gðkÞ ¼ ðk2f þ μ2Þ2
ðk2 þ μ2Þ2 : ð51Þ

Aswe shall see later, the normalization condition gðkfÞ ¼ 1,
instead of gð0Þ ¼ 1, has an important influence on the values
of the kaon-loop function when the range parameter μ is
relatively small.
In the model of Achasov, Gubin, and Shevchenko [22]

theϕ decay amplitude is regularized bymaking a subtraction
at the photon energy ω ¼ 0. So, effectively one can state
that in their model the amplitude A4ðmÞ ¼ A4ðmϕÞ ¼
−½A1ðmϕÞ þ A2ðmϕÞ þ A3ðmϕÞ�. Thus the above approach
could also be treated as a particular version of the model
introduced in Subsection II A.
At

ffiffiffi
s

p
close to 1 GeV the KþK− scattering amplitude is

usually taken in the following resonant form

TresðmÞ ¼ ðgRKþK−Þ2
DRðmÞ ; ð52Þ
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where gRKþK− is the scalar resonance coupling constant to
the KþK− pair and DRðmÞ is the inverse of the scalar
meson propagator. Here R denotes the scalar mesons
a0ð980Þ or f0ð980Þ. Formally, this case is a pointlike
version of the KþK− scattering amplitude TKþK−ðmÞ, since
here the function gðkÞ≡ 1, g0ðkÞ≡ 0 and the amplitude
A4ðmÞ≡ 0. The resonant KþK− scattering amplitude has
been used in Ref. [27]. It has been multiplied by the kaon-
loop function taken from Ref. [16]. The real part form of
the latter function has been obtained applying twice
subtracted dispersion relations constrained by gauge invari-
ance. The kaon-loop function, constructed in that way, also
vanishes at ω → 0.

III. K +K − SCATTERING AMPLITUDE

The elastic on-shell scattering amplitude TKþK−ðmÞ is
normalized using the following relation to the elastic
S-matrix element SKþK− :

TKþK−ðmÞ ¼ 4πm
ikf

ðSKþK− − 1Þ: ð53Þ

Like the function IðmÞ the above amplitude is dimensionless.
The KþK− S-wave state can be decomposed into two

isospin states corresponding to isospin I ¼ 0 or isospin
I ¼ 1:

jKþK−i ¼ 1ffiffiffi
2

p ðjI ¼ 0i þ jI ¼ 1iÞ: ð54Þ

If one assumes isospin symmetry conservation in the KþK−

interaction, then the strong elastic scattering amplitude
TKþK−ðmÞ can be written as a linear combination of two
isospin amplitudes t0ðmÞ and t1ðmÞ:

TKþK−ðmÞ ¼ 1

2
½t0ðmÞ þ t1ðmÞ�: ð55Þ

The amplitudes t0 and t1 are the elastic transition amplitudes
between the isospin 0 and1 states, respectively. Similarly, the
SKþK− matrix element is related to two KK̄ elastic S-matrix
elements labeled by isospin 0 or 1:

SKþK− ¼ 1

2
ðS0 þ S1Þ: ð56Þ

If the isospin symmetry is not conserved, then one can
consider additional contributions to TKþK−ðmÞ or to SKþK− .
It is convenient to express the complex functions SI ,

I ¼ 0, 1, in terms of the real phase shifts δI and inelas-
ticities ηI:

SI ¼ ηIe2iδI : ð57Þ
The functions δI and ηI depend on the effective mass m of
the KK̄ system and near the KK̄ threshold they can be
developed into series depending on the kaon momentum
evaluated in the KþK− center-of-mass frame. Alternatively,

one can make an effective range expansion of the scattering
amplitude TKþK−ðmÞ. As shown in Ref. [53], this can be
done also in presence of the poles corresponding to the
scalar resonances f0ð980Þ or a0ð980Þ located near the
kaon-kaon threshold.
There exist many models of kaon-kaon interactions. We

do not intend to review all of them, however we shall
mention here a model of separable potentials which has
been successfully used in scalar meson spectroscopy (see,
for example, Refs. [49,51,57]). Separable pion-pion poten-
tials have been used in Ref. [26]. Some kaon-kaon
amplitudes with parameters fitted to experimental data will
be used in next sections in numerical calculations of the
cross sections for the eþe− → KK̄γ reactions. Below we
give a few equations specific for the separable interactions.
The simplest rank-one-potential of the KK̄ interaction V

written in the momentum space has the form:

hkfjVjkii ¼ λGðkfÞGðkiÞ; ð58Þ

where λ is the potential strength constant, ki, kf are the
initial and final state relative kaon momenta in the kaon-
kaon center-of-mass frame, ki and kf are their moduli and
GðkÞ is the vertex form factor. The Yamaguchi form factor
[58] reads:

GðkÞ ¼
ffiffiffiffiffiffiffi
4π

mK

s
1

k2 þ β2
; ð59Þ

where β is the form-factor range parameter. For the
separable potential the scattering amplitude Tsep can be
obtained from the Lippmann-Schwinger equation in the
factorizable form:

hkfjTsepjkii ¼ GðkfÞτðmÞGðkiÞ; ð60Þ

where τðmÞ is the KK̄ effective mass dependent function.
In the lowest order of the KK̄ interaction τðmÞ equals to the
coupling constant λ but if the KK̄ interaction is strong
enough the function τðmÞmay acquire a resonant character.
This function has a pole in the complex effective mass
m-plane which can be attributed to the scalar S-wave
resonance. However, it can have also a nonresonant part,
so in general it cannot be reduced just to a simple Breit-
Wigner representation of the scalar resonance.
One can notice that the resonant form of the amplitude

given by Eq. (52) can be interpreted as a special case of the
amplitude derived for the separable potential meson-meson
interactions [Eq. (60)]. In this case the form factors GðkÞ
are functions which take into account the interactions of
kaons treated as extended objects. In Eq. (52) the coupling
constant gRKþK− is independent of the kaon momentum, so
in this case the kaons are treated as pointlike objects.
For the separable potentials it is easy to get the function

gðkÞ introduced in Eq. (26) in order to describe the off-shell
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dependence of the KK̄ amplitudes. For the on-shell
scattering the initial and final kaon momenta are equal,
jkij ¼ kfj, so the corresponding on-shell amplitude is
proportional to the square of GðkfÞ and the function
gðkiÞ is a simple ratio of the form factors:

gðkiÞ ¼
GðkiÞ
GðkfÞ

: ð61Þ

For the Yamaguchi form factor from Eq. (59) with k ¼ ki
this function equals to

gðkÞ ¼ k2f þ β2

k2 þ β2
: ð62Þ

As discussed earlier in the text below Eq. (26), for this
particular form factor the amplitude integral IðmÞ is
divergent, so in numerical calculations we use a cutoff
limit kcut. As in Ref. [59] we take kcut ¼ 1 GeV.
Before coming to numerical calculations of the reaction

cross sections one needs to determine the KþK− ampli-
tudes in two isospin states. In the present application the
separable meson-meson potentials are used for both isospin
channels. The parameters of the separable potentials have
been obtained from fits to the available data in meson
channels coupled to the KþK− states.
For isospin zero we shall use the results obtained from

the three-channel model of Ref. [49] (fit A). This model
has been constructed with an experimental input on the
two-pion, two-kaon and four-pion production on hydro-
gen targets (see, for example, Ref. [60]). In the fit to data
the pole corresponding to the f0ð980Þ resonance has been
found with the mass equal to 989 MeV and the width of
62 MeV. The range parameter of the isospin zero KK̄
potential has been obtained as β ≈ 1.5 GeV. In fits leading
to a set of separable potential parameters obtained in
Ref. [49], the kaon mass has been taken as an average of
the charged and neutral kaon masses mav. Since presently
we need to distinguish the KþK− and K0K̄0 thresholds, in
numerical calculations of the amplitude t0ðmÞ in Eq. (55)
we have made a shift of the mass m by about 2 MeV by
changing the argument m into mðmav=mKÞ. The separable
potential parameters of the amplitude t1ðmÞ have been
directly calculated for the charged kaon mass.
For isospin one we take amplitudes obtained in Ref. [51].

Here the pion-eta and kaon-antikaon coupled-channel
amplitudes have been calculated using the relevant data
on the meson production including the Crystal Barrel
Collaboration results from the proton-antiproton annihila-
tion. The position of the a0ð980Þ resonance on the ð−þÞ
sheet has been fitted in [51] at the mass of 1005 MeV and
the width of 49 MeV. In this case the value β ≈ 21.8 GeV
for the isospin one range parameter has been obtained.
At the end of this chapter we give a few remarks about

some specific features of the KK̄ amplitudes in relation to

the phase shifts and inelasticity parameters in two isospin
channels. For isospin zero and near the KþK− threshold a
rapid decrease of the amplitude modulus exists. It is related
to a presence of the scalar-isoscalar resonance f0ð980Þ. Its
influence leads to a strong decrease of the KK̄ phase shifts
δ0 as well as to the steep behavior of the inelasticity η0 as a
function of m near the KK̄ threshold (see Figs. 2 and 3 in
Ref. [49]). For isospin one we do not observe such a strong
decrease of phase shifts, although the scalar-isovector
resonance a0ð980Þ is present as a pole in the KþK−

scattering amplitude. As shown in Fig. 3 of Ref. [61], a
more smooth behavior of jTKK̄ðmÞj for isospin one in
comparison with the isospin zero case is related to small
values of the corresponding KK̄ phase shifts.

IV. DIFFERENTIAL CROSS SECTIONS, ANGULAR
DISTRIBUTIONS, AND THE BRANCHING

FRACTION FOR THE DECAY
ϕð1020Þ → K +K − γ

The reaction amplitude A given by Eq. (10) depends on
the spin projections (helicities) of the initial electrons,
positrons and the final photons. These helicities are labeled
by λe−, λeþ and by λγ, respectively. In general, there are eight
helicity dependent amplitudes Aλe− ;λeþ ;λγ since the electron
or positron helicities can be equal to þ1=2 or −1=2 and the
photon helicities can take values þ1 or −1. If the initial
beams are unpolarized and the photon polarisation is not
measured, then one has to average the modulus of the
amplitude squared over the initial eþ and e− helicities and
sum over the photon helicities:

jMj2 ¼ 1

4

X
λe− ;λeþ ;λγ

jAλe− ;λeþ ;λγ j2: ð63Þ

The differential cross section for the reaction eþe− →
KþK−γ is proportional to the above sum over the particle
helicities:

dσ ¼ ð2πÞ4
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðs − 4m2

eÞ
p jMj2dΦ3; ð64Þ

where me is the electron mass and Φ3 is the phase space of
the three-body final state consisting of Kþ, K−, and γ.
The final-state phase space dΦ3 can be written as

dΦ3 ¼
1

ð2πÞ9
kfωl

8
ffiffiffi
s

p dΩ1dΩγdm; ð65Þ

where ωl ¼ ðs −m2Þ=ð2 ffiffiffi
s

p Þ is the final photon energy in
the eþe− center-of-mass frame, Ω1 is the K− solid angle in
the KþK− center-of-mass frame and Ωγ is the photon solid
angle in the eþe− center-of-mass frame.
Taking into account properties of the electron and positron

bispinors [u andv in Eq. (4)] which satisfyDirac’s equations,
one can derive the following result:
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jMj2 ¼
�
e3

s

�
2

jFKðsÞj2jTKþK−ðmÞj2jIðmÞ − IðmϕÞj2

×

�
s
ðpeþ · qÞ2 þ ðpe− · qÞ2

ðq · pÞ2 þ 2m2
e

�
: ð66Þ

If we denote by θγ the angle between the photon and electron
momenta in the eþe− center-of-mass frame, then jMj2 can
be written as:

jMj2 ¼
�
e3

s

�
2

jFKðsÞj2jTKþK−ðmÞj2jIðmÞ − IðmϕÞj2

×

�
1

2
sð1þ cos2θγÞ þ 2m2

eð1 − cos2θγÞ
�
: ð67Þ

If the eþe− energy in the center-of-mass frame is close to the
ϕð1020Þ meson mass mϕ the second term in parentheses of
Eq. (67) can be neglected so the photon angular distribution
in the eþe− center-of-mass frame is proportional to
(1þ cos2θγ). In the same frame the angular kaon distribu-
tions are constant as the kaons are produced in the S-wave.
Integration over both the solid angles of the K− and the

photon leads to the following expression for the effective
mass differential cross section:

dσ
dm

¼ mðs −m2Þv
24ð2πÞ3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðs − 4m2

eÞ
p �

1þ 2m2
e

s

�
U; ð68Þ

where v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

K=m
2

p
is the kaon velocity in the

KþK− center-of-mass frame and

U ¼
�
e3

s

�
2

jFKðsÞj2jTKþK−ðmÞj2jIðmÞ − IðmϕÞj2:

This effective mass distribution depends on the modulus
of the KþK− amplitude so it is not sensitive to its phase.
However, the phase of the KþK− amplitude is experimen-
tally accessible in studies of its interference with the initial-
or final-state photon radiation amplitudes. At s values close
to 1 GeV2 the kaon electromagnetic form factor is strongly
dominated by the ϕð1020Þ meson contribution. Then the
differential cross section for the eþe− → KþK−γ reaction
can be related to the differential branching fraction for the
ϕð1020Þ → KþK−γ decay. The relevant square of the
matrix element summed over the photon helicities and
averaged over the ϕð1020Þ helicities reads:

jMðϕ → KþK−γÞj2 ¼ e2g2ϕKþK− jTKþK−ðmÞj2

× jIðmÞ − IðmϕÞj2
1

2
sð1þ cos2θγÞ;

ð69Þ

where g2ϕKþK− is the ϕ meson coupling constant to KþK−.

This expression is valid if one uses the same set of diagrams
as shown in Fig. 2 with a replacement of the virtual photon
γ� by the ϕ meson in the initial state. The differential
branching fraction for the ϕð1020Þ → KþK−γ decay is
proportional to jMðϕ → KþK−γÞj2 as follows:

dBrðϕ → KþK−γÞ ¼ ð2πÞ4
2mϕΓϕ

jMðϕ → KþK−γÞj2dΦ3;

ð70Þ

where Γϕ is the total ϕ width. Inspection into Eqs. (64),
(67), (69) and (70) leads to the following relation between
the cross section at s ≈m2

ϕ and the branching fraction:

σðeþe− → KþK−γ; s ≈m2
ϕÞ ≈ σðeþe− → ϕÞ

× Brðϕ → KþK−γÞ; ð71Þ

where the total cross section for the transition eþe− → ϕ,
averaged over the electron and positron helicities and
summed over the ϕ meson spin projections, is given by

σðeþe− → ϕÞ ¼ Γϕe4jFKðm2
ϕÞj2

m3
ϕg

2
ϕKþK−

: ð72Þ

The formula (71) is valid for the differential as well as for
the total cross sections or the branching fractions. Here we
consider a case of unpolarized eþe− beams.

V. NUMERICAL RESULTS FOR THE
REACTION e+ e − → K +K − γ

The differential cross section for the reaction eþe− →
KþK−γ [Eq. (64)] depends on the matrix element squared
which in turn is proportional to the form of the loop
function IðmÞ − IðmϕÞ [Eq. (66)].
The modulus and the phase ϕðmÞ of IðmϕÞ − IðmÞ for

the four different choices of the function gðkÞ are shown in
Fig. 3. One observes some sensitivity of jIðmÞ − IðmϕÞj to
the form of the function gðkÞ. Although we see some
difference between the phases ϕðmÞ shown by the solid and
dashed-dotted lines on the lower panel of Fig. 3, the line
showing the modulus of the function gRðmÞ from Ref. [16]
after a proper rescaling it to the form of jIðmÞ − IðmϕÞj is
practically indistinguishable from the solid line in the upper
panel. We have also calculated the kaon-loop function
IrðmÞ given by Eq. (31) using the function gðkÞ from
Eq. (62) with the parameter β ≈ 1.5 GeV. The correspond-
ing curves are very close to those given by solid lines in
Fig. 3, the relative differences do not exceed 1.5%.
From the lower panel of Fig. 3 one can see that the three

curves are rather close to each other showing a dominance
of the modulus of the imaginary part of IðmϕÞ − IðmÞ over
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the corresponding real part. If the real part would be zero
then the phase would be 90°. There is one exception,
namely the dotted curve shows a dominance of the real part
over the imaginary part. This curve corresponds to the
function gðkÞ≡ ϕðkÞ taken from Eq. (50), normalized to 1
at k ¼ 0. As we have explained in Subsection II C, this
function should be normalized to 1 at the running kaon
momentum kf, and not at k ¼ 0, which is a case valid only
at the KþK− threshold. After a proper normalization of
gðkÞ in Eq. (51) one obtains the dashed curve with much
smaller real part of IðmϕÞ − IðmÞ.
As we see in Eq. (66), the matrix element squared

defined in Eq. (63) is proportional to the square of the
modulus of the kaon form factor FKðsÞ. In the calculations
presented below we use its parametrization by Bruch,
Khodjamirian, and Kuhn (input values of parameters are
written in Table 2 of Ref. [62] for the constrained fit). At
s ¼ m2

ϕ one gets jFKðsÞj2 ¼ 6287.

The modulus and the phase of theKþK− elastic scattering
amplitudes are plotted in Fig. 4 as dotted lines. One observes
somewhat steeper behavior of these functions near the
KþK− threshold situated atm ≈ 987.4 MeV. This is a direct
influence of the f0ð980Þ resonance located in vicinity of the
threshold. The solid lines drawn for the transition amplitude
TKþK−→K0K̄0 are described in Sec. VII where the numerical

results for the reaction eþe− → K0K̄0γ are presented.
The KþK− effective mass distributions at

ffiffiffi
s

p ¼ mϕ are
plotted in Fig. 5. One can notice that the mass distributions
depend on the function gðkÞ which influences the loop
function difference IðmÞ − IðmϕÞ. All the curves have a
maximum near 990 MeV, only a fewMeVabove the KþK−

threshold. In the upper panel its value varies between 0.15
and 0.33 nb=GeV. Here we plot three curves calculated
using the model derived in this article. For the function
IrðmÞ defined in Eq. (31), using the separable potentials to
calculate the KþK− amplitudes as described in Sec. III, the
resulting KþK− effective mass distribution differs rela-
tively by 0.8% to 3.6% from the distribution shown as solid

FIG. 4. Effective mass dependence of the moduli of the KK̄
scattering amplitudes jTðmÞj (upper panel) and their phases
ϕTðmÞ (lower panel). The dotted lines correspond to the elastic
scattering KþK− → KþK− and the solid lines to the transition
amplitude KþK− → K0K̄0.

FIG. 3. KþK− effective mass dependence of the modulus of the
kaon-loop function IðmϕÞ − IðmÞ (upper panel) and its phase
ϕðmÞ (lower panel). The solid line corresponds to the function
gðkÞ [Eq. (62)] with the parameter β ≈ 1.5 GeV and the cutoff
kcut ¼ 1 GeV (case 1), the dotted line—to gðkÞ≡ ϕðkÞ given by
Eq. (50) (case 2) and the dashed curve—to gðkÞ from Eq. (51)
(case 3). The dashed-dotted line in the lower panel shows the
phase of the function gRðmÞ from Ref. [16].
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line which corresponds to the loop function IðmÞ from
Eq. (28). Therefore the corresponding curve is not plotted
since it would overlap with the solid line.
In the lower panel of Fig. 5 one can see a comparison

of the effective mass distributions corresponding to three
different models. The dashed line has been calculated
by us for the parameters of the no-structure model
(Ref. [45]), read from Table 1 of Ref. [39], where the
analysis of the data on the ϕ → f0ð980Þγ → πþπ−γ has
been performed. Similarly, the dotted line has been
calculated for the parameters of the kaon-loop model
of Ref. [47] fitted in the same KLOE analysis. The solid
line is our result copied from the upper panel in order to
make a more direct comparison of the results. We see that
the shape of the distributions is quite similar and the
maximum value of the cross section changes between
about 0.11 and 0.25 nb=GeV. Unfortunately no exper-
imental data on the branching fraction of ϕ → KþK−γ

exist so one cannot make a direct comparison of the
model results with data.
Calculation of the total reaction cross section for the

eþe− → KþK−γ transition, by integration of the differ-
ential cross section dσ=dm over the m-range from the
KþK− threshold up to mϕ leads to the values shown in
Table I. In the same table we give the corresponding
branching fractions for the ϕ meson decay into KþK−γ.
The values in the five rows correspond to the five cases
defined in the captions of Figs. 3 and 5. In the row labelled
by 1 r we show the values calculated for the kaon-loop
function IrðmÞ from Eq. (31). They differ by less than 2%
from the corresponding values shown in the first row
(case 1).
In calculations of the branching fractions we have used the

value of 4.15 μb for the total eþe− → ϕ cross section at the
ϕ resonance peak position [Eq. (72)]. Early calculations of
the branching fraction for the reaction ϕ → γða0 þ f0Þ →
γKþK− have given the values between 2.0 × 10−7 and 2.6 ×
10−6 [16]. In Ref. [22] the ϕ radiative decays into KþK−

have been examined using the function ϕðkÞ [Eq. (50)]
from Ref. [20] with an estimate of the branching fraction
Brðϕ → γðf0 þ a0Þ → γKþK−Þ ≤ 10−6. In Ref. [27] one
finds the values 2.25 × 10−6 and 8.12 × 10−7 in two model
variants of the f0 and a0 positions and coupling constants.
All the values given in Table I are below 10−6. The dispersion
of the values comes from two factors: the type of the kaon-
loop function IðmÞ and the form of the KþK− scattering
amplitude [see Eq. (69) for the reaction matrix element].

VI. REACTIONS WITH OTHER MESON PAIRS
IN THE FINAL STATES

There is a natural way to generalize the amplitudes
derived for the eþe− → KþK−γ reaction to other reactions
like eþe− → P1P2γ where in the final state pairs of the
pseudoscalar mesons P1 and P2 are produced. In the
intermediate state the same KþK− loop is present. In order
to write down the amplitudes corresponding to the eþe− →
P1P2γ reaction and to follow the derivation presented
above for the eþe− → KþK−γ reaction, one has to replace
in each step the elastic KþK− amplitude TðkÞ in Eq. (5) by
the inelastic KþK− → P1P2 amplitude

FIG. 5. Differential cross section for the reaction eþe− →
KþK−γ at

ffiffiffi
s

p ¼ mϕ as a function of the KþK− effective mass
m. Upper panel: the lines are labeled as in the upper panel of
Fig. 3 (cases 1 to 3); lower panel: the dashed line is calculated for
the no-structure model (Ref. [45]) (case 4), the dotted one for the
kaon-loop model with parameters obtained in Ref. [39] (case 5)
and the solid line is the same as in the upper panel but with a
different vertical scale.

TABLE I. Values of the total cross section σtot and the
branching fraction Br for the decay ϕ → KþK−γ.

Case σtot (pb) Br Remarks

1 1.85 4.47 × 10−7 Loop function from Eq. (28)
with kcut ¼ 1 GeV

1 r 1.82 4.39 × 10−7 Loop function from Eq. (31)
2 1.29 3.10 × 10−7 g(k) from Eq. (50)
3 3.37 8.13 × 10−7 g(k) from Eq. (51)
4 2.29 5.51 × 10−7 No-structure model [39,45]
5 0.85 2.05 × 10−7 Kaon-loop model [39,47]
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TKþK−→P1P2
ðkÞ

¼ hP1ðk1ÞP2ðk2ÞjT̃ðmÞjK−ð−kþ p − qÞKþðkÞi: ð73Þ

There are several P1P2 states coupled to theKþK− channel.
Below one can enumerate some of them:
(1) eþe− → πþπ−γ,
(2) eþe− → π0π0γ,
(3) eþe− → π0ηγ,
(4) eþe− → K0K̄0γ,
(5) eþe− → KþK−γ.

All these channels can be simultaneously studied in a unitary
way when the operator T̃ðmÞ becomes a reaction matrix
describing all the possible transitions between theP1P2 pairs
of mesons. The on-shell amplitude equivalent to that written
in Eq. (53) is given by

TKþK−→P1P2
¼ 4πm

i
ffiffiffiffiffiffiffiffiffiffiffi
kfk12

p ðSKþK−→P1P2
− δKþK−;P1P2

Þ; ð74Þ

where we have introduced the S-matrix element corre-
sponding to the reaction KþK− → P1P2. In the above
equation k12 denotes the relative momentum of the P1 and
P2 particles in their center-of-mass system. Then, extend-
ing the model constructed for a description of the reaction
eþe− → KþK−γ to other reactions, one can perform a
coupled channel analysis of the whole set of the reac-
tions eþe− → ϕð1020Þ → P1P2γ.

VII. DESCRIPTION OF THE REACTION
e + e− → K0K̄0γ

As the first step in a derivation of the amplitude for the
reaction eþe− → K0K̄0γ, we make the following isospin
decomposition of the K0K̄0 state:

jK0K̄0i ¼ 1ffiffiffi
2

p ðjI ¼ 0i − jI ¼ 1iÞ: ð75Þ

The on-shell transition amplitude from the KþK− to the
K0K̄0 state can be expressed as

TKþK−→K0K̄0ðmÞ ¼ 1

2
½t0ðmÞ − t1ðmÞ�; ð76Þ

where the amplitudes t0ðmÞ and t1ðmÞ have been introduced
in Eq. (55). Like in Sec. III for the elastic KþK− amplitudes,
in the numerical calculations of the amplitude t0ðmÞ in
Eq. (76) we have made a shift of the massm by about 2 MeV
by changing the argument m into mðmav=mK0Þ. The
separable potential parameters of the amplitude t1ðmÞ have
been directly adjusted to the value of the neutral kaon mass.
The amplitude for the reaction eþe− → K0K̄0γ can

be obtained from Eq. (49) after the substitution of
TKþK−→K0K̄0ðmÞ in place of TKþK−ðmÞ.

The next steps needed in calculation of the cross section
for the reaction eþe− → K0K̄0γ are exactly the same as
given in Secs. II and IV for the eþe− → KþK−γ process but
again the substitution of TKþK−ðmÞ by TKþK−→K0K̄0ðmÞ has
to be done in Eqs. (66), (67), and (69). As a result of these
replacements Eq. (68) gives the differential cross section
for the reaction eþe− → K0K̄0γ if we also change v into

v0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

K0=m2
q

, the K0 velocity in the K0K̄0 center-

of-mass frame.
The K0K̄0 effective mass differential cross sections are

shown in Fig. 6. One observes a considerable lowering of
the cross section values in comparison with Fig. 5. This fact
has two reasons. The first one is related to the limited phase
space for the eþe− → K0K̄0γ reaction in comparison with
the phase space of the eþe− → KþK−γ reaction. Simply
speaking, this is due to the value of the K0K̄0 threshold
mass (about 995.2 MeV) which is by 7.8 MeV higher than
the KþK− threshold mass. The second reason is illustrated
in the upper panel of Fig. 4 where we see that at the
effective mass larger than the K0K̄0 threshold the modulus
of the amplitude TKþK−→K0K̄0ðmÞ is substantially lower than
the modulus of the elastic KþK− amplitude. As seen in the
lower panel of Fig. 4, the phases of both amplitudes are also
different. However, this difference does not generate a
further effect on the values of the differential cross sections
which are proportional to the square of the amplitude
moduli [see, for example, Eqs. (68) and (69)]. Here one can
mention that a characteristic “horn” shape of the solid line
is due to the opening of the K0K̄0 threshold near m ¼
995 MeV. We have calculated the phase below 995 MeV
by making an analytical continuation of the transition
amplitude for the reaction KþK− → K0K̄0 beyond its
physical threshold. One has to add here that the differential
cross section for the kaon-loop function IrðmÞ [Eq. (31)] is
very similar to that shown in Fig. 6 by solid line. The relative

FIG. 6. Differential cross section for the reaction eþe− →
K0K̄0γ at

ffiffiffi
s

p ¼ mϕ as a function of the KK̄ effective mass.
The lines are labeled as in the upper panel of Fig. 5 (cases 1 to 3).
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differences vary between 0.9% and 2.4%, so once again we
do not show the corresponding line in order to evict almost a
complete overlap of lines.
The calculated results for the total reaction cross sections

of the eþe− → K0K̄0γ transition and the branching fractions
for the ϕ decay into K0K̄0γ are given in Table II. By
comparisonwith Table I one sees that the branching fractions
for the ϕ decays into K0K̄0γ are by about one order of
magnitude smaller than the corresponding branching frac-
tions for the transitionϕ → KþK−γ. The four cases shown in
Table II correspond to the same cases seen in Table I. Once
again,wenotice a small difference between the case 1 and the
case 1 r. The relative difference is only about 1.2%.
The results presented in Table II can be compared with

the values for the branching fraction of the ϕ decay into the
K0K̄0γ channel calculated using different models. Here we
quote some of them: in Ref. [16] one finds the values
2.0 × 10−9 and 1.3 × 10−8, Bramon, Grau, and Pancheri
have obtained 7.6 × 10−9 in [19], the results of Achasov
and Gubin from Ref. [27] are 4.36 × 10−8 and 1.29 × 10−8,
Oller in [28] gave the values 3.7 × 10−8 or 6.43 × 10−9

depending on the KK̄ amplitude type, the result of
Escribano from Ref. [30] is 7.5 × 10−8.
The upper limit 1.9 × 10−8 for the ϕ → K0K̄0γ decay

found by the KLOE Collaboration in Ref. [35] is of the
same order as the numbers in Table II. It is possible to
generate lower values of the theoretical branching fractions
by a moderate change of the pole positions of the scalar
mesons f0ð980Þ or a0ð980Þ. We repeat here that for the
present model of the isospin zero KK̄ amplitude the
a0ð980Þ pole position is given by the mass ma0ð980Þ ¼
1005 MeV and the width Γa0ð980Þ ¼ 49 MeV. As seen in
Fig. 7, calculated for the case 1 in Table II, the KLOE lower
limit can be reached by changing the position of the
a0ð980Þ resonance or its width on the sheet ð−þÞ by
about 5 MeV. This figure indicates an important role of
future experimental measurements of the reactions eþe− →
KþK−γ and eþe− → K0K̄0γ in a more precise determi-
nation of the properties of scalar resonances.
As a final comment we can add that the same procedure

of the amplitude replacement just described for the reaction
eþe− → K0K̄0γ can be done for other reactions like for the
first three transitions listed below Eq. (73).

VIII. CONCLUSIONS

In summary, the theoretical model of the reaction
amplitudes for the processes eþe− → KþK−γ and eþe− →

K0K̄0γ has been formulated. The strong interactions
between the charged and neutral kaons are included in
the elastic scattering amplitude TKþK−ðmÞ and in the
transition amplitude TKþK−→K0K̄0ðmÞ. The formulas for
the total reaction amplitude A ¼ A1 þ A2 þ A3 þ A4, valid
for the general form of the KK̄ scattering amplitudes, are
presented in Eqs. (12)–(14) and in Eqs. (16)–(25).
We have shown that some models used in past for

a description of the radiative ϕ decays into KþK−γ

and K0K̄0γ can be treated as special cases of the model
presented in Sec. II A. For the reaction eþe− → KþK−γ,
the approximate form of the amplitude, valid for small
values of the outgoing photon energy, is given by Eq. (49).
It is proportional to TKþK−ðmÞ and to the kaon-loop
function difference IðmÞ − IðmϕÞ. The alternative form
IrðmÞ of the function IðmÞ from Eq. (28) can be seen
in Eq. (31). These functions depend on the off-shell
behavior of the KþK− elastic scattering amplitude
TKþK−ðmÞ given by the function gðkÞ in Eq. (26).
However, if the function gðkÞ depends sensitively on
the kaon momenta k only at k ≥ 1 GeV, then the reaction
amplitude is close to the amplitude calculated in the limit
of point-like kaons [gðkÞ≡ 1]. The gauge invariance
condition leading to vanishing reaction amplitude at the
photon energy going to zero has an important conse-
quence for that behavior.

FIG. 7. Contours of the branching fraction Br for the decay
ϕ → K0K̄0γ in the complex plane of the a0ð980Þ pole position:
ma0ð980Þ is the resonance mass and Γa0ð980Þ its width. The solid
curve corresponds to the KLOE upper limit Br ¼ 1.9 × 10−8,
the dotted one to Br ¼ 1.0 × 10−8, the dashed curve to
Br ¼ 3.0 × 10−8, the dashed-dotted one to Br ¼ 4.0 × 10−8,
and the dashed- double dotted one to Br ¼ 5.0 × 10−8. The
cross indicates the a0ð980Þ resonance position on sheet ð−þÞ
found in Ref. [51].

TABLE II. Values of the total cross section σtot and the
branching fraction Br for the reaction eþe− → K0K̄0γ.

Case σtot (pb) Br Remarks

1 1.67 × 10−1 4.03 × 10−8 Loop function from Eq. (28)
with kcut ¼ 1 GeV

1 r 1.65 × 10−1 3.98 × 10−8 Loop function from
Eq. (31)

2 1.02 × 10−1 2.46 × 10−8 g(k) from Eq. (50)
3 3.38 × 10−1 8.16 × 10−8 g(k) from Eq. (51)
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The amplitude for the reaction eþe− → K0K̄0γ can be
obtained from Eq. (49) after a replacement of TKþK−ðmÞ
by TKþK−→K0K̄0ðmÞ.
The formulas for the differential cross sections describ-

ing the KK̄ effective mass distributions and the photon and
kaon angular distributions have been obtained. The numeri-
cal calculations of the effective mass distributions, the total
reaction cross sections and the branching fractions for the
ϕð1020Þ decays into KþK−γ and K0K̄0 have been per-
formed. The separable meson-meson potentials with the
parameters taken from Refs. [49,51] have been used to
calculate the KK̄ amplitudes. Other forms of the kaon-kaon
scattering amplitudes can be easily included in alternative
studies of the same reactions. The present model can be
used in future experimental analyses of the reactions
eþe− → KþK−γ and eþe− → K0K̄0γ, in particular at the
eþe− energies close to the mass of the ϕð1020Þ meson. We
have also generalized this model to the reactions eþe− →
P1P2γ with pairs of the pseudoscalar mesons P1 and P2

different fromKþK− or fromK0K̄0. The model in this form
can serve in couple channel analyses of the eþe− data for
the production processes including KþK−, K0

SK
0
S, π

þπ−,
π0π0, and π0η pairs of mesons in the final state. Such
combined analysis can provide a valuable information
about the positions of the a0ð980Þ and f0ð980Þ resonances
and about the near threshold KK̄ scattering amplitudes.
At the end let us add a remark concerning a possible

contribution of other intermediate states with the same
quantum numbers as KþK−. The KþK− loop dominates at
the eþe− center-of-mass energy close to the ϕð1020Þ
meson mass since the branching fraction for the ϕ decay
intoKþK− is much larger than any other branching fraction
for the decay into charged particles [1]. For example, we
have checked that the πþπ− loop with the subsequent
πþπ− → KþK− transition leads to a reaction cross section
by a factor of about 10−6 smaller than the cross section
calculated with the KþK− intermediate loop.
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APPENDIX A: AMPLITUDE A4ðmÞ
Let us examine a dependence of the amplitude A4ðmÞ

defined by Eqs. (40) and (41). One can predict a weak
dependence of the imaginary part of the function I4ðmÞ on
ω≡ ðm2

ϕ −m2Þ=ð2mÞ. Essentially the integral value
depends on the ratio ω=p0. In the KþK− center-of-mass

frame the energy p0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

ϕ þ ω2
q

and the photon energy

ω has the following upper limit: ω ≤ ðm2
ϕ − 4m2

KÞ=ð4mKÞ.
This value is equal to about 32 MeV which is much smaller
than the ϕð1020Þ meson mass. The maximum photon
momentum is also smaller than the average of the kaon
lower and upper momentum limit equal to ðk0 þ k00Þ=2 ¼
p0vL=2. This average momentum is equal to about
127 MeV and exceeds the maximum photon energy
32 MeV. The photon energy is also smaller than the typical
range of the kaon momentum distribution which can be
represented by the parameter μ in Eq. (50), or by the range
parameter β in Eq. (62). Let us note here that the variable y
present in the integrand of Eq. (42) takes the value −k
at k ¼ k0 and the value þk at k ¼ k00, so the integrand
function vanishes at both limits of k. Since the difference
k00 − k0 ¼ ω, the factor ω in the denominator of Eq. (42) is
cancelled and even in the limit ω → 0 one gets the finite
value of the imaginary part of the function I4 [see Eq. (43)].
We can also infer a weak m-dependence of the function

I4ðmÞ from studies of the its integrand in Eq. (41). If one
makes an expansion of the sum 1=M4ðkÞ þ 1=M5ðkÞ in
series of ω, then after an integration over the angles of the
vector k the integrand depends only on even powers of ω.
Since ω is small the function I4ðmÞ varies very slowly
with m.
The above qualitative considerations, which indicate a

weak ω dependence of ImA4, can be further supported by
the numerical results obtained for the function gðkÞ taken
in the form of Eq. (50) or given by Eq. (51). In the first case
the relative variation of ImA4 in the whole region of ω
between 0 and 32 MeV is smaller than 0.6%. In the latter
case it is smaller than 2.1%.
It is also possible to estimate numerically the real part of

the function I4ðmÞ given by three-dimensional integral in
Eq. (41). Like for ImI4 one observes a weak dependence
onω. If we take the function gðkÞ given by Eq. (62) with the
parameter β of the order of 1.5 GeV, much larger than the
parameter μ ¼ 141 MeV used in Eq. (50), then we can
obtain even much weaker dependence of A4ðmÞ than in the
two cases described above. Therefore one can conclude that
the variation of the amplitude A4ðmÞwithm is so weak that
we can take for it the value at m ¼ mϕ: A4ðmÞ ≈ A4ðmϕÞ.

APPENDIX B: REAL PART OF THE
KAON-LOOP FUNCTION IrðmÞ

In this Appendix we give formulas derived for the real
part of the kaon-loop function IrðmÞ defined in Eq. (31):

ReIrðmÞ¼ 1

ð2πÞ2P
Z

∞

0

dkgðkÞk

× ½W1ðkÞþW2ðkÞþW3ðkÞþW4ðkÞþW5ðkÞ�;
ðB1Þ

where
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W1ðkÞ ¼ −
4k

Ekðm2 − 4E2
kÞ
; ðB2Þ

W2ðkÞ ¼
1

ωEkðm2 − 4E2
kÞ
�
2kEk −m2

K ln
Ek þ k
Ek − k

�
;

ðB3Þ

W3ðkÞ ¼
1

2mωEkðm − 2EkÞ
�
2ykþ ðk2 − y2Þ ln

				 yþ k
y − k

				
�
;

ðB4Þ

W4ðkÞ ¼ −
1

2mωEkðmþ 2EkÞ
�
2tkþ ðk2 − y2Þ ln tþ k

t − k

�
;

ðB5Þ

W5ðkÞ¼
1

2ω3

�
Ep−Emþ ω2m2

K lnx1
mEkðm−2EkÞ

−
ω2m2

K lnx2
mEkðmþ2EkÞ

þm2
ϕðEk−E0ÞðEk−E00Þ
mEkðm−2EkÞ

lnx3

−
m2

ϕðEkþE0ÞðEkþE00Þ
mEkðmþ2EkÞ

lnx4

�
: ðB6Þ

The variable y present in Eq. (B4) has been already defined
in Eq. (33). Other variables are given by the following
equations:

t ¼ 1

ω

�
p0Ek þ

m2
ϕ

2

�
; ðB7Þ

x1 ¼
ðEk þ ωþ EmÞðEk þ ω − EpÞ
ðEk þ ωþ EpÞðEk þ ω − EmÞ

; ðB8Þ

x2 ¼
ðEm − Ek þ ωÞððEk − ωþ EpÞ
ðEp − Ek þ ωÞðEm þ Ek − ωÞ ; ðB9Þ

x3 ¼
ðEk − p0 þ EmÞðEk − p0 − EpÞ
ðEk − p0 − EmÞððEk − p0 þ EpÞ

; ðB10Þ

x4 ¼
ðEk þ p0 þ EpÞðEk þ p0 − EmÞ
ðEk þ p0 − EpÞðEk þ p0 þ EmÞ

; ðB11Þ

Ep ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
k þ 2kωþ ω2

q
; Em ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
k − 2kωþ ω2

q
;

ðB12Þ

E0 ¼ p0

2
−
ω

2
vϕ; E00 ¼ p0

2
þ ω

2
vϕ;

vϕ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
K

m2
ϕ

s
: ðB13Þ

Let us remark here that the terms W2ðkÞ, W3ðkÞ, W4ðkÞ,
and W5ðkÞ are singular at ω ¼ 0. However, if all the terms
in Eq. (B1) are added together then, due to cancellations,
the terms proportional to 1=ω3, 1=ω2, and 1=ω vanish and
the final result at ω ¼ 0 is finite.
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