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L. Raczyński a,*, W. Wíslicki a, K. Klimaszewski a, W. Krzemień b, P. Kopka a, P. Kowalski a, R. 
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A B S T R A C T   

In this paper we introduce a semi-analytic algorithm for 3-dimensional image reconstruction for positron 
emission tomography (PET). The method consists of the back-projection of the acquired data into the most likely 
image voxel according to time-of-flight (TOF) information, followed by the filtering step in the image space using 
an iterative optimization algorithm with a total variation (TV) regularization. TV regularization in image space is 
more computationally efficient than usual iterative optimization methods for PET reconstruction with full system 
matrix that use TV regularization. The efficiency comes from the one-time TOF back-projection step that might 
also be described as a reformatting of the acquired data. An important aspect of our work concerns the evaluation 
of the filter operator of the linear transform mapping an original radioactive tracer distribution into the TOF 
back-projected image. We obtain concise, closed-form analytical formula for the filter operator. The proposed 
method is validated with the Monte Carlo simulations of the NEMA IEC phantom using a one-layer, 50 cm-long 
cylindrical device called Jagiellonian PET scanner. The results show a better image quality compared with the 
reference TOF maximum likelihood expectation maximization algorithm.   

1. Introduction 

Time-Of-Flight (TOF) Positron Emission Tomography (PET) has a 
long history that started in the early 1980s [1,2]. However, the detectors 
available at that time did not provide the required combination of 
stopping power, time resolution and light output efficiency necessary for 
building clinical systems. The introduction of fast scintillators such as 
LaBr3:Ce and LSO [3,4] led to the first commercially available TOF-PET 
system. State-of-the-art TOF-PET scanners operate at a coincidence 
resolving time (CRT) of the order of 300–400 ps [5,6]. More recent 
theoretical and experimental studies using small 2 × 2 × 3 mm 3 LSO 

and LaBr3:Ce crystals indicate that the CRT limit is expected at about 
100 ps [7,8]. Moreover, there are no physical barriers to reaching the 
resolution of about 10 ps in the future [9]. In this context, it is worth to 
mention that the Jagiellonian PET (J-PET) Collaboration developed a 
novel whole-body PET scanner based on plastic scintillators [10–12] 
capable of simultaneous metabolic and positronium imaging [13,14]. 
Plastic scintillators are characterized by superior timing properties 
compared to scintillator crystals; the Cramer-Rao lower limit [15,16] for 
the CRT achievable with plastic scintillators corresponds to about 70 ps 
for 100 cm long plastic strips [11]. 

The signal-to-noise ratio (SNR) improvement due to TOF 
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reconstruction is in the first approximation inversely proportional to the 
square root of the CRT [17]. The TOF gain in SNR allows to reduce the 
dose to the patient or shorten the overall examination time. The shorter 
scan time is of high importance, because it reduces the problems related 
to the movements of the organs in the patients which introduce an 
additional complication in current reconstruction methods. 

Precise TOF information enables new reconstruction approaches; the 
examples are: TOF Fourier rebinning algorithm (FORE) [18–20] or 
simultaneous emission-attenuation reconstruction method [21]. In the 
DIRECT reconstruction algorithm the TOF events are histogrammed 
directly into images [22,23]. 

In this contribution we present a 3-dimensional (3-D), semi-analytic 
TOF reconstruction algorithm with the Total Variation (TV) regulari-
zation [24]. The proposed mathematical model describing measurement 
process with TOF information is inspired by the works of [25,26]. We 
have gone beyond those investigations to develop an algorithm that 
operates exclusively in the image space. The recent results [27] suggest 
that as the CRT improves, the TOF analytic algorithms become more 
competitive to statistical iterative methods, e.g., TOF Maximum Likeli-
hood Expectation Maximization (TOF-MLEM). In spite of the linear 
behavior and predictability, analytic methods exhibit higher sensitivity 
to the data noise, as compared to the statistical iterative approaches. 
This leads to more noisy images for a low count data and thus affecting 
the quantitative precision of the imaging studies. Consequently, proper 
regularization of the analytic reconstruction is of a very practical 
interest. 

Key component of this work is the application of the TV regulariza-
tion in the image space during the analytic reconstruction filtering step, 
that is, after the TOF data have been TOF back-projected into the image 
space. Image space is substantially reduced in size as compared to the 
TOF data space, making the TV optimization operations much more 
efficient and practical. The most important part of our investigations is 
the evaluation of the kernel operator, corresponding to the linear 
transform mapping an original radioactive tracer distribution into a TOF 
back-projected image. In this paper the formula for calculations of the 
kernel operator is introduced and proven. Monte-Carlo (MC) simulation 
based performance studies of the developed algorithm compared with 
TOF-MLEM method [28] conclude the paper. 

2. Reconstruction methods 

2.1. TOF-PET data 

The 3-D TOF-PET data can be expressed as [18,29]: 

p(s,ϕ, zc, θ, l) =
∫ ∞

− ∞
dl

′

f ( x→= l′ ω1
̅→+ s ω2

̅→+ zc ω3
̅→)h(l − l′ ) (1)  

where the function f( x→ ≜ (x, y, z)) describes the radioactive tracer dis-

tribution, s and ϕ are the transaxial sinogram coordinates, zc is the axial 
coordinate of the mid-point of the Line-of-Response (LOR), θ is the co- 
polar angle between the LOR and transaxial plane, l is the TOF vari-
able and h is the TOF profile (see Fig. 1). Three unit vectors are defined 
as: 

ω1
̅→ = ( − cosθsinϕ, cosθcosϕ, sinθ) (2)  

ω2
̅→ = (cosϕ, sinϕ, 0) (3)  

ω3
̅→ = (0, 0, 1). (4) 

The TOF profile h is often modeled as a Gaussian function [30] with 
standard deviation σ = c⋅CRT/(4

̅̅̅̅̅̅̅̅̅̅̅̅
2log2

√
),where c denotes the speed of 

light. The TOF variable l is related with the TOF time difference Δt be-
tween the two arrival times of the two photons by l = cΔt/2, where l = 0 
corresponds to the position of the LOR mid-point. 

2.2. Notation 

An image is represented by a 3-D function f( x→), where x→∈ R3 de-
notes the space coordinate. A discretized version of continuous function 
f(x, y, z) is represented by fijk, where (i, j, k) = 1,…, n correspond to the 
voxels position in the image matrix. The bold symbol f ∈ RN, where N =

n3, represents the vectorized version of the matrix f. In general n × n × n 
size images are stored as N length vectors. 

The geometrical arrangement of discrete detectors in a scanner de-
termines a set of samples (s,ϕ, zc, θ, l) ≜ Σ→∈ R5 in the projection space. 
The most common arrangement is a ring scanner: an even number of 
detectors uniformly spaced along a circle and 

Σ→= {(s,ϕ, zc, θ, l) : |s|⩽Rd, 0⩽ϕ⩽π,

|zc|⩽
Ld

2
, 0⩽θ⩽

π
2
, |l|⩽

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

R2
d +

L2
d

4

√

},

where Rd is the detector radius, Ld is the detector length. A discretized 
TOF projection data are represented by matrix element pijkmq, where (i, j,
k,m, q) correspond to the variables (s,ϕ, zc, θ, l), respectively. The bold 
symbol p ∈ RP, represents the vectorized version of the matrix p. 

The mathematical operator mapping a function f( x→) into p(Σ→), ac-
cording to Eq. (1), is denoted by K : 

p(Σ→) = (K f )(Σ→) (5)  

and K ∈ RP×N is a finite-dimensional sampling of the K transform: 

p = Kf (6)  

and is often called a system matrix. 

Fig. 1. Schematic view of a cylindrical 3-D PET tomograph in axial cross-section (left panel) and transaxial cross-section (right panel).  
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2.3. TOF-PET reconstruction 

This section describes the proposed TOF algorithm. Procedure of the 
image reconstruction is as follows:  

• Data pre-correction. In the first step, list-mode TOF events are pre- 
corrected. Pre-correction takes into account both the multiplicative 
factors (detector efficiency and attenuation factors) and the additive 
contamination of the data (random and scatter events). More details 
about the pre-correction and pre-processing of the J-PET data may be 
found in [12,31].  

• TOF back-projection. Corrected data are back-projected to the image 
space using the TOF information. The relation between the back- 
projected data and the unknown radiotracer distribution will be 
introduced in Section 2.3.1.  

• Reconstruction with regularization. The radiotracer distribution is 
reconstructed using the back-projected image by solving uncon-
strained TV regularization problem. The reconstruction problem 
based on TV approach will be discussed in Section 2.3.2. 

The proposed algorithm is similar to the conventional back- 
projection filter (BPF) method [32]. However, in the BPF algorithm 
acquired data are first deposited into projection space. In contrary, in 
this approach the incorporation of the TOF information allows for direct 
transformation into the TOF back-projected image, i.e., each measured 
event is back-projected along the LOR at the estimated location in the 
image space by the TOF information. In the proposed work, the TV 
regularization acts as a filtering step, while in standard BPF or TOF-BPF 
algorithms, regularization is provided via apodizing functions. In the 
following sections we describe the subsequent steps of the proposed 
image reconstruction. 

2.3.1. TOF back-projection 
With the set of correction factors for all LORs in hand, the acquired 

data are deposited directly into TOF back-projected image. In the 
following we derive the relation between the TOF back-projected image 
and the original radioactive tracer distribution. We define a TOF back- 
projection operator (K #) and we provide a linear transform of the 
projection data p defined in Eq. (5): 

(K
#p)( x→) = (K

#
K f )( x→) (7)  

b( x→) = A f ( x→) (8)  

where A = K #K is an overall TOF forward and back-projection 
operator and b is TOF back-projected image. The images f and b have 
the same sizes and one-to-one voxel correspondence. Under the 
assumption that the TOF profile h is shift invariant, so that the integral in 
Eq. (1) is a convolution, the operator A may be described as convolution 
operator with a kernel a( x→): 

b( x→) = a( x→) ∗ f ( x→). (9) 

The aspect of the validity of the kernel a shift-invariance assumption 
will be discussed in the last part of Section 2.3.1. 

The kernel a( x→) may be easily derived for a point source δ( x→) placed 
in the tomograph center based on Eq. (7), i.e., 

a( x→) = (K
#

K δ)( x→). (10) 

In the following, by convention we use subscripts o to denote exact 
values as opposite to estimated quantities described with subscripts e. A 
measured TOF event is defined as a set ge

→
= (xu,e,yu,e,zu,e,tu,e,xd,e,yd,e,zd,e,

td,e). The (xu,e, yu,e, zu,e) and (xd,e, yd,e, zd,e) denote the reconstructed posi-
tion along the upper and lower strips, respectively, see Fig. 2 for details. 
The tu,e and td,e are reconstructed hit times such that: 

le = c
td,e − tu,e

2
. (11) 

An annihilation occurring at xo
→

= (0,0, 0) is measured as the point 
xe
→

= xo
→

+ ∊→, where 

∊→= le ω→1,e + se ω→2,e + zc,e ω→3 (12)  

= ∊1
→+ ∊2

→+ ∊3
→ (13)  

based on the parametrization introduced in Eq. (1). As it is shown in 
Fig. 2, the measurement error ∊→ is a vector with a component ∊1

̅→

describing TOF uncertainty, a component ∊2
̅→ related to the unknown 

depth of interaction (DOI) in a single scintillator and a component ∊3
̅→

describing uncertainty along axial direction (note that ω→3 is constant 
(see Eq. (4)) and therefore we do not use the subscripts). From Eq. (12) it 
may be seen that the measurement error ∊→ is evaluated after TOF back- 
projection of the TOF event ge

→ into the image space. Hence, assuming 
that the ∊→ is independent of the locations and measurement errors of all 
other annihilations, the ∊→may be considered as a random variable with 
probability density function (pdf) given by the overall TOF forward and 
back-projection operator a in Eq. (10). 

The proposed mathematical model of measurement errors is inspired 
by the work of Snyder et al. [25]. In their paper they assumed that ∊→ is 
normally distributed and has two components: parallel and transverse to 
the LOR. The parallel component error is analogous to ∊1

̅→ in our deri-
vation (see Fig. 2). However, instead of one transverse component error 
we considered two error vectors ∊2

̅→, ∊3
̅→ according to the parametri-

zation given in Eq. (1). This approach allows us to include more 

Fig. 2. Example of reconstruction of point source placed in the detector center 
presented in axial cross-section. The measurement error consists of three 
components: the TOF uncertainty (red arrow), the unknown DOI (green arrow), 
and the uncertainty along the axial direction (blue arrow). (For interpretation 
of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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information about geometrical arrangement and readout specification of 
different PET systems, e.g., the J-PET scanner, in our calculations. 

In order to simplify the further calculations the following assumption 
is proposed. Note that in the most interesting case for large detector 
radius Rd, orientation of component error ∊1

̅→, i.e., vector ω→1,e in Eq. 
(12), is very close to the true LOR direction ω→1,o. Therefore, we assume 
that ∊1

̅→ ≈ le ω→1,o, (see Fig. 2 for details) where only le is a random 
variable. Furthermore, the ∊2

̅→ and ∊3
̅→ in Eq. (12) depend only on 

transaxial (xu,e, yu,e, xd,e, yd,e) and axial (zu,e, zd,e) uncertainties, respec-
tively. Hence, the error ∊→ may be approximated as a sum of three in-
dependent random variables and the unknown kernel a is given as the 
convolution: 

a( x→) = (a(1) ∗ a(2) ∗ a(3))( x→) (14)  

where a(k) describes pdf of error term ∊k
̅→ in Eq. (12) for k = 1,2,3. It is 

shown in appendix A, that 

a(1)( x→) = κ1
h(‖ x→‖)C ( x→, θacc)

‖ x→‖
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
x2 + y2

√ (15)  

a(2)( x→) = κ2
h2(

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
x2 + y2

√
)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
x2 + y2

√ (16)  

a(3)( x→) = h3(z). (17) 

The parameter θacc corresponds to the maximal accepted θ angle, κ1,

κ2 stand for the normalization constants, h2, h3 are profile functions 
given in Eqs. (28), (31), respectively, and function C is defined in Eq. 
(26). It should be stressed that the kernel a does not have a finite support 
due to the Gaussian functions in a(1) and a(3). In order to reduce the 
reconstruction time, we assessed the truncation of the kernel a and this 
aspect will be discussed in Section 3.4. 

The evaluation of the kernel a is closely related to the modeling of 
scanner-specific point spread function (PSF). The PSF kernels take into 
account the effect of image blurring associated with the system resolu-
tion either in the image space [33,34] or in the projection space [35,36]. 
The PSFs are estimated based on reconstructed images of point sources 
using specific algorithm, e.g., TOF-MLEM. On the other hand, in the 
proposed approach there is no reconstruction stage during the calcula-
tion of the operator; the kernel a is obtained directly after TOF forward- 
and back-projection of the point source (see Eq. (10)). In this sense PSF 
kernel and operator a are complementary. Since the inclusion of the all 
measurement imperfections due to, e.g., the positron range and coinci-
dent photons acolinearity, into the operator a is difficult, PSF kernels 
may be additionally applied to the proposed reconstruction scheme. For 
this purpose, the PSF kernel may be found by analysis of reconstructed 
images of a point source and final operator will be given as a convolution 
of the operator a and the estimated PSF kernel. The parameters of the 
PSF kernels may be found through fitting different functions, e.g., 
weighted-exponential function [37], Gaussian model [38] or Gaussian 
mixture model [39]. 

In the following section, we discuss the validity of the kernel a shift- 
invariance assumption (see Eq. (9)). For this purpose we consider the 
influence of the position of point source on the distributions a(k) of 
measurement errors ∊k

̅→ for k = 1,2,3. The pdf a(3) does not depend on 
the position of point source as the uncertainty of measurement along the 
axial direction (z) is assumed to be constant (see appendix A.3 for de-
tails). The pdf a(2) for central and shifted point sources is not stationary 
since the efficient DOI changes with different angle in (x,y) cross-section 
between two detectors in coincidence. Under the assumption that 
annihilation photons propagate isotropically, only for central point 
source the angular difference in (x, y) cross-section between two de-
tectors is always ≈ 180o (see appendix A.2 for details). However, kernel 
a(2) contributes only to the (x,y) distribution of the overall kernel a and 
as the TOF uncertainty is still a major challenge of current PET scanners, 

the investigation of influence of pdf a(1) on shift-invariance is of main 
importance. The main parameter that governs the distribution of kernel 
a(1) is θacc angle. Note that the θacc angle can not be greater than 
maximum detection angle θ for the point source placed in the tomograph 

center: θmax = arctan
(

Ld
2Rd

)

. The solid angle covered by the tomograph is 

largest in the center (θmax), but it decreases if one moves the point source 
from the center towards the edge. Consequently, the function describing 
the kernel a depends on the spatial location of the point source and is 
said to be spatially variant. 

In the 1980s several 3-D analytic reconstruction approaches have 
been proposed to circumvent the assumption of shift-invariance [40,41]. 
This has been done by completion of the missing regions by forward- 
projecting (re-projecting) images initially reconstructed from the sub-
set of projection data for which θ⩽θmin. The limiting angle θmin imposes 
shift-invariance everywhere within the field of view specified by the 
volume of the reconstructed object. 

In this work no initial image reconstruction and data re-projection 
was performed, and the shift-invariance was approximated by reject-
ing any events with θ⩾θacc, where θmin⩽θacc⩽θmax. Increasing θacc 

weakens the assumption of shift-invariance of the kernel a, however, on 
the other hand ensures higher statistics. A trade-off between number of 
accepted events and size of the area inside the tomograph for which the 
shift-invariance assumption of kernel a holds is optimized by changing 
the θacc parameter. 

It is worth noting that the detection angle limitation is required in 
case of long PET detectors. A more oblique LOR penetrates more scin-
tillating material than a LOR of less axial difference, which coupled with 
unknown depth of interaction degrades the axial resolution. For 
instance, for a 200 cm long EXPLORER scanner [42,43], the maximum 
axial difference between crystal pairs was limited to 115 cm. Moreover, 
the restriction on maximal θ angle is beneficial due to the photons 
attenuation effect in patient body; the more oblique the LOR the longer 
the path through the patient’s body and higher the probability of photon 
attenuation. 

2.3.2. Reconstruction with regularization 
The problem in Eq. (9) may be rewritten to the matrix notation: 

b = Af (18)  

where A is finite-dimensional sampling of operator A and therefore has 
a circulant structure (see Eqs. 8,9 for details). The circulant property of 
matrix A is a critical factor to speed up the algorithm as it allows the use 
of Fourier transform methods. 

Since the TOF back-projected image b is not a perfect noiseless 
image, the inverse problem defined in Eq. (18) is ill-posed and the 
application of some regularization technique is required. The most 
common class of regularization methods in image processing is based on 
TV approach. The TV-norm of image f can be defined as: 

TV(f) =
∑

i

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
D(x)

i f
)2

+ (D(y)
i f)

2
+
(
D(z)

i f
)2

√

(19)  

where D(x) ∈ RN×N,D(y) ∈ RN×N and D(z) ∈ RN×N are the first-order for-
ward finite-difference operators, that approximate the gradient opera-
tors along the x, y, z directions, respectively. Therefore, D(u)

i f ∈ R is the 
discrete gradient of the image at pixel i along the u direction (u = x,y,z). 
We define D = (D(x); D(y); D(z)) ∈ R3N×N as the total first-order forward 
finite-difference operator. Thus, the TV norm in Eq. (19) can be 
expressed as: 

TV(f) =
∑

i
‖Dif‖2 (20)  

where Dif ∈ R3 is the discrete gradient of the image at pixel i. 
Optimization algorithm finds a solution f̂ of Eq. (18) by solving an 
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unconstrained regularization problem: 

f̂ = argminTV(f)+
μ
2
‖Af − b‖2

2, (21)  

which is known as the TV/L2 minimization. The μ is the regularization 
parameter. The data fidelity term in Eq. (21) is a L2 norm that consti-
tutes the Gaussian noise model. Note that the image b is evaluated after 
the pre-correction of the data (see the beginning of Section 2.3), which 
are no longer described by the Poisson distribution and it is convenient 
to assume the Gaussian noise model. The theory of penalty functions 
implies that the solution of Eq. (21) approaches the solution of Eq. (18) 
as μ goes to infinity. The proposed algorithm is based on the augmented 
Lagrangian method [44,45] and is presented in details in appendix B. 
This algorithm will be denoted hereafter as TOF-BPTV (TOF Back Pro-
jection Total Variation regularization). 

3. Results 

3.1. NEMA IEC body phantom simulation with the J-PET scanner 

The performance of the proposed image reconstruction approach 
was investigated based on the MC simulation studies. The NEMA IEC 
body phantom, including six spheres and one long cylinder, was simu-
lated according to the specification given in [46]. The four smallest 
spheres of 10, 13, 17 and 22 mm diameter simulated hot lesions with 
contrast ratio of 4 : 1 with respect to the activity concentration of the 
background. The two largest spheres of 28 and 37 mm diameter simu-
lated cold lesions with no radioactivity. The centers of all six spheres 
were in the same transaxial plane and located at 70 mm from the 
phantom lid (see Fig. 3). The 180 mm long cold cylinder of 51 mm 
diameter was inserted on the central axis of the phantom. We modeled 
an injected activity of 53 MBq of 18F-FDG dissolved in water. MC sim-
ulations of the PET imaging of the NEMA IEC phantom were performed 
with GATE [47]. We modeled the J-PET scanner geometry (see Fig. 3) 
with 384 strips arranged in one layer with inner radius of 428 mm and 
length of 500 mm [48,49]. A single plastic strip was built from BC-420 
scintillator material [50] with dimensions of 7 × 19 × 500 mm3. More 
details about the J-PET signal acquisition and processing may be found 
in [10,51–55]. 

A coincident event was defined as a set of consecutive interactions of 
photons, originating from a single annihilation and all interactions of 
secondary particles. The interactions were considered to originate from 
the same coincident event if they were detected within the fixed time 

window of 4 ns. This number ensures that the probability that in-
teractions from two different events are ascribed to the same event is 
below 1 permille. Only events with exactly two interactions registered 
with an energy loss larger than 200 keV each were accepted [48]. For the 
NEMA IEC phantom simulation, a total of 60.0 million coincident events 
were recorded, corresponding approximately to a twenty minutes scan 
for a real J-PET acquisition. The total number of events included 20.0 
million trues, 17.2 million scatters and 22.8 million randoms. During the 
reconstruction, only true coincidences were considered and the other 
two types of events were excluded from the event list. Therefore, only 
multiplicative factors, i.e., attenuation and detector geometric sensi-
tivity, were considered at the pre-correction step. The attenuation 
correction was performed using the attenuation map used for the GATE 
simulation. 

Reconstructions of simulated data were performed in MATLAB 
7.14.0 (R2012a) with the use of chosen procedures from the Image 
Processing Toolbox. The proposed reconstruction algorithm based on TV 
minimization was implemented based on the work of [45]. The recon-
structed images were represented as 3-D matrices with the voxel size of 
2.5× 2.5× 2.5 mm3. 

As the MC simulation did not take into account the spatial and time 
uncertainties, an additional smearing using experimental resolutions of 
the detector was applied. The CRT and axial spatial resolution were 
simulated for silicon photomultipliers (SiPM) readout solution of the J- 
PET scanner. The values of CRT and Full Width at Half-Maximum 
(FWHM) in the z coordinate for SiPMs were estimated based on simu-
lations presented in [11] and were equal to 230 ps and 2 cm, 
respectively. 

3.2. Image quality measures 

In order to evaluate the reconstruction performance, the NEMA NU 
2–2007 norm for image quality assessment was used [46]. We evaluated 
two image quality assessments: contrast recovery coefficient (CRC) and 
background variability (BV). In the transaxial slice through the centers 
of hot and cold spheres, a circular region of interest (ROI) was defined on 
each sphere. Twelve circular ROIs of appropriate diameter were then 
defined on the phantom background. These background ROIs were 
automatically replicated to four transaxial slices ±10 mm and ±20 mm 
on either side of the central slice. Thus, in total, 60 ROIs were defined on 
the phantom background for each sphere. The CRC for each hot sphere 
with diameter d was calculated as: 

CRC =
CH,d

/
CB,d − 1

4 − 1
,

where CH,d was the average counts in the hot sphere, CB,d was the 
average of the background ROI counts and 4 was the true activity ratio 
between the hot spheres and the warm background. The CRC for each 
cold sphere with diameter d was calculated as: 

CRC = 1 − CC,d
/

CB,d,

where CC,d was the average counts in the cold sphere. The BV for each 
sphere with diameter d was calculated as: 

BV = Sd
/

CB,d,

where Sd was the standard deviation of the background ROI counts. 
Additionally, a root mean square error (RMSE) between the full 3-D 
reconstructed image ( f̂) and the true phantom activity image (f0) was 
calculated as a global quality criterion taking into account both bias and 
variance of the reconstruction algorithms: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N

∑N

i=1

(
f̂ i − f0

i

)2

√
√
√
√ .

Fig. 3. Schematic view of one layer J-PET scanner with NEMA IEC body 
phantom inside. 
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3.3. Shift-invariance violation investigation 

In the first step of the analysis the influence of the θacc angle value on 
the performance of TOF-BPTV method was investigated. For assumed 
size of cylindrical J-PET detector θmax ≈ 30.3◦. Additionally, taking into 
account the axial (90 mm) and transaxial (150 mm) extent of the NEMA 
IEC body phantom, θmin that satisfies shift-invariance equals 15.5◦ [41]. 
θacc was changed in the range from 15◦ to 30◦ with 2.5o step. Table 1 in 
2nd column lists the percentage of total counts as a function of θacc for a 
total of 20.0 million true events. 

Fig. 4 compares the trends in CRC and BV of the 13-mm hot sphere 
(Fig. 4a) and the 22-mm hot sphere (Fig. 4b) for three different θacc 

values: smallest one (green curves), highest one (blue curves) and 
middle one (red curves). The error bars indicate standard deviations and 
were estimated from the 5 realizations of event smearing with assumed 
J-PET resolutions. The resulting curves for the remaining four cases (see 
Table 1) were not shown in Fig. 4 for the clarity of presentation. Each 
particular CRC versus BV curve was obtained after applying different 
regularization parameter μ (see Eq. (21)). More details about the influ-
ence of the parameter μ on the reconstructed image will be discussed in 
next section. For a quantitative comparison of the results for different 
θacc angles, for each CRC versus BV curve a minimal RMSE between 
reconstructed and true image of activity was calculated. The resulting 
values of min(RMSE) are listed in Table 1 in 3rd column. We observe 
that the best results are obtained for the θacc = 22.5◦ (see red curves in 
Fig. 4 and fourth row of Table 1). Hence, during the comparative studies 
presented in next section we applied θacc = 22.5◦. This requirement 
imposes that the TOF-BPTV method uses 90.6% of acquired data (fourth 
row of Table 1) that corresponds to 18.1 million true events. 

3.4. PET reconstruction comparative studies 

To perform the comparative studies of the TOF-BPTV algorithm, 
TOF-MLEM method, implemented in CASToR software [56], was 
applied. CASToR offers several reconstruction methods for list-mode 
data as well as several data correction algorithms such as attenuation 
correction, normalization and PSF modeling. An iterative TOF-MLEM 
optimization algorithm using 60 iterations with no subsets division 
was selected. The TOF-MLEM cost function in CASToR software does not 
include any prior distribution and therefore the algorithm converges to 
the noisy image. A few approaches can be applied to remedy this 
problem and improve the quality of reconstructed images. First possi-
bility is to stop the reconstruction algorithm after given number of it-
erations and use current image estimate as a solution. Moreover, 
CASToR applies PSF filters. Our preliminary investigations showed that 
spatial resolution of the J-PET scanner can be approximated with 3D 
gaussian of 6 mm transaxial FWHM and 12 mm axial FWHM and this 
kernel was applied to model a shift-invariant PSF in CASToR. 

Fig. 5compares the averages CRC and BV of the hot and cold spheres 
for both TOF-MLEM and TOF-BPTV image reconstruction. The error bars 
indicate standard deviations and were estimated from the 5 realizations 
of event smearing with assumed J-PET resolutions. In case of TOF-BPTV 
method the curves were obtained after applying various regularization 
parameter μ values in a range from 10 to 5000. In case of TOF-MLEM 

algorithm the curves were obtained after applying different iterations 
in the range from 1 to 60. In all cases shown in Fig. 5, we observe the 
typical trade-off between the contrast (CRC) and the noise (BV). The 
regularization parameter μ trades-off the TV norm and the fidelity term 
(see Eq. (21)). Small values of regularization parameter favor TV penalty 
and give less noisy images, but the result may be smoothed with large 
bias. In that case both CRC and BV have small values (see Fig. 5 for μ =
10 or 25). Increasing value of μ tends to give sharper images, but noise is 
also amplified (both CRC and BV increase). For each sphere the optimal 
μ was determined where the CRC reached 95% of its maximum value. In 
all cases μ was in the range from 200 to 300, and finally the smallest μ =

200 was selected for further presentations in Figs. 7 and 8. Similarly, for 
TOF-MLEM algorithm, for each sphere the iteration number was 
extracted where the CRC reached 95% of its maximum value. For 10-, 
13-, 17- and 28-mm spheres the 16th, 15th, 11th and 14th iterations 
were indicated, respectively. Finally, the 15th iteration was selected for 
further presentations. 

In Fig. 6 bias in the region of the two hot spheres of 10 and 17 mm 
diameter and the background standard deviations values, are shown. 
The bias is defined as the difference between the true and reconstructed 
mean value in the ROIs. We normalized the image of true phantom ac-
tivity to the range from 0 to 1, where 0 means no radioactivity, 1 cor-
responds to the hot regions and value 0.25 corresponds to the warm 
background (true activity ratio between the hot spheres and the back-
ground is 4). Each reconstructed image was normalized off-line to have 
the same total sum as the true phantom activity image. It is worth to note 
that the background standard deviations are approximately the same 
with TOF-BPTV for selected μ = 200 (see Fig. 6b), while differ with TOF- 
MLEM for the 15th iteration (see Fig. 6a). The bias of the smallest source 
is almost the same for both algorithms, while the bias of the 17 mm 
diameter sphere is smaller in case of TOF-BPTV algorithm. 

In Fig. 7 the two exemplary images in the transaxial (top) and cor-
onal (bottom) slices through the centers of all spheres for 15th iteration 
for TOF-MLEM algorithm (left) and μ = 200 for TOF-BPTV approach 
(right), are shown. The RMSE between the reconstructed image and the 
true phantom activity image is equal to 0.024 for TOF-BPTV method and 
0.032 for TOF-MLEM algorithm. It can be seen that the structure of the 
warm phantom background differs and TOF-BPTV image (right) exhibits 
less intensity variability than the TOF-MLEM image (left). In both im-
ages the smallest hot sphere can be distinguished from the warm 
phantom background. 

The reduced intensity variability of the TOF-BPTV image can also be 
clearly seen in the profiles shown in Fig. 8. In case of TOF-MLEM both 
cold spheres, observed on 90◦ and 150◦ in circular profile, have not 
reached value 0. The circular profiles further indicate that intensities in 
the TOF-BPTV image in hot spheres are more flat in comparison to the 
TOF-MLEM image. Therefore, despite the fact that maximal values for 
two smallest hot spheres, observed on 30◦ and 330◦ in circular profile, 
are higher for TOF-MLEM images, the mean values and CRCs are slightly 
better for TOF-BPTV algorithm. 

In the last part of this study, the computational speed of both 
reconstruction methods was compared. Since both algorithms are 
created with different programming languages, namely C++ in case of 
TOF-MLEM (CASToR) and MATLAB in case of TOF-BPTV, the estimate 
of efficiency is only indicative. For comparison purpose, for both algo-
rithms the same total number of 20.0 million events was considered. The 
reconstruction volume was 400× 400× 400 mm3, comprised of 160 ×

160 × 160 voxels. On a single CPU (Intel Core i5-5200U @ 2.20 GHz), 
the total computing time of the TOF-BPTV algorithm was 247 s on 
average. It should be stressed that the TOF-BPTV evaluation time de-
pends on the overall number of iterations required to solve the TV/L2 
minimization problem (see appendix B). We found empirically that the 
rate of convergence using different values of regularization parameter μ 
is approximately the same and that 17 iterations is robust to most of the 
cases. On the same CPU, the computing time of one iteration of the TOF- 
MLEM method was 121 s on average. In TOF-MLEM algorithm, the 

Table 1 
Performance of TOF-BPTV algorithm for different values of θacc angle.  

θacc [◦]  % of total  min (RMSE)  

15.0 63.1 0.028 
17.5 74.2 0.026 
20.0 83.4 0.025 
22.5 90.6 0.024 
25.0 95.7 0.026 
27.5 98.8 0.028 
30.0 100.0 0.030  
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(a) (b)

Fig. 4. CRC versus BV in the reconstructed images of 13 mm hot sphere (a) and 22 mm hot sphere (b) computed for different θacc values.  

(a) (b)

(c) (d)

Fig. 5. CRC versus BV in the reconstructed images of 10 mm hot sphere (a), 13 mm hot sphere (b), 17 mm hot sphere (c) and 28 mm cold sphere (d) computed for 
TOF-BPTV algorithm (blue curves) and TOF-MLEM algorithm (red curves). Values of μ and iteration number are indicated with blue and red colours, respectively. 
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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convergence criterion was met after 15 iterations, and the total recon-
struction time thus amounted to 1815 s. Hence, reconstruction time in 
TOF-BPTV method was approximately 7.3 times shorter than required 

by TOF-MLEM reconstruction. 
It should be stressed that the computing time of the TOF-BPTV 

method strongly depends on the kernel a size. During preliminary 

(a) (b)

Fig. 6. Biases and standard deviations of the hot sources with 10 mm and 17 mm diameter for TOF-MLEM algorithm (a) and TOF-BPTV algorithm (b).  

(a) (b)

(c) (d)

Fig. 7. Transaxial (top) and coronal (bottom) slices through the centers of spheres inside the NEMA IEC body phantom. Images shown for 15th iteration of TOF- 
MLEM algorithm (a, c) and reconstructed using TOF-BPTV algorithm with μ = 200 (b, d). 
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studies an investigation for the potential introduction of error due to 
truncation on different distances from the center of the kernel a along (x,
y, z) directions, from 2.0σ to 4.0σ, was performed. Our tests revealed that 
3.0σ seemed to be optimal option for balance between quality degra-
dation and acceleration of reconstruction process. This value was used 
throughout the studies described in this work. 

4. Discussion 

During our investigations, we observed that TOF-BPTV algorithm is 
very sensitive for regularization parameter μ and its value should be kept 
as low as possible, here μ = 200. In other words, for higher values of μ, 
the structures appearing in the image have completely different forms 
than observed in MLEM; the fluctuations are small and slowly change-
able. We also noted that the deformation of the initial distribution is 
greater the smaller is the number of registered events. This is in our 
opinion one of the main drawback of the TOF-BPTV method. 

4.1. Related works 

PET reconstruction using TV regularization was investigated by 
several groups. For instance, imposing the solutions with a small TV 
norm, leads to an extension of the MLEM method known as the EM-TV 
algorithm [57,58]. However, our approach is inspired by an alternating 
regularization procedure for PET first introduced in [59]. Given a noisy 
projection data p an image is reconstructed by solving: 

min
f

αTV(Kf)+ β‖f‖1 +
γ
2
‖Kf − p‖2

2 (22)  

where α, β, γ are positive parameters. In this method TV regularization 
acts only on the Kf. As an extension, in [60] an image from PET mea-
surements has been reconstructed by smoothing both in projection and 
in image space: 

min
f

αTV(f)+ βTV(Kf)+
∑

i

(Kif − pi)
2

pi
. (23) 

In both methods, the reconstruction problem does not take into ac-
count the TOF information, i.e., the projection data p in Eqs. 22,23 are 
non-TOF data. With the extra dimension brought by TOF information, 
the size of the matrix K increases significantly and the problems in Eqs. 
22,23 are invariably large-scale. In fact, in that case it becomes impos-
sible to store the matrix K in the memory, even in the sparse format. 
Moreover, the matrix K does not have a circulant structure as the matrix 

A in Eq. (21). 

4.2. Choice of parameter μ in the TV regularization problem 

The choice of the regularization parameter μ is not known prior to 
solving the TV minimization problem formulated in Eq. (21). In theory, 
the optimal value of μ depends on the noise level in the data, so indi-
rectly also on number of true coincidence events or equivalently the time 
scan of the PET acquisition with a given dose. It is expected that with the 
increasing number of true events, the signal-to-noise ratio will improve 
and the optimal μ will also increase. However, our preliminary investi-
gation reveals that a value of μ does not change significantly as the 
number of events changes from 2.5 million to 25 millions true events; 
the value of the parameter μ lies in the range from 150 to 250. 

4.3. Method limitations 

The main limitation of the proposed algorithm is due to the 
assumption of the operator a( x→) shift-invariance (see Eq. (9)). The 
kernel operator, evaluated in the appendix A, is derived for a spatially 
invariant system based on a point source placed in the center of the PET 
detector. 

Since the TV optimization in image space is very efficient we propose 
to incorporate the shift variance by evaluation of a set of operators 
a( x→, xp

→
) for set of point sources xp

→ placed inside the detector volume. 
The operators a( x→, xp

→
) may be simulated only for points xp

→ in 2D space, 
i.e., for point sources along the radial and axial directions, assuming that 
two points with the same axial and radial distance to the detector center 
share the same kernel a( x→, xp

→
) after rotation in the transaxial plane. The 

reconstruction problem formulated in Eq. (21) may be then modified so 
that for each kernel a( x→, xp

→
) a small sub-image centered at position xp

→

could be calculated independently. The final, output image could be 
evaluated as a weighted sum of the overlapping sub-images. This 
approach will require specifications of both spacing of the point sources 
xp
→ and percentage of the sub-images overlapping. This topic is related to 
existing work on non-stationary image PSF and on TOF spatial in-
homogeneity [61] and will be carried on during further studies. 

In this section we wish to discuss also the influence of the TOF res-
olution on the computational cost of the algorithm. The cost of the 
method is highly dependent on the TOF resolution of the PET scanner; 
the better the time resolution, the more efficient the reconstruction al-
gorithm. The worsening of the TOF resolution increases the support of 
the convolution kernel a(1); a TOF profile function h in a nominator has 

(a) (b)

Fig. 8. Emission density profiles through the reconstructed images in transaxial slices of Fig. 7: line profile for y = 0 cm (a), circular profile over centers of all spheres 
for r = 5.72 cm (b). 

L. Raczyński et al.                                                                                                                                                                                                                              



Physica Medica 80 (2020) 230–242

239

larger standard deviation (see Eq. (15)). In the limiting case, for the non- 
TOF data, the absence of TOF information is equivalent to setting h = 1 
in Eq. (15), and the support of the kernel a(1) goes to infinity. In that case 
it is more reasonable to follow the reconstruction approach proposed in 
[59,60], where the TV regularization problem is applied in the projec-
tion space and not in the image space (see Eqs. (22) and (23)). 

4.4. Extension of the proposed method to conventional PET systems 

The proposed image reconstruction algorithm may be applied to 
state-of-the-art PET scanners equipped with crystal scintillators, e.g., 
EXPLORER [42,43]. For this purpose, in order to evaluate the matrix A 
in TV minimization problem formulated in Eq. (21), kernel a, defined in 
Eq. (14), has to be adapted. In case of PET scanners with crystal scin-
tillators, the only difference concerns the kernel a(3). Compared with J- 
PET, here the measurement error in scintillator along z direction is 
uniformly distributed with the width equal to the length of the single 
crystal Lc. This implies that the pdf a(3), describing the distribution of the 
positions mean value along the upper and lower strip, has a triangular 
form with FWHM of Lc

2 . The pdfs a(1) and a(2) may be calculated in the 
same way as in the J-PET scanner, i.e., the CRT and θacc need to be 
specified to evaluate kernel a(1) and thickness of the crystal scintillator is 
required to evaluate kernel a(2) (see Eqs. (15)), respectively. 

We wish to make last comment about the application of the proposed 
algorithm to the EXPLORER scanner. This system is based on many 
modules containing a matrix of crystals, with small but non-negligible 
gaps between these modules. In that case kernel operator a is much 
more sensitive to the spatial position of xp

→, making the system response 
even more shift variant than in considered J-PET scanner. Therefore, the 
incorporation of the shift variance to the proposed algorithm is crucial. 

5. Conclusions 

The goal of this paper was the introduction of TV regularization for 
TOF-PET projection data transformed into a TOF back-projected image. 
In contrast to a more traditional application of the TV regularization for 
PET data in the projection space, the efficiency our approach comes 
from the one-time TOF back-projection step. The simulation study 
demonstrated that the proposed reconstruction method was approxi-
mately 7.3 times faster than the TOF-MLEM. Simultaneously, it was 
shown that the proposed algorithm can reach better performance for 
PET imaging than TOF-MLEM algorithm. 

Future work will address an incorporation of the shift variance 
technique in the image reconstruction process. We believe that this 
modification will further improve the performance of the algorithm. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgements 

We acknowledge the technical and administrative support of A. 
Heczko, M. Kajetanowicz, and W. Migdał, and the financial support of 
the Foundation for Polish Science through MPD and TEAM 
POIR.04.04.00-00-4204/17 programmes, the National Science Centre 
through Grant No. 2016/21/B/ST2/01222, the Ministry for Science and 
Higher Education through Grant No. 7150/E-338/SPUB/2017/1, the EU 
and MSHE Grant No. POIG.02.03.00–161 00–013/09. B. Hiesmayr ac-
knowledges support from the Austrian Science Fund (FWF-P26783). We 
thank S. Bass for the careful reading of the manuscript.  

Appendix A. Calculation of convolution operator 

In the following we will show a derivation of pdfs a(1), a(2), a(3) of measurement errors ∊1
̅→, ∊2

̅→, ∊3
̅→, respectively. In most cases it is convenient to 

model the error distributions in projection space and pδ
(k) describes the pdf of projection data of a point source δ( x→) affected with errors introduced 

only by kth components in Eq. (12). 

A.1. Calculation of operator 

As described in Section 2.3.1 we assume that the ∊1
̅→ depends only on time uncertainties (tu,e, td,e). Therefore, the pdf of projection data pδ

(1)

considers only TOF variable and according to Eq. (1): 

pδ
(1)(Σ→) =

∫ ∞

− ∞
dl

′

δ( x→= l
′ ω1
̅→)h(l − l

′

) = h(l ω1
̅→) (24)  

where function h describes the TOF profile. The back-projection of the projection data pδ
(1) onto the image space is given as: 

a(1)( x→) = (K
#pδ

(1))( x→) =

∫ θacc

0
dθ

∫ π

0
dϕ

∫ ∞

− ∞
dlh(l ω1

̅→). (25) 

It is convenient to convert the spherical coordinates in the above integral to Cartesian coordinates u→ = (u, v,w). The transformation between 
coordinate systems is given by: 

dldϕdθ =

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

dl
du

dl
dv

dl
dw

dϕ
du

dϕ
dv

dϕ
dw

dθ
du

dθ
dv

dθ
dw

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

dudvdw =
d u→

‖ u→‖
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
u2 + v2

√

and finally: 
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a(1)( x→) = κ1
h(‖ x→‖)C ( x→, θacc)

‖ x→‖
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
x2 + y2

√

where κ1 stands for the normalization constant and the function C ( x→, θacc) is defined as: 

C ( x→, θacc) =

⎧
⎨

⎩

1
z

‖ x→‖
⩽cosθacc

0 otherwise.
(26) 

The function C ( x→, θacc) originates from the integration limit θacc of the θ angle in Eq. (25). 

A.2. Calculation of operator 

As described in Section 2.3.1 the ∊2
̅→ depends only on transaxial uncertainties (xu,e,yu,e,xd,e,yd,e). Therefore, the pdf of projection data pδ

(2) may be 
described as: 

pδ
(2)(Σ→) =

∫ ∞

− ∞
dl

′

δ( x→= l′ ω2
̅→⊥)h2(l − l′ ) = h2(l ω2

̅→⊥) (27)  

where the profile function h2(l) has a triangle distribution: 

h2(l) =

⎧
⎨

⎩

2D − 4|l|
D2 |l|⩽

D
2

0 otherwise
(28)  

where D is a thickness of the plastic scintillator. The function h2(l) originates from the fact that the depth of interaction is unknown and we assume a 
mid-point of the strip as the measured position in (x, y) cross-section (see estimates xd,e, xu,e in Fig. 2). 

The back-projection of the projection data pδ
(2) onto the image space is given as: 

a(2)( x→) = (K
#pδ

(2))( x→) =

∫ θacc

0
dθ

∫ π

0
dϕ

∫ ∞

− ∞
dlh2(l ω2

̅→⊥) =

∫ π

0
dϕ

∫ ∞

− ∞
dlh2(l ω2

̅→⊥) (29)  

and does not depend on the θ angle. It is convenient to convert the polar coordinates in the above integral to Cartesian coordinates. The transformation 
between coordinate systems is: 

dldϕ =

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

dl
du

dl
dv

dϕ
du

dϕ
dv

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

dudv =
dudv
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
u2 + v2

√

and finally: 

a(2)( x→) = κ2
h2(

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
x2 + y2

√
)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
x2 + y2

√

where κ2 stands for the normalization constant. 

A.3. Calculation of operator 

As described in Section 2.3.1 the ∊3
̅→ depends only on axial uncertainties (zu,e,zd,e). In this case the calculations do not involve the analysis of pdf of 

errors in projection space. Note that: 

∊3
→=

zd,e + zu,e

2
(30)  

and under the assumption that the uncertainty of the measurement of axial positions zu,e, zd,e are a Gaussian functions with standard deviation σz that 
not depend on the position along the strip, the pdf a(3) is given as: 

a(3)( x→) = h3(z) =
1̅̅̅
π

√
σz

exp
(

−
z

σ2
z

)

. (31)  

Appendix B. TV/L2 minimization problem 

The TV minimization problem defined in Eq. (21) with definition of TV norm given in Eq. (20) may be expressed as: 
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min
f

∑N

i=1
‖Dif‖2 +

μ
2
‖Af − b‖2

2. (32) 

The problem in Eq. (32) is convex, but due to the nondifferentiability and nonlinearity of the TV function, the model is computationally difficult to 
solve. The first step of solving the problem in Eq. (32) is the introduction of an auxiliary variable wi ∈ R3 to transfer Dif out of the nondifferentiable 
term ‖⋅‖2 

min
f,w

∑N

i=1
‖wi‖2 +

μ
2
‖Af − b‖2

2 subjectto Dif = wi (33) 

The Lagrangian function L (f,w, λ) of problem in Eq. (33) is defined as: 

L (f,w, λ) =
∑

i
(‖wi‖2 + λi(Dif − wi) )+

μ
2
‖Af − b‖2

2 (34)  

where λi is the Lagrange multiplier associated with the constraint Dif = wi. According to the idea of the quadratic penalty method, it is likely to 
penalize the violation of constraint Dif = wi. For instance, one may solve the following problem: 

L A(f,w, λ) = L (f,w, λ)+
∑

i

(β
2
‖Dif − wi‖

2
2

)
(35)  

where β is a regularization parameter associated with each quadratic penalty term ‖Dif − wi‖
2
2. Minimizing the problem in Eq. (35) is known as an 

augmented Lagrangian method. When the original problem, defined in Eq. (32), is convex, the first-order optimality conditions of augmented 
Lagrangian function become sufficient for finding optimal solution f. 

The advantage of the introduction of an auxiliary variable w is that, while either one of the variables (f,w) is fixed, minimizing the function L A 
with respect to the other has a closed-form formula with low computational complexity. To this end, the alternating direction method is used to 
iteratively solve the optimization problem in Eq. (35). 
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