Study of the eta meson production with the polarized proton beam

Iryna Ozerianska ${ }^{(1)}$,Pawel Moskal ${ }^{(1)}$, Malgorzata Hodana ${ }^{(1)}$

. M. Smoluchowski Institute of Physics, Jagiellonian University, 30-059 Cracow, Poland
For the WASA-at-COSY Collaboration

Method to extract Ay for experiment.

1 step: $\overrightarrow{\mathbf{p}+\mathbf{p}->} \mathbf{p + p}$ we know from EDDA experiment Ay we calculate Polarization \boldsymbol{P}

we know Polarization \mathbf{P}
3 step: So, we calculate Ay for $\overrightarrow{\mathbf{p}+\mathbf{p}->} \mathbf{p}+\mathbf{p}+$ eta reaction. $\frac{N_{\eta}(\theta, \varphi)-N_{\eta}(\theta, \varphi+\pi)}{N_{\eta}(\theta, \varphi)+N_{\eta}(\theta, \varphi+\pi)} \cdot \frac{1}{P \cdot \cos \varphi}=A_{y}(\theta)$.

-Protons from pp \rightarrow pp reaction are registered in the Forward Detector an gamma quanta from η meson decay are detected in the electromagnetic calorimeter.

- WASA detector covers following polar angular ranges:
Forward Detector [$3^{\circ}, 18^{\circ}$]
Central Detector [$60^{\circ}, 84^{\circ}$]

Beam parameter and expected number of events for each excess energy

Q Mev/c	P MeV/c	$\sigma_{\text {tot }}[\mathrm{mb}]$	Acc	$N_{\eta \rightarrow \gamma \gamma}$	$N_{\eta \rightarrow 3} \pi^{0}$
15	2026	10^{3}	0.55	99770	81861
72	2188	$5^{*} 10^{3}$	0.63	447739	375580

g

Asymmetry for pp ->pp reaction

The degree of polarization was determined based on the elastic scattering pp->pp for which values of analyzing power have been determined by the EDDA $[1,2]$ experiment.
After identication of events corresponding to elastically scattered protons, number of pp->pp events for each angular bin, $N(\theta, \varphi)$ was determined.
The polarization, P , can be written as:

$$
P \equiv \frac{1}{A_{y}} \cdot \epsilon(N(\theta, \varphi), N(\theta, \varphi+\pi))
$$

where ϵ is a asymmetry.

We have really strong asymmetry
$\frac{N(\theta, \varphi)-N(\theta, \varphi+\pi)}{N(\theta, \varphi)+N(\theta, \varphi+\pi)} \equiv \epsilon(N(\theta, \varphi), N(\theta, \varphi+\pi))$

Cuts \& Conditions

1. Identification of protons which registered in the FD;
2. Threshold for PS 2 MeV ;
3. Difference in azimuthal angle
4. Graphical cut on polar angle for the pp ->pp reaction

Study of the systematic uncertainty in the polarization determination

Reconstruction of the vertex position of the interaction point:

To study how a shifted interaction point is reflected on the reconstructed value of $x, y, z \mathrm{zMC}$ sin
we need to control the position of the interaction point with the precision higher than $0,3 \mathrm{~cm}$.

Possible misalignment of the beam and/or target's position also controlled by coplanarity.
$C=\left|\left(\widehat{p_{1}} \times \widehat{p_{2}}\right) \cdot \widehat{p}_{\text {beam }}\right|$

$$
\begin{aligned}
& d=x^{\text {vertex }} \cos \left(\phi_{d}\right)+y^{\text {vertex }} \sin \left(\phi_{d}\right) \\
& \operatorname{tg}\left(\theta_{2^{\prime}}{ }^{\prime}\right)=\frac{1-\left(z^{\text {verex }} / /_{z_{\text {FTH }}}\right)}{\operatorname{tg}\left(\theta_{1}\right)} \cdot \gamma_{\text {CMS }}^{2}
\end{aligned}
$$

Histograms for extraction vertex position

MC $\mathrm{x}=1 \mathrm{~cm} \mathrm{y}=0 \mathrm{z}=0$

In practice the polarization of the COSY beam can depend on the spin orientation. Therefore, it is determined for both spin orientations separately.

Outlook

References:

[1] R. Czykiewicz et al., Phys. Rev. Lett. 98 (2007) 122003.
[2] F. Balestra et al. Phys. Rev. C 69 (2004) 064003
2] F. Balestra et al. Phys. Rev. C 69 (2004) 064003
[3] I. Ozerianska, P. Moskal, M. Hodana, FZJ-IKP Annual Report 2011, JUEL-4349 (2012).
[4] P. Moskal, H.-H. Adam, Phys Rev, 69 .
 - extract Ay for $\mathrm{pp} \rightarrow \mathrm{pp} \mathrm{\eta}$ experiment

Outlook

