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Luminosity determination for the quasi-free
nuclear reactions
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Abstract. A method for the calculation of the luminosity for the proton-nucleus collisions based
on the quasi-free proton-proton scattering is presented. As an example of application the integrated
luminosity for the scattering of protons off the deuteron target is determined for the experiment of
the quasi-freepn→ pnη reaction performed by means of the COSY-11 facility.
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INTRODUCTION

Due to the lack of the pure neutron targets a meson productionin the proton-neutron
reactions is usually realised e.g. via the proton scattering off the deuteron. This method
takes advantage of the fact that the neutron’s binding energy inside the deuteron is
negligible relative to the kinetic energy of proton beams needed to produce the meson in
the nucleon-nucleon collisions [1, 2]. In the analysis of such reactions it is assumed that
the proton is acting only as a spectator and that it is on its mass shell at the moment of
the collision.

In this contribution we present the evaluation of the luminosity in such kind of
experiments by means of the measurement of the quasi-free proton-proton scattering.
This method permits to take into account automatically the shadowing effects of the
spectator nucleon, and allows for the determination of the luminosity with a relatively
small normalization uncertainty thanks to the availability of the precise cross sections
for the proton-proton elastic scattering determined by theEDDA collaboration [3] up to
the beam momentum of 3.5 GeV/c.

LUMINOSITY

In order to determine the luminosity for the quasi-free proton-neutron reaction we mea-
sured quasi-freepp→ pp reaction by detecting in coincidence both scattered protons.
Here we will describe the measurement performed by means of the COSY-11 appara-
tus [4, 5, 6, 7] shown schematically in Figure 1 (left). The recoil proton gives signal
in the scintillator detector S4 and subsequently reaches the granulated silicon detector
Simon, while the forward scattered proton is registered by the stack of drift chambers
D1 and D2 and scintillator array S1. For triggering of the elastic scattered events the
coincidence between signals from the S1 and S4 scintillators was required.

http://arXiv.org/abs/0709.4021v1
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FIGURE 1. (left) Schematic view of the COSY-11 detection setup. Only the detectors used for the
measurements of the quasi-free proton-proton scattering are shown. D1 and D2 denotes the stack of two
drift chambers. Simon is the granulated silicon detector. S1 and S4 stand for the scintillator detectors. (right)
Relation between the center-of-mass scattering angle and the position in the S1 detector for the quasi-free
proton-proton scattering at pbeam= 2.075 GeV/c as has been obtained in the Monte-Carlo simulations.

In the case of free proton-proton scattering the luminositycould be determined as a
normalization constant between the measured angular distribution of the cross section
and the corresponding spectrum known from the previous experiments. For the quasi-
free reaction the evaluation becomes more complicated due to the Fermi motion of
nucleons inside the nucleus (Fig. 2 (left)). Since the direction and momentum of the
bound nucleon may vary from event to event this implies that the direction of the
center-of-mass velocity of the colliding nucleons as well as the total available energy
for the reaction may also vary from event to event. Therefore, protons registered in the
laboratory under a given scattering angle or at a given part of the detection system,
correspond to the finite range of scattering angles in the proton-proton center-of-mass
frame (see Fig. 1 (right)). This implies that the experimental angular distributions cannot
be directly compared to the literature values, and instead an evaluation of the luminosity
requires simulations taking into account the Fermi motion of the nucleons, and the
variations of differential cross sections for the elastic scattering as a function of the
scattering angle and energy.

For each simulated event we know the generated Fermi momentum of the nucleon, as
well as the scattering angle of protons in their center-of-mass system. This permits us
to assign to each event a weight corresponding to the differential cross section, which is
uniquely determined by the scattering angle and the total collision energys.

For the intuitive illustration of the size of the momentum spread caused by the
Fermi motion instead of the total center-of-mass energy we may equivalently consider
the effective beam momentum as it is seen from the nucleon inside the nucleus. The
distribution of the effective beam momentum depends on the value of the proton beam
momentum and as an example in Figure 2 (middle) we present it for the value of
2075 MeV/c as which used for the measurement of the quasi freepn→ pnη reaction [8,
9]. It is important to note that the distribution of the equivalent beam momentum ranges
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FIGURE 2. (left panel) Nucleon momentum distribution inside the deuteron according to the Paris [10]
(full line) and CDBONN [11] (dotted line) potentials. (middle panel) Distribution of the beam mo-
mentum as seen by the proton bounded inside a deuteron hit by the beam proton with momentum of
pbeam= 2.075 GeV/c. (right) Bilinear interpolation of the differential cross sectiondσ

dΩ (pbeam,θ∗).

from about 1.5 GeV/c up to circa 2.5 GeV/c. In this momentum range the cross sections
for the proton-proton elastic scattering vary significantly [3] and therefore this effect
cannot be neglected.

In the following we will be more specific and will describe thederivation of the
luminosity in terms of formulae exploited in the analysis. For a free proton-proton
scattering we could measure the number of events –∆N(θ,φ) scattered into the solid
angle∆Ω(θ,φ) around the polar and azimuthal anglesθ andφ, respectively. In this case
the angles in laboratory and in the center-of-mass systems are univocally related to each
other. With the known differential cross section [3] for proton-proton scattering into that
particular solid angle, and having known the value of the solid angle∆Ω(θ,φ) from the
Monte-Carlo simulations the luminosity can be calculated according to the formula:

L =
∆N(θ,φ)

∆Ω(θ,φ)dσ
dΩ(θ,φ)

. (1)

In the case of quasi-free proton-proton scattering the number of elastically scat-
tered protons∆N into a solid angle∆Ω(θlab,φlab) is proportional toL – the integrated
luminosity over the time of measurement, and also to the inner product of the dif-
ferential cross section for scattering into the solid anglearoundθ∗ and φ∗ angles –
dσ
dΩ(θ∗,φ∗, pF ,θF ,φF) – and the probability density of the distribution of the Fermi mo-
mentumf (pF ,θF ,φF):

∆Nexp(∆Ω(θlab,φlab)) =

L
∫

∆Ω(θlab,φlab)

dσ
dΩ

(θ∗,φ∗, pF ,θF ,φF) f (pF ,θF ,φF)dpFdcosθFdφFdφ∗dcosθ∗. (2)

The anglesθ∗ and φ∗ are expressed in the proton-proton center-of-mass system,
while the anglesθlab andφlab are considered in the laboratory system. In the case of
the complex detection geometry with a magnetic field a solid angle corresponding to a
given part of the detector cannot in general be expressed in aclosed analytical form.



Therefore, integral in Equation 2 must be computed using theMonte-Carlo simulation
programme, containing the exact geometry of the detection system and taking into
account bending of particles trajectories in the magnetic field as well as detection and
reconstruction efficiencies. For the evaluation of a given event by the Monte-Carlo
programme first we choose randomly a momentum of a nucleon inside a deuteron
according to the Fermi distribution [10] (Fig. 2 (left)). Next the total energys for the
proton-proton scattering and the vector of the center-of-mass velocity are determined.
Then, we generate isotropically a momentum of protons in theproton-proton center-
of-mass frame. Further on, according to the generated angleand the total-energys (or
equivalently an effective beam momentum seen by the struck nucleon) we assign to the
event a probability equal to the differential cross section. Next, the momenta of protons
are transformed to the laboratory frame and are used as an input in the simulation of the
detectors signals with the use of the GEANT computing package.

The differential cross sectionsdσ
dΩ(θ∗,φ∗,s), with s being dependent onpF ,θF ,φF ,

and pbeam, and with θ∗ and φ∗ denoting the scattering angles in the proton-proton
center-of-mass system were calculated using the cross section data base for thepp→

pp reaction [3] 1. For this purpose we have applied a bilinear interpolation in the
momentum–scattering angle plane and calculated differential cross section according
to the formula:

dσ
dΩ

(pbeam,θ∗) = (1− t)(1−u)
dσ
dΩ

(p1
beam,θ

∗,1)+ t(1−u)
dσ
dΩ

(p2
beam,θ

∗,1)+

tu
dσ
dΩ

(p2
beam,θ

∗,2)+(1− t)u
dσ
dΩ

(p1
beam,θ

∗,2), (3)

where variablest andu are defined in Figure 2 (right). These cross sections were used
as the weights of the elastically scattered events in the Monte-Carlo calculations.

∆Nexp from Equation 2 can be determined as a number of elastically scattered protons
registered in a given part of the detector system. In order tocalculate the integral on
the right hand side of this equation we simulatedN0 events according to the procedure
described above. Due to the weights assigned to the events the integral is not dimension-
less and its units correspond to the units of the cross sections used for the calculations.
The number obtained from the Monte-Carlo simulations must be then normalized such
that the integral over the full solid angle equals to the total cross section for the elastic
scattering averaged over the distribution of the total reaction energys resulting from the
Fermi distribution of the target nucleon. In the absence of the Fermi motion it should
be simply equal to a total elastic cross section for a given beam momentum. This means
that we need to divide the resultant integral by the number ofgenerated eventsN0 and
multiply it by the factor of 2π. A factor 2π comes from the normalization of the differ-
ential cross sectiondσ

dΩ(pbeam,θ∗,φ∗), regarding the fact that protons taking part in the
scattering are indistinguishable. Hence, the formula for the calculation of the integrated

1 EDDA group has gathered the data for the excitation functions dσ
dΩ (θ∗, pbeam) for the elasticpp→

pp process at 108 different proton kinetic energies, ranging from 240 MeV up to 2577 MeV. In the
measurements the center-of-mass scattering angles of protons (θ∗) from 30◦ up to 90◦ have been covered.
Both the kinetic and angular ranges are sufficient to cover our needs in calculating the corresponding
differential cross sections.



luminosity for the quasi-free reaction reads:

L =
N0 ∆Nexp

2π
∫

∆Ω(θlab,φlab)
dσ
dΩ(θ∗,φ∗, pF ,θF ,φF) f (pF ,θF ,φF)dpFdcosθFdφFdφ∗dcosθ∗

,

(4)
where the normalization constantN0/2π is subject to the Monte-Carlo method used for
the integral computation.

EXAMPLE OF APPLICATION

We have applied the above described method for the evaluation of the luminosity for the
measurement of thepn→ pnη reaction with the COSY-11 facility [8, 9, 13].

Events corresponding to the elastically scattered protonshave been identified on
the basis of the momentum distributions. The momentum of thefast scattered proton,
whose trajectory has been registered in the drift chambers,can be reconstructed, and
the transversal versus the parallel momentum component maybe plotted as it is done in
left panel of Figure 3. The signal from the elastic scatteredprotons appears as an clear
enhancement around the expected kinematical ellipse.
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FIGURE 3. Parallel versus transversal momentum component of the reconstructed fast proton momen-
tum as obtained in the experiment (left) and in the simulations (right). Superimposed lines correspond to
the expected kinematical ellipses.

For the calculations of the integrated luminosity, the partof the S1 detector available
for the elastically scattered protons was divided into foursubranges. In order to separate
the background from the multi particle reactions for each subrange, the distribution of
the distance of the points to the kinematical ellipse was determined. The result obtained
for different sections of the S1 detector are presented in Figure 4.

A linear background cut2 has been performed and subsequently the true scattering
yields into a given range of the S1 detector have been calculated.

For the determination of the integral of Equation 2 an N0 = 107 quasi freepp→ pp
events have been simulated, and the response of the detectors has been generated using

2 The main source of the background are the accidental coincidences originating from the production and
scattering processess.



FIGURE 4. Projection along the expected kinematical ellipse of the experimental event distribution
from Figure 3 (left) for four subranges of the S1 detector.

FIGURE 5. Projection along the expected kinematical ellipse of the simulated event distribution from
Figure 3 (right) for four subranges of the S1 detector.

the GEANT-3 code based simulation programme, maintaining the experimental condi-
tions of beam and target [14]. Subsequently, the simulated events have been analyzed in
the same way as the experimental data. Figure 5 shows the simulated spectra analogous
to the experimental distributions of Figure 4. As describedin the previous sections each
entry in the shown histograms was weighted according to the differential cross sections
and hence the integral of these spectra normalized to numberof simulated events and
multiplied by a factor of 2π can be substituted for an integral in Equation 2. Thus the in-
tegrals of experimental (Fig. 4) and simulated histograms (Fig. 5) applied in Equation 2
permitted to determine the luminosity for each of the subrange of S1 detector separately.
The weighted average over the four quoted values of the integrated luminosity equals to
L = (2.08± 0.03)·1035 cm−2.

One source of the systematic error may be attached to the background misidentifica-
tion. Since the line describing the background can be well defined on both: the left and
the right side of the scattering peaks, we assumed, conservatively, that the systematic
error due to the assumption of the linearity of the background in the way as presented in
Figure 4 is less than 20%. The background events constitute around 15% of all events,
hence the overall systematic error due to the background subtraction is not greater than
3%.

Another source of the systematic error originates from the assumption of the bilinear
approximation of the cross section shown in Figure 2 (right). To estimate this systematic
uncertainty we made the zeroth-order assumption in which instead of the interpolation
we took the cross section value from the closest data point inthe effective proton beam
momentum–scattering angle plane. Higher order approximations of the differential cross



section given by Equation 3 should be not greater than the difference between the zeroth
order approximation explained above and the bilinear approximation. The performed
calculations shows that this difference is smaller than 0.2%.

Taking into account the normalisation error of the EDDA differential cross sections
(equal to circa 4% [3, 15]), the systematical error originating from the assumption of
the potential model of the nucleon bound inside the deuteron(equal to about 2%), and
the two abovementioned sources of the systematical errors,we estimated the overall
systematical error of the integrated luminosity to be not greater than 9.2%.
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