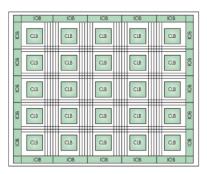


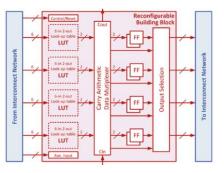
Techniques for data processing in real-time using FPGAs

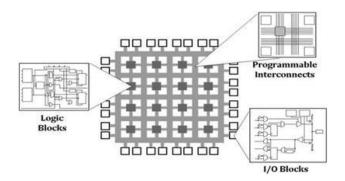
Dr Grzegorz Korcyl

Department of Information Technologies Jagiellonian University, Cracow

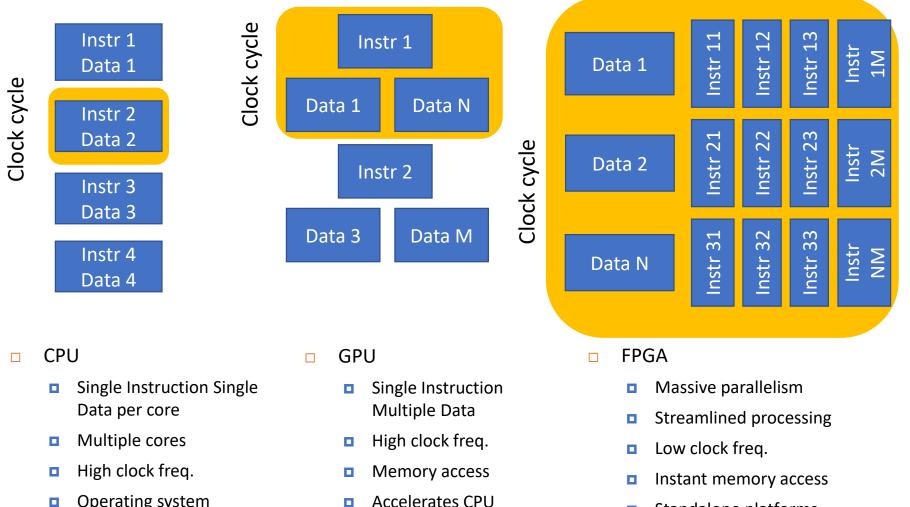
2nd Workshop on Neutrons in Medicine and Homeland Security,


12-13 September 2019, Kraków

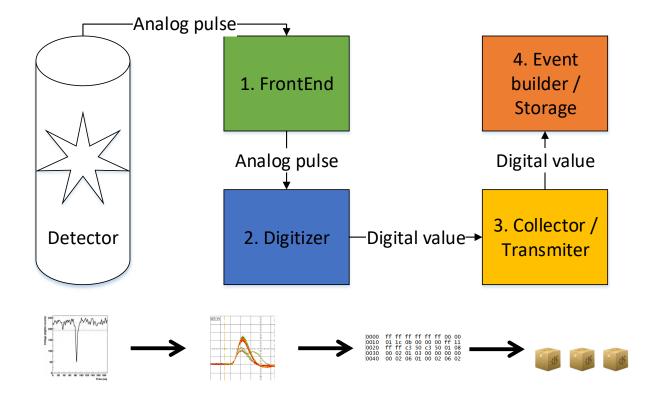



What are FPGAs

- Field Programmable Gate Arrays
 - Reconfigurable devices for processing digital data streams
 - Adaptable computing resources
 - No predefined architecture
 - Massive parallelism
 - Streamlined processing

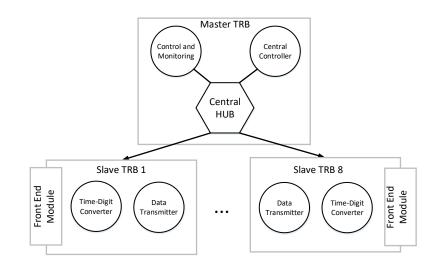


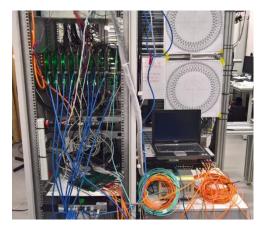
CPU FPGA GPU VS VS

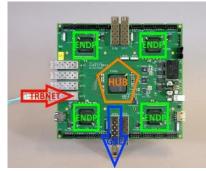


Standalone platforms

Operating system

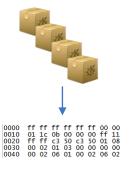

Processing pipeline



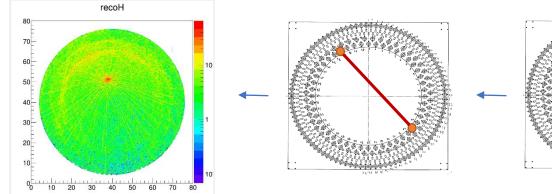


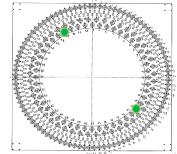
JPET Readout System

- Entirely based on FPGAs
 - Front End boards
 - Analogue signal discrimination
 - Digitizers / Data collectors
 - TRBv3 boards
 - TDC in FPGA
 - Data processing and visualization
 - Controller board
 - Event by event processing



Traxler, M.; Korcyl, G.; Bayer, E.; Maier, L.; Michel, J.; Palka, M. "A compact system for high precision time measurements (<14 ps RMS) and integrated acquisition for a large number of channels", JINST 10.1088/1748-0221/6/12/C12004




JPET processing pipeline

- Data processing steps
 - Data units reception and assembly
 - Extraction of timing data
 - Application of detector geometry
 - Application of calibration parameters
 - Search for time coincidences
 - Filtration
 - Construction of histogram and visualization

Hit1: ch 1, 115 ns, TOT 5 ns Hit2: ch 2, 116 ns, TOT 7 ns ...

dpga dais

JPET processing pipeline

• CPU

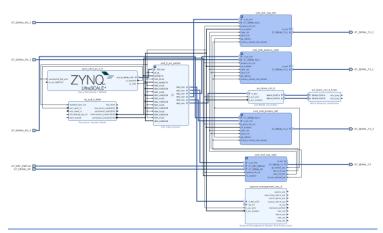
Cal (1.1.) Spenerov • Taxa Anapan Set	ange Enderes (ret)	10 Ko 🖬		A H A		Pomoc २/६ १/६ २७ २/६ १/६ २/६	
1 People	9 64 (05 CH (07	a a					
re Sans Channe Le	coH 13:18:46	2017-05-1	9 Analysis	/Histogram	s/general/		y to all IP And
80						Crows -	uc#
Ē						Bally Party Program	
70-						Bowins :	
E							
60-							
E							
50							
-							
40							
30							
-							
20							
Ē							
10							
E							
0 1	0 20	30	40	50	60	70	80
	0 20	50	40	00	00	10	00
	Tape Coversation:	ā - ur vieren					
10.00.17 13.18.32 1 19.00.17 13.18.32 1 19.00.17 13.19.30	Info Oxied Hard Info Oxied Care Info Oxied Care	cromo ante dicand Illuma wate cinared					
-							_

VS

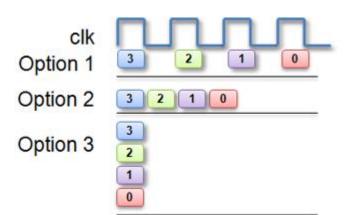
FPGA

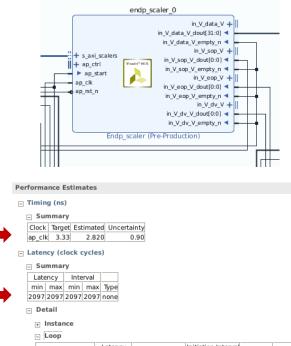
Modular JPET readout

	JPET	Modular JPET	
Scintillators	192	312	1.6x
Analog channels	1536	4992	2.9x
Digitizers	32	48	6x
Logic [k cells]	350	5400	15.4x
Memory [Mb]	19	272	14.3x
DSP	900	3972	4.4x
ARM cores	2	4 + 2x RT + 1x GPU	>2x


Novel development techniques

- Reduce HDL logic development to minimum
 - Time consuming, requiring experience, error-prone process
- Block designs
 - Library of ready to use, configurable components (IPCores)
- High Level Synthesis
 - Component development in C/C++/OpenCL
 - Compilation into HDL IPCore
- Algorithmic/data processing components in HLS
- Hardware interfacing in HDL
- Build entire systems without HDL

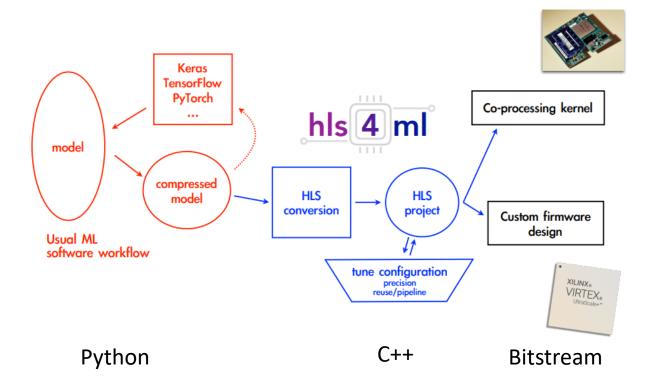




Development in HLS

- Single function single component
 - Function arguments become component interface
 - Function body translated into logic
 - Results analysis with a set of reports
 - Timings, resources
 - Compilation process controlled with a set of #pragmas

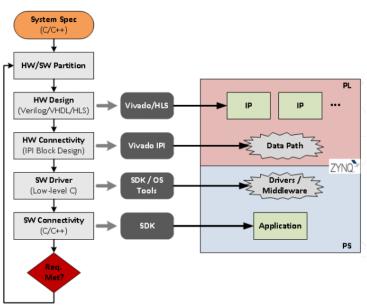
	Latency		Initiation Interval				
Loop Name	min	max	Iteration Latency	achieved	target	Trip Count	Pipelined
- Loop 1	1568	1568	290	1	1	1280	yes
 data_out_transfer 	514	514	4	1	1	512	yes


Utilization Estimates

	Summary					
	Name	BRAM_18K	DSP48E	FF	LUT	URAM
	DSP		-	-	-	-
	Expression		-	0	237	-
	FIFO		-	-	-	-
	Instance	150	2596	505116	290902	-
	Memory	0	-	512	0	8
	Multiplexer		-	-	352	-
	Register	0	-	24049	320	-
	Total	150	2596	529677	291811	8
	Available	5376	12288	3456000	1728000	1280
	Utilization (%)	2	21	15	16	~0

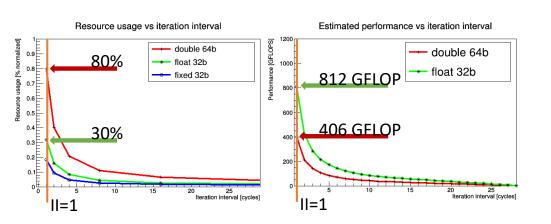
HLS Example

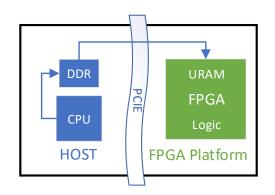
- Entire flow for Neural Network implementation on FPGA with a single HDL module
- Advantages: fixed latency, level of parallelism, data types
- Used for L1 trigger at ATLAS CERN

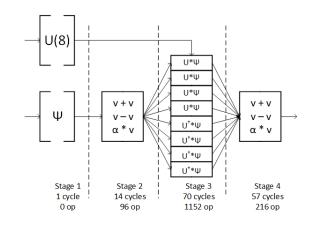

hls4ml

Software Defined environment

- Large selection of hardware platforms on market
 - Standalone boards System-on-Chip devices SDSoC
 - Accelerator boards PCIe enabled SDAccel
- Development environment
 - Entire project in C/C++
 - Host <-> Kernel architecture
 - Main function starting point on the host
 - Kernel hardware accelerated function
 - Encapsulates all other tools and compilers







SDx Example

- Conjugate Gradient as HPC benchmark
 - Host prepares data and streams to the accelerated kernel
 - 1464 floating point numerical operations per single iteration
 - Kernel implemented with II=1, latency 150 at 300 MHz
 - 2x faster than Intel Xeon Phi 64-core, 1.7 GHz
 - Not a single HDL line written

Summary

- FPGAs are no longer reserved for experienced engineers
- Ready to use platforms and new development tools accelerate project timeline
 - High Level Synthesis
- FPGA resources capable to cope with complex problems
 - Numerical algorithm
 - Image processing
 - Artificial Intelligence
- All that in real-time and fixed latency