Near threshold kaon-kaon interaction in the reactions $e^{+} e^{-} \rightarrow K^{+} K^{-} \gamma$ and $e^{+} e^{-} \rightarrow K^{0} \bar{K}^{0} \gamma$

L. Leśniak ${ }^{1, *}$, F. Sobczuk ${ }^{1}$, M. Silarski ${ }^{1}$, and F. Morawski ${ }^{1}$
${ }^{1}$ Institute of Physics, Jagiellonian University, Cracow, Poland

Abstract

Strong interactions between pairs of the $K^{+} K^{-}$and $K^{0} \bar{K}^{0}$ mesons can be studied in radiative decays of $\phi(1020)$ mesons. We present a theoretical model of the reactions $e^{+} e^{-} \rightarrow \phi \rightarrow K^{+} K^{-} \gamma$ and $e^{+} e^{-} \rightarrow \phi \rightarrow K^{0} \bar{K}^{0} \gamma$. The $K^{+} K^{-}$and $K^{0} \bar{K}^{0}$ effective mass dependence of the differential cross sections is derived. The total cross sections and the branching fractions for the two radiative ϕ decays are calculated.

1 Description of the theoretical model

The kaon-kaon strong interaction near threshold is largely unknown. Also the parameters of the scalar resonances $f_{0}(980)$ and $a_{0}(980)$ are still imprecise. The $\phi(1020)$ meson decays into $\pi^{+} \pi^{-} \gamma, \pi^{0} \pi^{0} \gamma$ and $\pi^{0} \eta \gamma$ have been measured, for the ϕ transition into $K^{0} \bar{K}^{0} \gamma$ only the upper limit of the branching fraction has been obtained in Ref. [1] but there are no data for the $\phi \rightarrow K^{+} K^{-} \gamma$ process.

In this paper we outline a general theoretical model of the $e^{+} e^{-}$reactions leading to final states with two pseudoscalar mesons and a photon. At the beginning we derive the amplitude $A(m)$ for the $e^{+} e^{-} \rightarrow K^{+} K^{-} \gamma$ process. It is a sum of the four amplitudes corresponding to diagrams (a), (b), (c) and (d) in Fig. 1:

(b)

(c)

(d) \boldsymbol{K}^{-}

Figure 1. Diagrams for the reaction $e^{+} e^{-} \rightarrow K^{+} K^{-} \gamma$ with final-state $K^{+} K^{-}$interaction. The $K^{+} K^{-}$ elastic amplitude is labelled by T and R denotes the difference of the $K^{+} K^{-}$amplitudes T in Eq. (4).

$$
\begin{gather*}
A_{a}=2 i \int \frac{d^{4} k}{(2 \pi)^{4}} \frac{J_{\nu} \epsilon^{v *} T(k)}{D(k) D(-k+p-q)}, \tag{1}\\
A_{b}=-4 i \int \frac{d^{4} k}{(2 \pi)^{4}} \frac{J_{\mu} \epsilon^{* *} k_{v}\left(k_{\mu}+q_{\mu}\right) T(k)}{D(k+q) D(k) D(-k+p-q)}, \tag{2}
\end{gather*}
$$

[^0]\[

$$
\begin{align*}
A_{c} & =-4 i \int \frac{d^{4} k}{(2 \pi)^{4}} \frac{J_{\mu} \epsilon^{v *}\left(k_{v}-p_{v}\right) k_{\mu} T(k)}{D(p-k) D(k) D(-k+p-q)}, \tag{3}\\
A_{d} & =-2 i \int \frac{d^{4} k}{(2 \pi)^{4}} \frac{J \cdot k \epsilon^{*} \cdot \tilde{k}}{D(k) D(p-k)} \frac{[T(k-q)-T(k)]}{q \cdot \tilde{k}} . \tag{4}
\end{align*}
$$
\]

One can show that the amplitude $A(m)=A_{a}+A_{b}+A_{c}+A_{d}$ is gauge invariant. In Eqs. (1-4) $D(k)=k^{2}-m_{\mathrm{K}}^{2}+i \delta, \delta \rightarrow+0$, is the inverse of the kaon propagator, m_{K} is the charged kaon mass, the four-vector $\tilde{k}=(0, \hat{\mathbf{k}})$ with the unit three-vector $\hat{\mathbf{k}}=\mathbf{k} /|\mathbf{k}|$. In the above expressions q is the photon four-momentum, $p=p_{e^{+}}+p_{e^{-}}$is the ϕ meson four-momentum, ϵ^{ν} is the photon polarization four-vector and J_{μ} is defined as

$$
\begin{equation*}
J_{\mu}=\frac{e^{3}}{s} F_{K}(s) \bar{v}\left(p_{e^{+}}\right) \gamma_{\mu} u\left(p_{e^{-}}\right) \tag{5}
\end{equation*}
$$

where e is the electron charge, $s=\left(p^{2}\right.$ is the Mandelstam variable, v and u are the e^{+}and e^{-} bispinors, respectively, γ_{μ} are the Dirac matrices and $F_{K}(s)$ is the kaon electromagnetic form factor. The $K^{+} K^{-}$elastic scattering amplitude is given by

$$
\begin{equation*}
T(k)=\left\langle K^{-}\left(k_{1}\right) K^{+}\left(k_{2}\right)\right| \tilde{T}(m)\left|K^{-}(-k+p-q) K^{+}(k)\right\rangle, \tag{6}
\end{equation*}
$$

where $m^{2}=\left(k_{1}+k_{2}\right)^{2}$ is the square of the $K^{+} K^{-}$effective mass and $\tilde{T}(m)$ is the $K \bar{K}$ scattering operator. The on-shell $K^{+} K^{-}$amplitude can be expressed as $T_{K^{+} K^{-}}(m)=$ $\left\langle K^{-}\left(k_{1}\right) K^{+}\left(k_{2}\right)\right| \tilde{T}(m)\left|K^{-}\left(k_{1}\right) K^{+}\left(k_{2}\right)\right\rangle$. The four-momenta of kaons in the $K^{+} K^{-}$center-of-mass frame are: $k_{1}=\left(m / 2,-\mathbf{k}_{\mathbf{f}}\right)$ and $k_{2}=\left(m / 2, \mathbf{k}_{\mathbf{f}}\right)$, where $k_{f}=\sqrt{m^{2} / 4-m_{\mathrm{K}}^{2}}$ is the kaon momentum in the final-state. We can assume that $T(k)$ is related to $T_{K^{+} K^{-}}(m)$ as follows:

$$
\begin{equation*}
T(k) \approx g(k) T_{K^{+} K^{-}}(m), \tag{7}
\end{equation*}
$$

where $g(k)$, as a real function of the modulus of the kaon three-momentum $k \equiv|\mathbf{k}|$, takes into account the off-shell character of $T(k)$. From Eqs. (6-7) one infers that $g\left(k_{f}\right)=1$.

Under a dominance of the pole at $m=2 E_{k} \equiv 2 \sqrt{\mathbf{k}^{2}+m_{\mathrm{K}}^{2}}$, the amplitude $A(m)$ can be written in the following form:

$$
\begin{equation*}
A(m)=\vec{J} \cdot \vec{\epsilon}^{*} T_{K^{+} K^{-}}(m)\left[I(m)-I\left(m_{\phi}\right)\right], \tag{8}
\end{equation*}
$$

where the integral $I(m)$ reads

$$
\begin{equation*}
I(m)=-2 \int \frac{d^{3} k}{(2 \pi)^{3}} \frac{g(k)}{2 E_{k} m\left(m-2 E_{k}\right)}\left[1-2 \frac{|\mathbf{k}|^{2}-(\mathbf{k} \cdot \hat{\mathbf{q}})^{2}}{\left.2 p_{0} E_{k}-m_{\phi}^{2}+2 \mathbf{k} \cdot \mathbf{q}\right)}\right] \tag{9}
\end{equation*}
$$

In Eq. (9) $p_{0}=m+\omega$, where ω is the photon energy in the $K^{+} K^{-}$center-of-mass frame, m_{ϕ} is the ϕ meson mass and $\hat{\mathbf{q}}=\mathbf{q} /|\mathbf{q}|$ is the unit vector indicating the photon direction.

In the model of Close, Isgur and Kumano [2] the momentum distribution of the interacting kaons has been expressed by the function

$$
\begin{equation*}
\phi(k)=\frac{\mu^{4}}{\left(k^{2}+\mu^{2}\right)^{2}}, \tag{10}
\end{equation*}
$$

with the parameter $\mu=141 \mathrm{MeV}$. This function is normalized to unity at $k=0$, however the function $g(k)$ in Eq. (7) has to be normalized to 1 at $k=k_{f}$, so the function $g(k)$ corresponding to $\phi(k)$ should be defined as

$$
\begin{equation*}
g(k)=\frac{\left(k_{f}^{2}+\mu^{2}\right)^{2}}{\left(k^{2}+\mu^{2}\right)^{2}} . \tag{11}
\end{equation*}
$$

In Ref. [2] kaons are treated as extended objects forming a quasi-bound state. If the $K^{+} K^{-}$ system is point-like, like in Refs. [3] or [4], then the function $g(k) \equiv 1$. Let us note that both models can be treated as special cases of our approach.

Separable kaon-kaon potentials can be used to calculate the kaon-kaon amplitudes needed in practical application of the present model. Then the function $\mathrm{g}(\mathrm{k})$ takes the following form:

$$
\begin{equation*}
g(k)=\frac{k_{f}^{2}+\beta^{2}}{k^{2}+\beta^{2}}, \tag{12}
\end{equation*}
$$

where β is a range parameter. In Ref. [5] for the isospin zero $K \bar{K}$ amplitude the value of β close to 1.5 GeV has been obtained. In order to get an integral convergence at large k in Eq. (9) we use an additional cut-off parameter $k_{\max }=1 \mathrm{GeV}$.

2 Numerical results

In Fig. 2 we show the $K^{+} K^{-}$effective mass distributions at the $e^{+} e^{-}$energy equal to m_{ϕ}. On the left panel one observes some dependence on the form of the function $g(k)$. A common feature is a presence of the maximum of the differential cross section situated only a few MeV above the $K^{+} K^{-}$threshold. On the right panel we see a comparison of our model (solid line) with two other models, named the "no-structure" model [6] and the "kaon-loop" model, and described in Refs. [3] and [4]. The parameters of the latter models have been taken by us from experimental analysis of the data of the reaction $\phi \rightarrow \pi^{+} \pi^{-} \gamma$ [7] and then used in calculation of the results shown as dashed and dotted lines.

Figure 2. Dependence of the differential cross-section for the reaction $e^{+} e^{-} \rightarrow K^{+} K^{-} \gamma$ on the $K^{+} K^{-}$ effective mass m. Left panel: the solid line corresponds to the case of the function $g(k)$ (Eq. 12) with the parameter $\beta \approx 1.5 \mathrm{GeV}$ and the cut-off $k_{\max }=1 \mathrm{GeV}$, the dotted line - to $g(k) \equiv \phi(k)$ given by Eq. (10) and the dashed curve - to $g(k)$ from Eq. (11) with $\mu=141 \mathrm{MeV}$; right panel: the dashed line is calculated for the no-structure model (Ref. [6]), the dotted one for the kaon-loop model of Ref. [4] with parameters obtained in Ref. [7] and the solid line is the same as in the left panel but with a different vertical scale.

The $K^{0} \bar{K}^{0}$ differential cross sections are presented in the left panel of Fig. 3. These cross sections are considerably lower than the $K^{+} K^{-}$cross sections seen in Fig. 2. This is due to a smaller $K^{0} \bar{K}^{0}$ phase space and to smaller absolute values of the transition amplitude $T\left(K^{+} K^{-} \rightarrow K^{0} \bar{K}^{0}\right)$ which replaces in this case the elastic $K^{+} K^{-}$amplitude in Eq. (8).

By integration of the $K^{+} K^{-}$and $K^{0} \bar{K}^{0}$ effective mass distributions, shown as solid lines in left panels of Figs. 2 and 3, one can calculate the total cross sections which are equal to 1.85 pb and 0.17 pb , respectively. The corresponding branching fractions are $4.5 \cdot 10^{-7}$ and $4.0 \cdot 10^{-8}$. In the right panel of Fig. 3 we have plotted the contours of the branching fraction for the $\phi \rightarrow K^{0} \bar{K}^{0} \gamma$ decay as a function of the $a_{0}(980)$ resonance position. We see that it is possible to generate lower values of the branching fraction by a moderate change of not well known resonance mass and width.

Figure 3. Left panel: differential cross-section for the reaction $e^{+} e^{-} \rightarrow K^{0} \bar{K}^{0} \gamma$ as a function of the $K^{0} \bar{K}^{0}$ effective mass. The curves are labelled as in the left panel of Fig. 2. Right panel: contours of the branching fraction Br for the decay $\phi \rightarrow K^{0} \bar{K}^{0} \gamma$ in the complex plane of the $a_{0}(980)$ pole position: $m_{a_{0}(980)}$ is the resonance mass and $\Gamma_{a_{0}(980)}$ is its width. The solid curve corresponds to the KLOE upper limit $B r=1.9 \cdot 10^{-8}$, the dotted one to $B r=1.0 \cdot 10^{-8}$, the dashed curve to $B r=3.0 \cdot 10^{-8}$, the dasheddotted one to $\mathrm{Br}=4.0 \cdot 10^{-8}$, and the dashed- double dotted one to $\mathrm{Br}=5.0 \cdot 10^{-8}$. The cross indicates the $a_{0}(980)$ resonance position on sheet $(-+)$ found in Ref. [8].

3 Conclusions

The above theoretical results for the reactions with charged and neutral kaon pairs indicate that the measurements of the $e^{+} e^{-} \rightarrow K^{+} K^{-} \gamma$ process can provide a valuable information about the pole positions of the $a_{0}(980)$ and $f_{0}(980)$ resonances. A coupled channel analysis of the radiative ϕ transitions into different pairs of mesons in the final state is possible after a relevant generalization of the present model.
This work has been supported by the Polish National Science Centre (grant no 2013/11/B/ST2/04245).

References

[1] F. Ambrosino et al. (KLOE Collaboration), Phys. Lett. B 679, 10 (2009)
[2] F.E. Close, N. Isgur and S. Kumano, Nucl. Phys. B 389, 513 (1993)
[3] N. N. Achasov and V. N. Ivanchenko, Nucl. Phys. B 315, 463 (1989)
[4] N. N. Achasov and V. V. Gubin, Phys. Rev. D 64, 094016 (2001)
[5] R. Kamiński, L. Leśniak, and B. Loiseau, Phys. Lett. B 413, 130 (1997)
[6] G. Isidori, L. Maiani, M. Nicoli, and S. Pacetti, J. High Energy Phys. 0605, 049 (2006)
[7] F. Ambrosino et al. (KLOE Collaboration), Phys. Lett. B 634, 148 (2006)
[8] A. Furman, L. Leśniak, Phys. Lett. B 538, 266 (2002)

[^0]: *e-mail: leonard.lesniak@ifj.edu.pl

