
The SIDDHARTA-2 calibration method for high precision
kaonic atoms X-ray spectroscopy measurements

F Sgaramella1∗, M Miliucci1∗∗, M Bazzi1, D Bosnar2, M Bragadireanu3,
M Carminati4, M Cargnelli5, A Clozza1, G Deda4, L De Paolis1, R Del
Grande1,6, C Fiorini4, C Guaraldo1, M Iliescu1, M Iwasaki7, P King4, P
Levi Sandri1, J Marton5, P Moskal8, F Napolitano1, S Niedźwiecki8, K
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Abstract. The SIDDHARTA-2 experiment at the DAΦNE collider aims to perform the
first kaonic deuterium X-ray transitions to the fundamental level measurement, with a
systematic error at the level of a few eV. To achieve this challenging goal the experimental
apparatus is equipped with 384 Silicon Drift Detectors (SDDs) distributed around its cryogenic
gaseous target. The SDDs developed by the SIDDHARTA-2 collaboration are suitable for
high precision kaonic atoms spectroscopy, thanks to their high energy and time resolutions
combined with their radiation hardness. The energy response of each detector must be
calibrated and monitored to keep the systematic error, due to processes such as gain
fluctuations, at the level of 2-3 eV. This paper presents the SIDDHARTA-2 calibration method
which was optimized during the preliminary phase of the experiment in the real background
conditions of the DAΦNE collider, which is a fundamental tool to guarantee the high precision
spectroscopic performances of the system over long periods of data taking, as that required for
the kaonic deuterium measurement.
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1. Introduction

The study of the strong interaction is the main motivation for the exotic hadronic atoms
experiments. Among the exotic atoms experiments, the kaonic atoms spectroscopy plays
a special role, since it allows to obtain direct information about the strong interaction in
the strangeness sector in the non-perturbative regime. Within this framework, the progress
in the X-ray detection technology has been fundamental, leading to the realization of high
spectroscopic performance devices, able to operate in the high background present in particle
colliders and accelerators. Over the years, the detector technology improvements allowed
to obtain an increase of the signal-to-background ratio and, consequently, to perform even
more precise measurements. The main advantage in the use of semiconductor X-ray detectors
lies in the fact that the energy required to create electron-hole pairs is very low compared,
for example, to a gas detector, leading to a higher energy resolution. The breakthrough
in the development of silicon detectors for X-ray spectroscopy was the introduction of the
Silicon Drift Detectors (SDDs). SDDs, developed from the Silicon Drift Chamber technology
introduced by Gatti and Rehak [1, 2], are now used for high precision X-ray spectroscopy
thanks to their high energy resolution, rate capability and timing information.
Table 1 shows a comparison of the main characteristics of the silicon detectors used for
X-ray spectroscopy. The Si(Li) detector [3] and the Charge-Coupled Device (CCD) [4]
were typically used for kaonic atom experiments, but then the application of SDDs for X-
ray spectroscopy allowed to perform experiments much more accurately with respect to
the past, thanks to their high energy and time resolutions. SDDs were firstly used for X-
ray spectroscopy in the E570 experiment at KEK 12 GeV-PS to solve the “kaonic helium-
4 puzzle” [5]. Subsequently, the SIDDHARTA experiment at INFN-LNF employed these
detectors to perform the most precise measurement of the kaonic hydrogen [6] and also
the first measurement of kaonic helium-3 [7]. New Silicon Drift Detectors (SDDs-CUBE)
have been developed specifically for the SIDDHARTA-2 experiment [8], with improved
performances with respect to the SDD-JFET (see Section 2) used for the SIDDHARTA
experiment, with the aim to perform the challenging and unprecedented kaonic deuterium
measurement. In this paper we report the spectroscopic response of the SIDDHARTA-2
SDDs, focusing on the optimization of the calibration method of the device, as a fundamental
tool for the kaonic deuterium measurement.

2. The Silicon Drift Detectors

2.1. Working principle

The working principle of a SDD is based on the to p-n diode technology. A large depleted
region is created in the silicon bulk, and the electron-hole pairs, generated by the incident
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Detector Si(Li)[3] CCD[4] SDD-JFET[9] SDD-CUBE[10]
Effective area (mm2) 200 724 3 x 100 8 x 64

Thickness (mm) 5 0.03 0.45 0.45
Energy resolution (eV) at 6 keV 410 150 160 140

Drift time (ns) 290 — 800 400
Experiment KpX DEAR SIDDHARTA SIDDHARTA-2, E57

Table 1: Comparison between silicon detectors for X-ray spectroscopy.

radiation, are separated through a reverse polarization field. After the complete depletion
of the silicon wafer, a second electric field is superimposed to transport the charges to the
collection anode. The SDDs used by SIDDHARTA-2 have a cylindrical shape and are formed
by a n− silicon bulk, with ring-shaped p+ strips on one side and a p+ non-structured layer
(entrance window) on the other side to give a homogeneous sensitivity over the entire detector
area. The n+ collecting anode is placed in the center of the ring shaped strips (see Figure 1). A
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Figure 1: Schematic layout of a cylindrical Silicon Drift Detector. The dotted line represents
the diagonal shape of the drift field inside the bulk.

negative voltage, with respect to the n+ anode, is applied to the p+ entrance window and the
p+ ring strips on the opposite side, to fully deplete the n-type bulk. The negative voltage of
the p+ rings increases from the ring next to the n+ anode to the outermost one. The voltage of
the outermost ring is twice that of the back contact [11]. This voltage configuration generates
a “gutter-like” field [9] that transports the charges to the collection anode. Figure 1 shows the
cross section of the SDD and the diagonal shape of the drift field inside the bulk. The electrons
generated inside the depleted volume of the detector by the incident radiation will therefore
drift to the n+ collecting anode. Instead, the holes are collected by the reverse biased p+

regions. A junction field-effect transistor (J-FET) designed to work on a fully depleted silicon
substrate, can be installed close to the n+ anode, acting as first amplifying stage [9]. The
integration of the transistor onto the SDD ensures the matching of the input capacitance of the
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J-FET to the output capacitance of the detector. Moreover, a reset mechanism is included to
remove the charge accumulated, due to the leakage current and the signals, by opening a path
for the electrons from the anode to the clear contact. The reset pulse is performed by applying
a positive voltage pulse to the n+ clear contact.
The small capacitance of the anode is the main feature of the SDDs. It provides a lower rise
time, high amplitude of the output signal, and consequently less electronic noise and high
energy and time resolutions. Moreover, the capacitance is independent from the detector’s
active area, allowing to produce detectors with a large area.

2.2. The Silicon Drift Detectors for the SIDDHARTA-2 experiment

New monolithic SDD arrays (see Figure 2) have been developed by Fondazione Bruno Kessler
(FBK, Italy) in collaboration with Politecnico di Milano (PoliMi, Italy), Istituto Nazionale
di Fisica Nucleare - Laboratori Nazionali di Frascati (INFN-LNF, Italy) and Stefan Meyer
Institute (SMI, Austria), for the kaonic deuterium measurement at INFN-LNF (SIDDHARTA-
2 experiment) and J-PARC (E57 experiment [8]).
A monolithic SDDs array consists of eight square SDD cells, each with an active area of 8×8
mm2. The 450 µm thick silicon bulk allows to achieve an efficiency of almost 100% for X-
rays in the energy between 5-12 keV, which corresponds to the region of interest for the kaonic
deuterium measurement [8]. The individual SDD cells are arranged in a 2×4 array with a 1
mm dead region along the device’s borders. The silicon wafer is glued on an alumina ceramic
carrier, which provides the polarization voltages, and screwed on an aluminium holder. This
high thermal conductive block protects the delicate detector bonding connections and is used
to cool down the SDDs to temperatures between 100 K and 150 K. The special “gear-wheel”
structure of the ceramic carrier allows close packing of several SDD arrays, which is essential
for optimizing the geometrical X-ray detection efficiency. These SDD arrays belong to an
improved technology with an average leakage current of 25 pA/cm2 at room temperature
[12]. A very significant improvement is the change of the preamplifier system from the

Figure 2: An SDD array for the SIDDHARTA-2 experiment.

J-FET to a complementary metal-oxide semiconductor integrated charge sensing amplifier,
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named CUBE [13]. For each SDD cell, the CUBE is placed on the ceramic carrier as close
as possible to the collecting anode and connected to it with a bonding wire. Thanks to the
new preamplifier CUBE, the SDDs’ performances are stable even when exposed to high
and variable charged particle rates [13] and a faster drift time is achievable thanks to the
possibility to cool down to 100 K, which was not possible with the J-FET, which reach an
optimal performance around 170 K (see Table 1).
The signals are processed by a dedicated front-end electronics and DAQ system. The output
of the CUBE is connected to a common ASIC called SFERA (SDDs Front-End Readout
ASIC), an Integrated Circuit performing analog shaping and peak detection of the signals.
Each SFERA was designed by Politecnico di Milano to read 16 SDDs [14, 15]. The SFERA
main shaper is characterized by a 9th order semi-Gaussian complex-conjugate poles filter with
selectable peaking times (from 500 ns to 6 µs) and gains, while the fast shaper has a fixed 200
ns peaking time, and is used for pile-up rejection. SFERA allows to acquire both timing and
energy information for multiple hits on the SDDs. Figure 3 shows a schematic representation
of the analog chain block diagram corresponding to a single SDD. The signal generated by
the incident radiation consists of an electron packet that can be represented as current pulse.
It is collected at the anode of the SDD and is amplified by the CUBE which represents the
first element of the analog chain. During the data taking, the leakage current of the detector
and the electron packets charge the CUBE’s capacitor. The output consists of a slow constant
slope ramp due to the leakage current, while the collection of an electron packet generates a
rapid increase of the charge accumulated on the capacitor. Thus, the collection of an electron
packet produces a step on the ramp, this pulse is isolated through a shaper, whose shaping time
of 2 µs is chosen to minimize the noise. Then, the maximum value of the Gaussian output
is processed by the Peak Stretcher circuit and, the voltage signal is converted into a digital
signal through an analog-to-digital converter (ADC). Lastly, the full event data information is
saved in a file.

leak sign

SDD

RESET

CUBE

A

Cin Cout

C

SHAPER Peak
Stretcher

ADC DAQ

Figure 3: SDD analog chain block diagram.
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2.3. Silicon Drift Detector’s energy response

The SIDDHARTA-2 experimental apparatus [16], currently installed at the DAΦNE collider
[17, 18] of INFN-LNF, uses 48 SDD arrays, for a total amount of 384 SDDs. Each SDD
was characterized before installation in the setup. The laboratory tests show that the energy
response of the SDDs is linear within 2-3 eV in the energy range between 4.5-12 keV and the
energy resolution is 140 eV at 6.4 keV [10]. Given the excellent spectroscopic response of the
SIDDHARTA-2 SDD system [19], proven during the DAΦNE beam commissioning phase
in the high energy particle background of the collider, the definition of a robust calibration
method and a stability check of the SDD system are mandatory to achieve the high precision
kaonic deuterium measurement aimed by the SIDDHARTA-2 experiment.

3. SDD Calibration and Stability

3.1. Calibration method

Figure 4 shows a schematic view of the SIDDHARTA-2 calibration system. The SDDs are
placed around the cryogenic target cell made of high purity aluminium structure and 75 µm
thick Kapton walls. The energy calibration of the SDDs is performed using two X-ray tubes
installed on two sides of the vacuum chamber, and a multi element target made of high purity
titanium and copper strips placed on the target cell walls (see Figure 5). The X-ray tubes
induce the fluorescence emission of the target elements and the characteristic Kα and Kβ

transitions are detected by the SDDs. Figure 6 shows a typical calibration spectrum for a
single SDD. The titanium and copper lines are clearly visible together with the Mn Kα , Fe
Kα and Zn Kα lines produced by the accidental excitation of other components of the setup.

The energy response function of the detector is predominantly a Gaussian curve for
every fluorescence X-ray peak; however the response has a low energy component due to
the incomplete charge collection and electron-hole recombination. Thus, the total peak fit
function is formed by two contributions:

• Gauss function. The main contribution to the peak shape. The width of the peak (σ ) is
described as function of the Fano Factor (FF), the electron-hole pair energy creation (ε)
and the electronic and thermal noises (noise):

G(x) =
AG√
2πσ

· e
−(x−x0)

2

2σ2 σ =

√
FF · ε ·E +

noise2

2.352 (1)

• Tail function. An exponential function to reproduce the incomplete charge collection:

T (x) =
AT

2βσ
· e

x−x0
βσ

+ 1
2β2 · erfc

(
x− x0√

2σ
+

1√
2β

)
(2)

The constants AG and AT are the amplitude of the Gauss and Tail functions, respectively. The
β parameter is the slope of the tail, while erfc is the complementary error function. A constant
function plus an exponential are used to reproduce the background shape.
Only the Ti Kα and Cu Kα peaks are exploited to calibrate the detectors, since they have the
highest signal-to-background ratio. The Kα peak is the convolution of two transition lines,
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Figure 4: Schematic layout of the SIDDHARTA-2 calibration system. The target cell, the
SDDs with the Front-End-Electronic (FEE) and the X-ray tubes are visible above the DAΦNE
beam line.

Figure 5: Target cell and multi elements target used for the SDD calibration.

Kα1 and Kα2. Thus, the calibration peaks were fitted using gaussian and tail functions for
each component, to improve the calibration accuracy. Since the detector response is linear
[19], the energy distance between the Kα1 and Kα2 was set to the reference value as well as
was the relative amplitude [20].

The Fe Kα peak, not included in the determination of calibration parameters, can be used
to evaluate the goodness of the calibration itself. After the sum of the calibrated spectra for
all the SDDs, a fit was performed to obtain the energy position of the Fe Kα peak. The
deviation of the Fe Kα with respect to the tabulated reference value [20] is 2 ± 0.1 eV, which
characterizes the accuracy of the calibration method, compatible to the linearity of the system.
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Figure 6: Top: typical calibration spectrum for a single SDD in arbitrary units given by
ADC. The red line represents the fit function obtained by convolution of a gaussian with an
exponential low energy tail for each peak together with a constant function plus an exponential
function to reproduce the background shape. Bottom: highlights of the various contributions
to the fit function.

3.2. Stability

The stability of the SDDs is crucial to perform high precision measurements because it reflects
a possible source of systematic error for the SIDDHARTA-2 experiment. Moreover, a stable
system needs fewer calibration runs during the kaonic atoms data taking and consequently will
increase the experiment’s runtime. For these reasons, stability is a fundamental parameter that
needs to be monitored carefully.
Since the linearity of the SDDs is within 2-3 eV, the stability of the system should be at
least at the same level. During the first phase of the SIDDHARTA-2 experiment, which took
place from June 2021 to July 2021, we monitored the stability of the SDDs for about one
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month and an integrated luminosity of 30 pb−1. During this period, 5 calibration runs were
performed every ∼ 6 pb−1 of data taken. For each SDD, the calibration method described in
paragraph 3.1 was used to control the fluctuation over time of the Cu Kα peak position. In
Figure 7 the position of Cu Kα , given in arbitrary units of ADC, for several SDDs is shown.
The fluctuations of the Cu Kα position are about 0.5 channels, which corresponds to ∼ 1.5
eV. This result proves that the stability of the SIDDHARTA-2 SDD system is suitable to
perform high precision kaonic atoms measurements, when calibration runs every ∼ 6 pb−1 of
integrated luminosity are performed.

Figure 7: Cu Kα peak position, given in arbitrary units of ADC, as function of time for several
SDDs calibration runs.

It is also important that the energy response of the detectors is stable and independent of
the counting rate, since during the beam injection the SDD rate can increase up to several
hundreds of Hz, and then gradually decrease to a few tens of Hz. For this, we performed
two types of calibration runs varying the voltage and current parameters of the X-ray tubes in
order to obtain two different counting rates (60 Hz and 600 Hz). Figure 8 shows the difference
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in Cu Kα peak position for high and low counting rates for several SDDs. For most detectors
the difference is almost zero, for the others the fluctuation is compatible with the accuracy
of the calibration. In conclusion, the energy response of the SDD system can be considered
independent of the counting rate, within 1 eV.
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Figure 8: Difference in Cu Kα peak position for high rate and low rate runs for several SDDs.

4. Conclusions

Precision X-ray spectroscopy of light kaonic atoms requires state-of-the-art silicon detectors
to meet the demands of high energy and time resolutions, as well as radiation hardness. In
this context, innovative SDDs have been developed by the SIDDHARTA-2 collaboration to
perform the challenging kaonic deuterium measurement. The SDD calibration method was
tested during the first phase of the SIDDHARTA-2 run and its performance is described in this
paper. The design of the calibration system and the detailed analysis of the spectra were driven
by the requirement of an accuracy of the calibration at the level of 2-3 eV to be consistent
with the SDDs’ linearity. The optimized method has been applied also to define the long-
term stability and the independence from the rate of the SDDs spectroscopy response. The
results presented in this paper show that the SIDDHARTA-2 SDD system performances are
suitable to accomplish the challenging kaonic deuterium measurement with a systematic error
at the level of a few eV, keeping stable its high precision X-ray spectroscopy response over
the whole data taking period.
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