

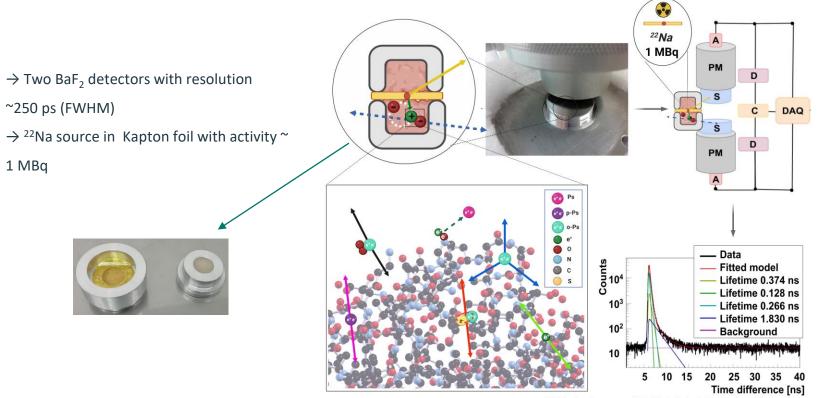
JAGIELLONIAN UNIVERSITY In Kraków

Influence of antioxidants on positronium lifetime – studies of melanocyte and melanoma cell cultures with Positron Annihilation Lifetime Spectroscopy

> Ewelina Kubicz, Julia Nizioł, Paweł Moskal, Ewa Stępień 29.05.2021

> Cybernetic Modeling of Biological Systems (MCSB 2021)

n for Europear Europea Europea Develop


1. Motivation

 \rightarrow Positronium as a novel biomarker in cancer diagnostic

 \rightarrow Possibility to determine early and advanced stages of carcinogenesis

→ Correlation of free radical concentrations with lifetime and intensity of positronium atom producted in human cell cultures of melanoma and melanocytes

2. Positron annihilation lifetime spectorscopy

PALS Avalanche program , K. Dulski et al., Analysis procedure of the positronium lifetime spectra for the J-PET detector, Acta Phys. Polon. B48 no. 10, 1611 (2017)

3. PALS studies of cells culture in vitro

Human cell lines:

- 1) Melanocytes HEMa-LP from ThermoFisher
- 2) Melanoma WM115 from ATCC
- 3) Melanoma WM266 from ATCC

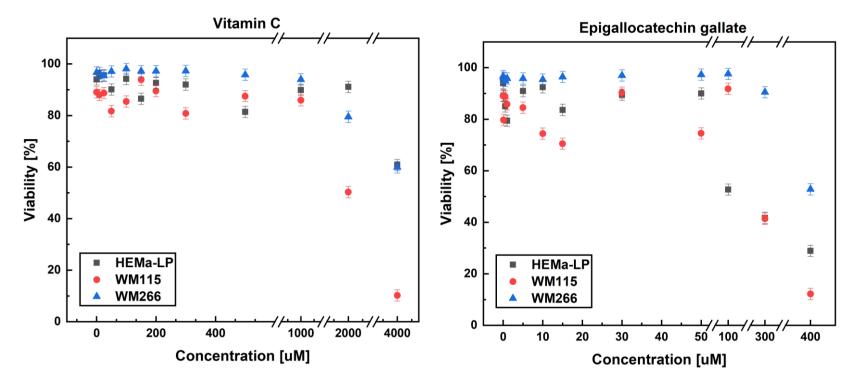
WM266

HEMa-LP

WM 115

WM266-4

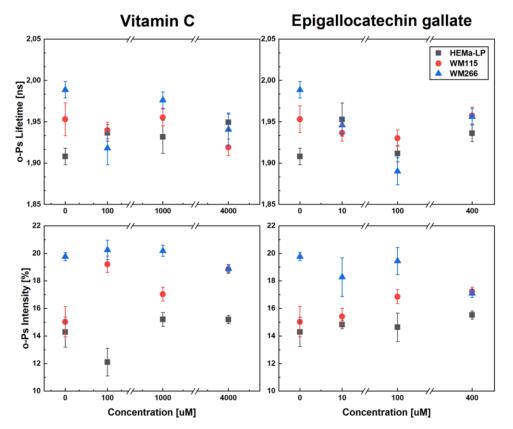
4. PALS - cell culture with Vitamin C and EGCG


FR scavengers \rightarrow eg. antioxidants, prevent free radical induced tissue damage by preventing the formation of radicals, scavenging them, or by promoting their decomposition.

→ Before PALS measurement each flask was incubated for 2 h with media and antioxidant substance in given concentration

5. Antioxidant - viability

Cytotoxicity of EGCG and Vit C. \rightarrow cell viability was checked after 24 h incubation in given concentration


6. Vitamin C, EGCG - PALS results

Rate of change = 100% *(V_{before} - V_{after})/ V_{after}

Vit. C	HEMA	WM115	WM266
Concentration [uM]	Viability RoC [%]	Viability RoC [%]	Viability RoC [%]
0	3,6(1)	6,0(1)	0,2(1)
100	10,4(1)	9,5(1)	0,5(1)
1000	4,7(1)	0,6(1)	0,3(1)
4000	6,7(1)	4,0(1)	1,8(1)

EGCG	HEMA	WM115	WM266
Concentration [uM]	Viability RoC [%]	Viability RoC [%]	Viability RoC [%]
0	3,6(1)	6,0(1)	0,2(1)
10	6,0(1)	1,6(1)	1,4(1)
100	9,5(1)	8,1(1)	0,2(1)
400	4,1(1)	0,1(1)	0,7(1)

7. Vitamin C, EGCG - PALS results

5. Summary and future plans

 \rightarrow PALS is applicable to study biological structures.

 \rightarrow Preliminary results shown that PALS parameters differ for normal and cancer cells and tissue.

 \rightarrow Highest differences in both o-Ps lifetime and intensity can be observed for lowest and highest concentration of vitamin C (100, 4000uM) and 100uM for EGCG.

Moskal, P., Jasińska, B., Stępień, E. & Bass, S. D. *Positronium in medicine and biology*. Nature Reviews Physics 1, 527–529 (2019).
Moskal, P. & Stępień, E. *Prospects and Clinical Perspectives of Total-Body PET Imaging Using Plastic Scintillators*. PET Clinics 15, 439–452 (2020).
Kubicz, E. *Potential for biomedical applications of positron annihilation lifetime spectroscopy (PALS)*. in AIP Conference Proceedings 2182, (American Institute of Physics Inc., 2019).

Acknowledgements:

This work was supported by the Polish National Science Centre through grant no. 2017/25/N/NZ1/00861, and by the Foundation for Polish Science through the TEAM POIR.04.00-00-4204/17 programme. the Ministry for Science and Higher Education through the SciMat Priority Research Area budget under the program Excellence Initiative- Research University at the Jagiellonian University.

Thank you for attention