Searches for discrete symmetry violation signals in decays of positronium atoms at J-PET

3rd Jagiellonian Symposium

Aleksander Gajos on behalf of the J-PET Collaboration Jagiellonian University

European Union European Regional Development Fund

Testing discrete symmetries with ortho-positronium: motivation

- Purely leptonic systems, scarcely tested
 - Only alternative to date: neutrinos, still no conclusive results
 - Compared to neutrinos, can be tested with smaller setups → J-PET!
- Results at precision 10⁻³, limiting effects at 10⁻⁹

Testing discrete symmetries with ortho-positronium: methods

Operator	С	Р	Т	CP	CPT
$ec{S}\cdotec{k_1}$	+	_	+	_	_
$ec{S} \cdot \left(ec{k_1} imes ec{k_2} ight)$	+	+	_	+	_
$\left(\vec{S}\cdot\vec{k_{1}}\right)\left(\vec{S}\cdot\left(\vec{k_{1}}\times\vec{k_{2}}\right)\right)$	+	_	_	_	+
$ec{k_2} imes ec{\epsilon_1}$	+	—	—	—	+
$ec{S}\cdotec{\epsilon_1}$	+	+	—	+	_
$ec{S} \cdot \left(ec{k_2} imes ec{\epsilon_1} ight)$	+	_	+	_	_

Similar image depicting operators with photon polarization

Anticipate the talk of Juhi

The J-PET Detector

Anticipate the talks about 4th layer on Thursday

Symmetry-sensitive operators involving o-Ps spin

• Measurement of expectation values of angular corelation operators odd under a given discrete symmetry transformation

operator	С	Р	Т	CP	СРТ
$ec{S}\cdotec{k_1}$	+	_	+	_	_
$ec{S}\cdot(ec{k_1} imesec{k_2})$	+	+	_	+	_
$(ec{S}\cdotec{k_1})(ec{S}\cdot(ec{k_1} imesec{k_2}))$	+	_	—		+

An alternative to using external magnetic field:
 Estimating the original positron spin

Knowledge of the spin of ortho-positronium is required

[A. Gajos et al., NIM A 819 (2016), 54-59]

event-by-event

J-PET vs previous measurements

• Compare to Gammasphere and Tokyo

Reconstruction of o-Ps \rightarrow 3 γ decays in J-PET

Reconstructing o-Ps \rightarrow 3 γ in the J-PET data

- For studies of o-Ps decays without reconstruction of the decay position,
- Three measurements were done with extensive-size annihilation chambers inside J-PET

First tests with extensive chamber, $R \approx 7 \text{ cm}$ No o-Ps production medium **2 days of measurement**

New extensive chamber, $R \approx 12$ cm Walls coated with a porous polymer 2 different 22Na source activities used 10 Mbq - 180 days of measurement 0.8 Mbq - ??? days of measurement

2gamma images

(with scale included)

26.06.2019

Data analysis flow for o-Ps \rightarrow 3 γ identification

• Assembling of PMT signals and photon hits in the scintillator strips using the standard J-PET procedures

Identification of candidates for:

- annihilation photons
- prompt photons

based on the Time-Over-Threshold (TOT) values

- Rejection of multiple subsequent $\boldsymbol{\gamma}$ scatterings in the detector
- Study of the angular topology of the events
- Trilateration-based reconstruction of o-Ps \rightarrow 3y decay point and time

Using TOT to identify prompt and annihilation $\boldsymbol{\gamma}$

Rejection of subsequent scatterings in the detector

- See talk by J. Raj for the case when we **do not** want to reject these scatterings
- For each pair of annihilation photon candidates *i* and *j* (*i*,*j*=1,2,3) the following figure is computed:

$$\delta t_{ij} = |t_i - t_j| - \frac{1}{c} |\vec{r_i} - \vec{r_j}|$$

Distribution of the minimum δt_{ij} over all photon pair choices in a events:

Images of the large chamber

O-Ps lifetime spectra and accidental conicidences

Scheme with a propmt photon followed by an o-Ps \rightarrow 3g annihilations

CPT-violation sensitive operator

Using: [fraction] of available data

Summary and perspectives

- Estimate the expected statistical uncertainty with full analysed dataset
- Show the spherical chamber?

Thank you for your attention!

Backup Slides

O-Ps creation and decay

P. Kubica and A. T. Stewart, Phys. Rev. Lett. 34 (1975) 852
 M. Harpen Med.Phys. 31 (2004) 57-61

oPs creation time

[3] J Cal-Gonzalez et al, Phys. Med. Biol. 58 (2013) 5127-5152

Distinguishing o-Ps \rightarrow 3 γ and e⁺e⁻ \rightarrow 2 γ

Figure 9. (Left) Simulated distributions of differences between detectors ID (Δ ID) and differences of hittimes (Δ t) for events with three hits registered from the annihilation e+e- $\rightarrow 2\gamma$ (gold colours) and o-Ps $\rightarrow 3\gamma$ (green colours). (**Middle**) Disribution of relative angles between reconstructed directions of gamma quanta. The numbering of quanta was assinged such that $\theta_{12} < \theta_{23} < \theta_{31}$. Shown distributions were obtained requiring three hits each with energy deposition larger than Eth = 50 keV. Gold colour scale shows results for simulations of e+e- $\rightarrow 2\gamma$ and green scale corresponds to o-Ps $\rightarrow 3\gamma$. Typical topology of o-Ps $\rightarrow 3\gamma$ and two kinds of background events is indicated. (**Right**) Detection efficiency of the J-PET detector for registration of one, two and three gamma quanta from o-Ps $\rightarrow 3\gamma$ decay. The efficiency is shown as a function of threshold energy applied in the analysis to each gamma quantum.

[J-PET: P.Kowalski, P.Moskal, in preparation]

Ortho-positronium decay tomography

Motivation:

- Ortho-positronium (o-Ps) lifetime in tissue strongly depends on inter-cellular spaces' size
- Morphological imaging possible through determination of o-Ps lifetime
- 4-th photon coming from β+ emitter deexcitation is used to estimate o-Ps creation time
- o-Ps \rightarrow 3 γ decay location and time must be reconstructed using 3 recorded photons

Properties of the process:

- Momenta of the <u>3 photons from o-Ps</u> decay lie in one plane (in the o-Ps ref. frame)
- 4-th (deexcitaion) photon momentum is not correlated with the other three
- o-Ps→3γ decay and deexcitation photon emission differ by distance and time related to free e+ path and positronium life

Origin of the reconstruction method

	GPS	$K_L \rightarrow 3\pi^0 \rightarrow 6\gamma$ at KLOE	o-Ps→3 γ at J-PET
Shere centers	Satellite locations	$\boldsymbol{\gamma}$ hits in KLOE calorimeter	γ hits in J-PET barrel
Whose travel time is measured?	Radio signals from satellites	Photons from π^0 decays	Photons from o-Ps decay
Reconstructing position of	GPS receiver	$K_L \rightarrow 3\pi^0 \rightarrow 6\gamma$ decay	o-Ps→3γ decay
Reconstructed time	Current GPS time	Time of K_{L} decay	Time of positronium decay
Using information on	At least 4 satellites	4-6 recorded photons	3 recorded photons and coplanarity

6 m

26.06.2019

MC simulation of o-Ps decays in J-PET

- Monte Carlo simulations of o-Ps decays recorded by the J-PET detector were prepared
- J-PET detector with 384 scintillator strips was assumed in simulations
 - Single strip size: 7x19x500mm³
 - Barrel dimensions:
 - R = 43 cm, L = 50 cm
 - Resolution in XY plane: $\Delta \phi \approx 0.5 \text{deg}$
- Simulation includes:
 - β + emitter deexcitation and prompt
 - Positron thermalization before positronium creation (in water)
 - Ortho-positronium lifetime (for water)
 - Momentum of the decaying positronium deviation from 3 photons' coplanarity in LAB frame

Effects included in the simulation

Non-coplanarity of photons' momenta

Positron thermalization and oPs flight before decay

result in a difference between the o-Ps decay point and the deexcitation photon emission point

Both effects are negligible within reconstruction resolution (presented on next slides).

Resolution dependence on $\boldsymbol{\gamma}$ hit time resolution

The resolution of o-Ps decay obtained with the presented reconstruction method depends predominantly on the timing resolution of γ hits in scintillator strips.

Ortho-positronium life time resolution

For each event of o-Ps decay, the positronium decay time can be estimated as:

 $\tau_{o-Ps}^{rec} = t_0 - \left(t_{\gamma deexc.} - \frac{L_{\gamma deexc.}}{c}\right)$ where t_0 is the o-Ps d____, ..., for a presented method and $L_{\gamma deexc.}$ is calculated using reconstructed o-Ps decay point.

Time Over Threshold (TOT) distributions

A. Gajos, 3rd Jagiellonian Symposium

Angular topology of three-photon events

For details on the 2y event properties, see the talk by M. Mohammed, Session 8, Wed 15:50

Reconstructed o-Ps \rightarrow 3 γ decay points

Results obtained with the trilaterative decay point reconstruction Using about 3 % of the collected Run 6 data

