

Molecular characterization of nanostructures of normal and cancer cells in vitro using Positron Annihilation Lifetime Spectroscopy (PALS)

> Ewelina Kubicz 23.08.2018

18th International Conference on Positron Annihilation Orlando, FL, USA

JAGIELLONIAN University In Krakow

EST 1364

- 1) Motivation
- 2) Cancer vs. normal cells
- 3) PALS studies of tumor and normal tissues in vitro
- 4) First PALS studies of human tissues in vitro with J-PET
- 5) PALS studies of cells cultures in vitro
- 6) Summary and future plans

ЕSТ 1364

Motivation

→ Determination of early and advanced stages of carcinogenesis by observing changes in biomechanical parameters between normal and cancer cells

- → PALS parameters (lifetime, intensity, radius) are related with temporal dynamics of nanostructures in whole cells and tissues
- → Combining J-PET scanner with PALS technique better diagnostic tool

Cancer vs normal cells

- → Large cytoplasm
- \rightarrow Single nucleus and nucleolus
- → Fine chromatin
- → Smaller number of dividing cells
- \rightarrow Similar in shape and size
- → Organized arrangement of cells
- → Apoptosis

https://visualsonline.cancer.gov/details.cfm?imageid=2512

- → Small cytoplasm
- → Multiple and large nucleus and nucleolus
- → Coarse chromatin
- \rightarrow Large number of dividing cells
- \rightarrow Variation in cells shape and size
- \rightarrow Disorganized arrangement of cells
- → Immortal

 \rightarrow Two BaF₂ detectors with resolution ~250 ps

PALS setup

 \rightarrow ^{22}Na source in Kapton foil with activity \sim 1 MBq sandwich between sample

 \rightarrow PALS spectra analysis with PALS_Avalanche program developed by K. Dulski – J-PET collaboration

K. Dulski et. al., Analysis procedure of the positronium lifetime spectra for the J-PET detector, Acta Phys. Polon. B48 no. 10, 1611 (2017)

EST 1364

en.uj.edu.pl

- \rightarrow primitive connective tissue tumor (benign), very rare in comparison to metastatic tumors
- $\rightarrow~75$ % of them are located in the left atrium
- \rightarrow occur mainly in people over the age of 50

Cardiac Myxoma

Types	Solid	Papillary
Surface	smooth	irregular
Mass	firm	soft, gelatinous
Calcification	+	-
Embolism	-	+

Fixed in formaldehyde:

- 1) Myxoma I (6 samples for study, around 2 mm thick) 72 years old women
- 2) Myxoma II (1 sample) 61 year old men
- 3) Myxoma III (3 samples) 59 year old men
- 4) Myxoma IV (3 samples) 54 year old woman
- Not fixed (fresh):
- 5) Myxoma V (1 sample) 77 year old men measured within 4 hours after the surgery

https://healthjade.com/human-heart-health/

Cardiac Myxoma - PALS

- \rightarrow Samples fixed in formaldehyde \rightarrow not decomposing/changing in time
- \rightarrow Fresh sample measured within 4 hours after surgery
- \rightarrow Time of measurement ~70-80 min \rightarrow 1 mln counts

T3S1

Cardiac Myxoma – JPET vs PALS

Time difference [ns]

- \rightarrow Samples fixed in formaldehyde \rightarrow not decomposing/changing in time
- \rightarrow Fresh sample measured within 4 hours after surgery
- → Time of measurement ~70-80 min \rightarrow 1 mln counts

en.uj.edu.pl

PALS – Cells culture in vitro

Human cell lines:

1) Melanocytes HEMa-LP from ThermoFisher

- 2) Melanoma WM115 from ATCC
- 3) Melanoma WM266 from ATCC

→ Cells were cultured in M254/RPMI 1640 medium supplemented with 4.5g/L glucose,
2 mM L-glutamine and HGMS-2/10% fetal bovine serum, additionally
Penicillin 100U/ml and Streptomycin 100 ug/ml was added to the culture.

 \rightarrow Medium was changed every 2 days.

 \rightarrow Culture was incubated at 37°C in 5% CO₂ humidified atmosphere rinse with PBS

w/o Ca2+, Mg2+ and passage with 0.25% Trypsin every 3-4 days.

 \rightarrow Each samples contains cells from 8 T75 flasks, harvest upon 100% confluation and freeze – dried (lyophilized).

Freeze Mediums:

- 1) M254/RPMI 1640+ P/S+ 20% FBS + 10% DMSO
- 2) 10% DMSO + PBS w/o ²⁺Ca, ²⁺Mg
- 3) PBS w/o ²⁺Ca, ²⁺Mg
- 4) 1.5 M PROH(propylene glycol) + 0.5 M D-trehalose

in PBS w/o²⁺Ca, ²⁺Mg

5) 0.25 M D-trehalose in PBS w/o ²⁺Ca, ²⁺Mg

Counts 10⁴

10³

10²

1

2

3

4

5

EST 1364

en.uj.edu.pl

4) 1.5 M PROH(propylene glycol) + 0.5 M D-trehalose

in PBS w/o²⁺Ca, ²⁺Mg

5) 0.25 M D-trehalose in PBS w/o²⁺Ca, ²⁺Mg

PALS – Cells culture in vitro

Summary and future plan

 \rightarrow PALS is applicable to study biological structures

 \rightarrow Preliminary results shown that PALS parameters differ for normal and cancer cells and tissue

 $\rightarrow\,$ First studies of human tissue on JPET scanner proves that o-Ps lifetime can be used as additional diagnostic parameter

 $\rightarrow\,$ Development of the method for sample preparation in order to study alive cell cultures

- \rightarrow Studies with alive cell cultures and tissues comparing normal vs cancer
- → Primary cell culture derived from cardiac myxoma tumor
- \rightarrow Checking for possible o-Ps formation model in living cells

Thank you for your attention

