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Abstract

The main result of this thesis is determination of the neutral kaon regeneration cross-
section in beryllium for momentum of pK ≈ 110 MeV/c. It was obtained by analyzing
data for KL → KS regeneration in the cylindrical beam pipe of the KLOE detector. The
corresponding cross-sections for the KLOE drift chamber inner wall and the spherical beam
pipe were also evaluated as well as values for aluminium and carbon. The KL mesons were
produced in the center of the detector in the collision region of e+ and e− beams of the
DAΦNE collider that worked at the φ meson resonance peak. The analysis was based on
identification of regenerated events e+e− → φ→ KSKL → π+π−Kreg

S → π+π−π+π− and
their extraction from the distributions of the vertex position of the KL meson decays into
π+π−. The regeneration cross-sections were determined based on the extracted number
of regenerated events and number of the KL mesons passing through the regenerator.
Obtained results are equal to: σBereg = (50.0± 0.7stat ± 5.0syst)mbarn for beryllium, σBPreg =

(77.6 ± 0.3stat ± 7.8syst)mbarn for the beam pipe, σDCreg = (75.7 ± 0.3stat ± 7.6syst)mbarn
for the drift chamber inner wall, σAlreg = (170 ± 3stat ± 38syst)mbarn for aluminium and
σCreg = (61± 1stat ± 11syst)mbarn for carbon.
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1. Introduction

Search for physics beyond the Standard Model and deviations from Quantum Mechan-
ics enables to better understand the world of particles. Due to this fact, in many particle
physics laboratories around the world, experiments aiming at testing basic principles of
these theories and underlying discrete symmetries (C, P , CP , CPT ) are intensively con-
ducted.

One of these institutes is Laboratori Nazionali di Frascati (LNF) located in Italy near
Rome, where the KLOE experiment operating at the DAΦNE collider was taking data
during 1999-2006 years. Physics program of the KLOE experiment comprised also investi-
gation of decays and temporal evolution of quantum entangled pairs of kaons produced in
the φ meson decay. The KLOE detector permitted observing a variety of unique interfer-
ence phenomena in the production and decay of neutral kaons. Such observations enable
to test the linear superposition principle of quantum mechanics, the interplay of different
conservation laws and the validity of various symmetry principles.

For this purpose, the DAΦNE e+e− accelerator was designed to work at the φ resonance
peak. The total number of neutral kaon pairs produced during its operating was ∼ 8 · 109.
Now the upgraded experiment, KLOE-2 [14], is about to start working at the same place.

Parameters that test quantum mechanics at KLOE are, among others, the decoherence
and CPT violation parameters [10]: ζ00, ζSL, γ, <e(ω) and =m(ω). They have been
measured at KLOE using interferometric methods by fitting the theoretical function to
the distribution of the difference of the decay times (∆t) between CP−violating decays of
KL (KL → π+π−) and KS decays into two charged pions in φ → KLKS → π+π−π+π−

reaction chain (Fig. 1.1). The uncertainties on this measurements were dominated by the
statistical error. At KLOE-2 the statistical error on this parameters can be reduced by a
factor of 10 because of about ten times higher luminosity and new detector close to the
interaction point: Inner Tracker [13]. The uncertainties in this case will be dominated by
the systematic errors.

One of the main sources of these systematic errors is due to the poor knowledge of
the incoherent regeneration in the cylindrical beam pipe made of beryllium. In particular,
for the measurement of the parameter =m(ω) this will be by far the dominant source of
systematic uncertainty. This is due to the fact that when regeneration occurs, the KL

meson changes into the KS meson that almost immediately decays into π+π− (KL →
KS → π+π−) that disturbs the measurement of KLKS → π+π−π+π− decays.

The cylindrical beam pipe is located ∼ 4.4 cm from the interaction point, where neutral
kaons are produced, and this distance corresponds to ∼ 7 life times of KS (τS). Another
regenerator that has an influence on the region in which the fit was performed is the
spherical beam pipe made of alloy of beryllium and aluminium. It has a radius of ∼ 10 cm
that corresponds to ∼ 17τS . The enhancement in the number of counts for KLKS →

3



4 Chapter 1. Introduction

π+π−π+π− decays, originating from regeneration (KL → KS → π+π−) in the spherical
beam pipe is visible in the left panel of Fig. 1.1 as a peak around 17τS . In the right panel
of Fig. 1.1 the most sensitive region for decoherence is shown, where the first regenerator
(around 7τS) has its impact. There is also third regenerator which is the cylindrical drift
chamber inner wall, situated∼ 25 cm from the φmeson decay point and made of carbon and
aluminium. All of these materials are disturbing the KLKS → π+π−π+π− measurement
and hence, studying the regeneration is crucial for improving the systematic precision in
deriving of decoherence and CPT−violating parameters.

Figure 1.1: Fit to ∆t distribution of the events φ→ KLKS → π+π−π+π−. In the left panel the

region sensitive to both beam pipe regenerators is shown, whereas in the right panel the decoherence

region is presented. The left figure is adapted from [15] and the right one from [16].

However, there is a lack of experimental data forKS regeneration at low momenta, espe-
cially in the KLOE range (pK ≈ 110 MeV/c). In particular the only existing measurement
in beryllium at this momentum value was performed in 1998 by the CMD-2 detector but is
affected by large errors [39]: σBereg = (55.1±7.7)mbarn. In 1996 there were made theoretical
evaluations of regeneration cross-sections in this momentum range for several materials [38]:
σBereg = (40.7±7.9)mbarn, σCreg = (44.2±8.6)mbarn and σAlreg = (18.6±3.6)mbarn. Interest-
ingly this evaluation predicts an unexpected increase of the regeneration cross-sections of
about 20% passing from 100 to 120 MeV/c. In 2006 the first measurements of cross-sections
for the KLOE materials were made with the statistics based on luminosity of ∼ 328 pb−1.
The obtained results were [21]: σDCreg = (60.2±0.8stat±6.0syst)mbarn for the drift chamber
inner wall material (alluminium and carbon) and σBPreg = (59.6 ± 0.6stat ± 6.0syst)mbarn
for the spherical beam pipe material (alluminium and beryllium). However, still the cross-
section for the cylindrical beam pipe made solely of beryllium was missing.

The main aim of this thesis is measurement of the neutral kaon regeneration cross-
section in beryllium for momentum of pK ≈ 110 MeV/c. Also the cross-sections for the
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drift chamber inner wall and the spherical beam pipe will be evaluated. Using this results
it is possible to estimate the cross-sections for aluminium and carbon and these results
will be also presented. The KLOE data sample used in this analysis was collected by the
KLOE collaboration in 2004-2005 years and corresponds to ∼ 1.7 fb−1, that is, ∼ 5.3 · 109

of φ mesons produced.
The thesis is divided into nine chapters. In chapter 2 a brief discussion of the phe-

nomenology and the theoretical aspects of the neutral kaon system is presented. In chap-
ter 3 the DAΦNE collider and the KLOE experiment are described. Next, in chapter 4
the phenomenology of the regeneration phenomena is explained. Chapter 5 is dedicated to
the description of the method used to identify a KL beam and φ→ KSKL → π+π−π+π−

decays. Further, in chapter 6 the general analysis of the regeneration phenomena is pre-
sented. Chapter 7 comprises the description of selection of the regeneration signal in order
to extract number of regenerated events. Finally, chapter 8 is devoted to determination of
the cross-sections. Chapter 9 summarizes the whole thesis and brings the conclusions and
remarks.

This work is supplemented with Appendices where section A presents a derivation
of a formula for the optical theorem, used to explain the phenomenology of the kaon
regeneration. Appendix B describes calculations necessary to evaluate maximal angle for
the coherent regeneration. Section C provides an analytical calculations of the impact point
of the KL meson on the regenerator. Appendix D describes generally MonteCarlo methods
used to fit the simulated distributions to the data. Section E introduces evaluation of the
contributions required to determine the total regeneration cross-section.
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2. Physics of neutral kaons at KLOE

2.1 A little from kaon history

The neutral kaon system is one of the most interesting in particle physics and its impact on
the development of this scientific area is over 60 years old. Kaons (both neutral and charged
ones) were discovered in cosmic ray showers in 1947 by George D. Rochester and Clifford C.
Butler [1]. On one photograph from cloud chamber they observed an uncharged elementary
particle decaying into two lighter charged particles and, on the second one, charged particle
decaying into two light particles, one of which was charged and the other uncharged. They
explained this V-shaped tracks as the decays of new heavy particles with estimated mass
of about half the proton mass. During the next several years many other observations of
”V-particles” were made.

Decay times of this new particles were of the order of 10−10 s, characteristic of weak
interactions. On the other hand, they were produced much faster, with a time scale of
10−23, typical of strong interactions. Because of this difference in production and decay
times, kaons were called ”strange” particles. This problem was solved in 1953 by Murray
Gell-Mann [2] and Kazuhiko Nishijima [3] who postulated the existence of a new quantum
number called strangeness (S), conserved in electromagnetic and strong interactions but
violated in weak interactions. The strangeness was defined by the following relation:

Q = I3 +
B + S

2
,

where Q denotes the electric charge, B the baryon number and I3 the third component of
isospin.

A strange particle cannot decay into any non-strange particle system through interac-
tions that conserve Q, B and I3. Hence, kaons can decay into particles with S = 0 only
through weak interactions with a change of S value equal to ±1. K mesons belong to
isospin doublets (I3 = ±1

2) with strangeness S = ±1. A doublet with S = +1 consists
of mesons K+ (= us̄) and K0 (= ds̄). Their antiparticles, with strangeness S = −1, are
K− (= sū) and K̄0 (= sd̄) [5]. What Rochester and Butler observed on their photographs
were weak decays of neutral and charged K mesons into:

K0(K̄0) → π+π−

K± → π±π0.

Strange particles can be produced in pairs via strong interactions of non-strange par-
ticles with ∆S = 0, for example:

π− + p → K0 + Λ

π+ + p → K+ + K̄0 + p.

7



8 Chapter 2. Physics of neutral kaons at KLOE

In 1955, Murray Gell-Mann and Abraham Pais [4] pointed out that K0 and K̄0 could
transform into each other via weak interaction with intermediate states of pions: K0 ↔
2π ↔ K̄0, K0 ↔ 3π ↔ K̄0 (|∆S| = 2). It means that after some time, in a beam that
initially consists of only K0 pure states, there will be also K̄0 mesons. Since the charge
conjugation (C) was supposed to be a valid symmetry for all interactions, Gell-Mann and
Pais proposed to represent the kaon decay eigenstates as eigenstates of the operator C. As
these eigenstates would decay through different channels, they should have different life
times and masses. In particular the state with C = −1 would not decay into the 2π state,
and would therefore have a longer life time than the state with C = +1 [23].

In 1957, Tsung D. Lee and Chen N. Yang [6] suggested experiments testing invariance of
weak interaction under space inversion (P ) and under charge conjugation (C). It occurred
that above symmetries are violated in this interaction. In the same year, Lev Landau [7]
proposed the CP symmetry that is combination of space inversion and charge conjugation.
Replacing C with CP would not change Gell-Mann and Pais theory. Moreover, in 1964
Christenson, Cronin, Fitch and Turlay [8] announced a discovery of the decay into two
pions for the long-lived kaon and by this demonstrated that CP was not conserved in weak
interaction. The Branching Ratio (BR) of the CP -violating process KL → π+π− was
determined to be [8]:

BR
(KL → π+π−

KL → all

)
= (2.0± 0.4) · 10−3.

2.2 The neutral kaon system hamiltonian

The neutral kaon system was already described in many papers, therefore in this thesis only
the most important issues are briefly summarized. More interested readers are referred to
Ref. [10] and [24], for instance.

The neutral kaons oscillate, with frequency of about 5.3 GHz, between each other,
that is between K0 and K̄0 states. A neutral kaon, at the moment of production, can be
described as a superposition of

∣∣K0
〉
and

∣∣K̄0
〉
:

|K(0)〉 = a(0)
∣∣K0

〉
+ b(0)

∣∣K̄0
〉
, (2.1)

and its time evolution after some time t (in the kaon rest frame) is:

|K(t)〉 = a(t)
∣∣K0

〉
+ b(t)

∣∣K̄0
〉

+
∑
j

cj(t) |fj〉 . (2.2)

Here the sum is made over all possible kaon decay final states |fj〉 (j = 1, 2, ...), while a,
b, c are time-dependent functions; a and b obey the Schrödinger-like equation:

i
∂

∂t

(
a(t)

b(t)

)
= H

(
a(t)

b(t)

)
, (2.3)

where H is the effective, not hermitian hamiltonian. It can be, however, decomposed into
its hermitian and anti-hermitian parts:

H =

(
H11 H12

H21 H22

)
= M− i

2
Γ =

(
M11 M12

M∗21 M22

)
− i

2

(
Γ11 Γ12

Γ∗21 Γ22

)
, (2.4)
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where M and Γ are two hermitian matrices, called mass and decay matrices, and 1 and 2
stand for K0 and K̄0 respectively. The conservation of discrete symmetries constrains the
matrix elements of H so that:

CPT : H11 = H22,

T : |H12| = |H21| ,

CP : H11 = H22 and |H12| = |H21| . (2.5)

2.3 Quantum states of kaons

As already mentioned, the neutral kaon system can be described in the strangeness basis:

S
∣∣K0

〉
= +1

∣∣K0
〉

and S
∣∣K̄0

〉
= −1

∣∣K̄0
〉

but this is not suitable for kaon decays, which occur via weak interactions that do not
conserve strangeness. The combined CP operation in this basis gives:

CP
∣∣K0

〉
= −

∣∣K̄0
〉

and CP
∣∣K̄0

〉
= −

∣∣K0
〉
.

so K0 and K̄0 are not CP eigenstates. One can see that these eigenstates can be con-
structed as [11]:

∣∣K0
1

〉
=

1√
2

[∣∣K0
〉

+
∣∣K̄0

〉]
, (2.6)∣∣K0

2

〉
=

1√
2

[∣∣K0
〉
−
∣∣K̄0

〉]
, (2.7)

and hence:

CP
∣∣K0

1

〉
= +

∣∣K0
1

〉
and CP

∣∣K0
2

〉
= −

∣∣K0
2

〉
.

It occurs that in order to satisfy CP symmetry, states with CP = +1 (K0
1 ) can only decay

into 2π and states with CP = −1 (K0
2 ) only into 3π. Decays into two- and three-pions

channel have different energy thresholds so these kaon states should also have different
decay times. In particular, state decaying into 3π has longer life time than that decaying
into 2π.

However, due to weak interactions CP symmetry is violated and kaons decay into
physical states which are eigenstates of the effective hamiltonian:

H = H0 +Hw,

where H0 governs the strong and electromagnetic interactions and conserves strangeness
whileHw is a small perturbation governing weak interactions and not conserving strangeness.

The eigenvalues of the hamiltonian H can be derived from:

det (H− λ1) = 0, (2.8)
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which, in the limit of CP and CPT (2.5), yields:

λ± =
1

2

(
H11 +H22 ±

√
4H12H21

)
CPT
= H11 ±

√
H12H21. (2.9)

Having eigenvalues, the eigenstates v± can be computed from:(
H11 − λ± H12

H21 H22 − λ±

)
v± = 0. (2.10)

Finally the eigenvectors can be expressed as:

v+ ≡ |KS〉 =
1√

2(1 + |εS |2)

[
(1 + εS)

∣∣K0
〉

+ (1− εS)
∣∣K̄0

〉]
, (2.11)

v− ≡ |KL〉 =
1√

2(1 + |εL|2)

[
(1 + εL)

∣∣K0
〉
− (1− εL)

∣∣K̄0
〉]
, (2.12)

where εS and εL are two small (of the order 10−3) complex parameters describing the CP
violation for KS and KL respectively.

In contrast to K0 and K̄0 which differ in production, KS and KL states differ in decay
modes. KS being predominantly state with CP = +1 decays mostly into 2π system and
KL being state with CP = −1 decays into 3π state. It is often written that KS is a
short-lived kaon and KL a long-lived kaon. It is also useful to define the eigenvalues:

λ+ ≡ λS = mS − i
ΓS
2

and λ− ≡ λL = mL − i
ΓL
2
, (2.13)

and the differences:

∆m = mL −mS > 0 and ∆Γ = ΓS − ΓL > 0. (2.14)

The KS and KL properties are summarized in Tab. 2.1.

KS KL

mean life time (89.53± 0.05)ps (51.16± 0.20)ns
mass and ∆m mK0 = (497.614± 0.024)MeV, ∆m = (3.483± 0.006) · 10−12MeV

main decay modes

π+π− (69.20± 0.05)%

π0π0 (30.69± 0.05)%

π+π−γ (1.79± 0.05) · 10−3

π±e∓νe (7.04± 0.08) · 10−4

π±µ∓νµ (4.69± 0.05) · 10−4

π±e∓νe (40.55± 0.12)%

π±µ∓νµ (27.04± 0.07)%

3π0 (19.52± 0.12)%

π+π−π0 (12.54± 0.05)%

π±e∓νeγ (3.79± 0.06) · 10−3

π+π− (1.966± 0.012) · 10−3

Table 2.1: Selected information about KS and KL mesons [18]
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2.4 Final state amplitudes and double decay rate distributions

At KLOE, neutral kaons are produced in a decay of the φ meson, which is a vector meson
with JPC = 1−−. Hence, to conserve the eigenvalues of P and C, kaon system needs to
have also these values equal to −1. To satisfy this, the simplest initial state of the two
kaons has to be antisymmetric and can be expressed as [10]:

|i〉 =
1√
2

[∣∣K0(+~p)
〉 ∣∣K̄0(−~p)

〉
−
∣∣K̄0(+~p)

〉 ∣∣K0(−~p)
〉]

(2.15)

and as required: C |i〉 = − |i〉 and P |i〉 = − |i〉.
The strangeness basis {

∣∣K0
〉
,
∣∣K̄0

〉
}, suitable to describe kaons production, can be

changed to {|KS〉, |KL〉} basis, appropriate to describe decays of kaons:

|i〉 =
N√

2
[|KS(+~p)〉 |KL(−~p)〉 − |KL(+~p)〉 |KS(−~p)〉] , (2.16)

where a normalization factor N is equal to:

N =

√
(1 + |εS |2) (1 + |εL|2)

1− εSεL
≈ 1. (2.17)

The short- and long-lived states evolve in time as pure exponentials:

|KS(t)〉 = e−iλSt |KS〉 ,

|KL(t)〉 = e−iλLt |KL〉 . (2.18)

Therefore, according to quantum mechanics, the decay amplitude of the two kaons state
(2.16) into final states f1 and f2 at kaon proper times t1 and t2 and with momenta +~p and
−~p respectively, can be written as [10]:

A (f1, t1; f2, t2) =
N√

2
[〈f1|T |KS(t1)〉 〈f2|T |KL(t2)〉 − 〈f1|T |KL(t1)〉 〈f2|T |KS(t2)〉] =

=
N√

2

[
〈f1|T |KS〉 〈f2|T |KL〉 e−iλSt1e−iλLt2 − 〈f1|T |KL〉 〈f2|T |KS〉 e−iλLt1e−iλSt2

]
(2.19)

where T is the transition matrix whose explicit form is not needed here.
The double decay rate for φ → K0K̄0 → f1f2 can be computed from equation (2.19),

taking its complex conjunction and using the definitions of (2.13) and (2.14) [10]:

I(f1, t1; f2, t2) = |A(f1, t1; f2, t2)|2 = A(f1, t1; f2, t2)A∗(f1, t1; f2, t2) =

= C12

[
|η1|2e−ΓLt1−ΓSt2 + |η2|2e−ΓSt1−ΓLt2 +

− 2|η1||η2|e−
(ΓS+ΓL)

2
(t1+t2) cos(∆m(t1 − t2) + ϕ2 − ϕ1)

]
, (2.20)

where ϕ1 and ϕ2 are phases and:

C12 =
|N |2

2
|〈f1|T |KS〉 〈f2|T |KS〉|2 ,

ηi = |ηi|eiϕi ≡
〈fi|T |KL〉
〈fi|T |KS〉

. (2.21)
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If one wants to compare experimental data to this theoretical evaluations, it is easier to
use one-dimensional time distributions with ∆t = t1− t2 instead of t1 and t2 as arguments.
To obtain ∆t distribution one has to integrate the formula (2.20) over t = t1 + t2 at a fixed
difference of time ∆t. Finally the formula yields [10]:

I(f1, f2; ∆t ≥ 0) =
C12

ΓS + ΓL

[
|η1|2e−ΓL∆t + |η2|2e−ΓS∆t +

− 2|η1||η2|e−
(ΓS+ΓL)

2
∆t cos(∆m∆t+ ϕ2 − ϕ1)

]
, (2.22)

valid for ∆t ≥ 0, while for ∆t < 0 the substitutions ∆t → |∆t| and 1 ↔ 2 have to
be applied. Both equations (2.20) and (2.22) show a time interference term which is a
characteristic correlation between both kaon decays.

2.5 Quantum entanglement

Predictions about strongly correlated quantum mechanical systems were first revealed by
Albert Einstein in 1935, in a joint paper with Boris Podolsky and Nathan Rosen [17].
They formulated a thought experiment whose outcome is counterintuitive and suggests
that quantum mechanics is incomplete and nonlocal (EPR paradox − Einstein-Podolsky-
Rosen paradox). In the experiment they considered two systems A and B which interact
with each other and after some time they are separated. Then a measurement of a quantity
Q in a system A is done and, since the relationship between the measured value in the
system A and this quantity in the system B is known, the observer knows immediately,
without any measurement on the system B, the value of Q for the second system. The
same can be done for a quantity P in the system B since it was not disturbed. In general,
in quantum mechanics, in the case of two physical quantities described by noncommuting
operators, the knowledge of one precludes the knowledge of the other. Hence, the outcome
of the experiment seems to violate it because after both measurements, the quantities Q
and P of both systems are known with certainty. In their work, Einstein, Podolsky and
Rosen concluded: We are thus forced to conclude that the quantum-mechanical description
of physical reality given by wave functions is not complete.

The term entanglement was not first used by EPR but by Erwin Schrödinger. In his
letter to Einstein he used the word Verschränkung, and then translated by himself as
entanglement.

2.5.1 Identical final states in kaon decays

If one now considers that both KL and KS decay into any identical final states f1 = f2, for
example KL → π+π− and KS → π+π−, from equation (2.21) can be seen that η1 = η2 = η

and ϕ1 = ϕ2. Substituting this to (2.22) one obtains:

I(f1 = f2; |∆t|) =
C12|η|2

ΓS + ΓL

[
e−ΓL|∆t| + e−ΓS |∆t| − 2e−

(ΓS+ΓL)

2
|∆t| cos(∆m|∆t|)

]
. (2.23)
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From the above equation results that the two kaons cannot decay into the same final
states at the same time, so for |∆t| = 0, since:

I(f1 = f2; |∆t| = 0) =
C12|η|2

ΓS + ΓL
[1 + 1− 2] = 0, (2.24)

what is visible in Fig. 2.1, where I(π+π−, π+π−; |∆t|) distribution is shown. What it
really means is that, even though the two kaons are spatially separated, behavior of one of
them is dependent on what the other does. This counterintuitive correlation is of the type
first pointed out by EPR and is called quantum entanglement.
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Figure 2.1: The solid line denotes I(π+π−, π+π−; |∆t|) distribution as a function of |∆t| in units

of KS life times τS . The dashed line is for ∆m greater by 10% than it is listed in Tab. 2.1

Another interesting region in distribution in Fig. 2.1 is around 4τS . One can see that
it is sensitive for ∆m variations.

2.5.2 Decoherence parameter

In general decoherence denotes the transition of a pure state into an incoherent mixture
of states [10], meaning that entanglement of particles is lost. The decoherence parameter
ζ can be introduced by multiplying the interference term in equation (2.20) by a factor
(1− ζ):

I(f1, t1; f2, t2) = C12

[
|η1|2e−ΓLt1−ΓSt2 + |η2|2e−ΓSt1−ΓLt2 + (2.25)

− 2(1− ζ)|η1||η2|e−
(ΓS+ΓL)

2
(t1+t2) cos(∆m(t1 − t2) + ϕ2 − ϕ1)

]
.

A value of ζ = 0 corresponds to the usual quantum mechanics case, while the ζ = 1

corresponds to the total decoherence, so kaons are no longer entangled. Different values
correspond to intermediate situations between these two. Moreover, in general ζ depends
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on the basis in which the initial state is expressed: {
∣∣K0

〉
,
∣∣K̄0

〉
} or {|KS〉 , |KL〉}. Current

measurements show that there are no deviations from quantum mechanics [16]:

ζSL = (0.3± 1.8stat ± 0.6syst) · 10−2, (2.26)

ζ00̄ = (1.4± 9.5stat ± 3.8syst) · 10−7.

Figure 2.2 shows sensitivity of the double decay rate distribution to the value of ζ. The
biggest discrepancy is for ∆t close to 0.
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Figure 2.2: The solid line is the double decay rate as a function of |∆t| for ζ = 0 whereas the

dashed one is for ζ = 0.05.



3. The KLOE experiment at the DAΦNE collider

KLOE (K LOng Experiment) was located at the National Institute of Nuclear Physics
(INFN) in Frascati near Rome. It was installed at the interaction point of the electron and
positron beams of the DAΦNE (Double Annular Φ-factory for Nice Experiments) collider.

KLOE started data taking in 1999 and concluded in 2006 with integrated luminos-
ity of ∼ 2.5 fb−1, when the collider operated around the mass of the φ-meson equal to
(1019.456±0.029) MeV. During years 1999-2000 the DAΦNE performances were optimized,
luminosity was instantaneously increasing [20] and also background contamination was
steadily improving. Finally in 2001 DAΦNE reached peak luminosity at ∼ 5 ·1031 cm−2s−1

and in 2002 at ∼ 8 · 1031 cm−2s−1, resulting in ∼ 450 pb−1 of data in 2001-2002 run. The
year 2003 was spent on detector and accelerator maintaining in order to increase DAΦNE
luminosity. During 2004-2005 run a luminosity peak of ∼ 1.5 · 1032 cm−2s−1 has been
reached, corresponding to ∼ 2 fb−1 of data (Fig. 3.1). Year 2006 was spent on collecting
250 pb−1 of off-peak data [12].

Figure 3.1: KLOE integrated luminosity as a function of time. The figure is adapted from [28].

The main goal of the KLOE experiment is the precise measurement of the CP−symmetry
violation parameters in the decays of neutral kaons, especially the KL → π+π− and
KL → π0π0 decays [20]. Because of the large cross-section for the φ meson production
equal to σ(e+e− → φ) = 3.1 µb, during its six years of operating, DAΦNE was able to
produce around 1010 of this particles and that is why it is called a φ-factory. The main φ
decay channels are listed in Tab. 3.1.

Now a new experiment, KLOE-2 [14], is about to start collecting data at the same place.
Compared to KLOE it is upgraded with new detectors mainly close to the interaction
point [31] while the electromagnetic calorimeter and the drift chamber remain the same.

15
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Decay BR (%)
φ→ K+K− 49.1

φ→ KSKL 33.8

φ→ ρπ + π+π−π0 15.6

φ→ ηγ 1.26

Table 3.1: Main decay channels of the φ meson [18]

3.1 DAΦNE accelerator

The DAΦNE collider is a double-ring e+e− accelerator designed to obtain a peak luminosity
of ∼ 5 · 1032 cm−2s−1. It consists of three main components: a LINAC, an accumulation
ring, and two collision rings (Fig. 3.2).

Figure 3.2: The DAΦNE facility scheme. The figure is adapted from [28].

Positrons and electrons, with intensities varying from one to 1011 particles in each
bunch, are accelerated to energies from 25 to 750 MeV in a 60 m long LINAC (Linear
Accelerator) [22]. LINAC can work in two modes: the electron production and the positron
production. Positrons require first accelerating electrons to about 250 MeV to an interme-
diate station (positron converter target) in the LINAC, where positrons are created [27]. In
this place the conversion is obtained by interposing to the electron beam a metallic target
and collecting the produced positrons by a capture system. The system allows the choice
of 3 different targets, built with an alloy of 75% of tungsten and 25% of rhenium [26]. In
the electron mode the positron converter metallic target is extracted and the separator is
turned off so that the electron beam can go directly to the LINAC end [25].

Accelerated positrons and electrons are accumulated and cooled in accumulator and
transferred to the two crossing storage rings, in which around 120 bunches of both electrons
and positrons are stored. Each bunch collides with its counterpart once per turn [27] in
the Interaction Point (IP) with a crossing angle θx ' 25 mrad. Therefore, the φ meson is
produced with a momentum of about 13 MeV in the horizontal plane [20]. Main properties
of the accelerator are listed in Tab. 3.2.
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Parameter Value
Energy of e+ and e− 510 MeV
Trajectory length 97.69 m
RF frequency 368.26 MHz
Bunch length σx = 0.2cm, σy = 20µm, σz = 3cm

Number of colliding bunches up to 120
Beam crossing angle 25 mrad

Luminosity ∼ 5 · 1032cm−2s−1

Table 3.2: The DAΦNE design parameters [22].

The KLOE experiment was situated at the one of the two collision points at DAΦNE.
In the second one two other experiments: DEAR and FINUDA were working.

3.2 Main detectors

The design of KLOE was driven by the intent of being a definitive high precision experiment
for the KL decays into charged and neutral particles, while the size was dictated by the
mean decay length of the KL meson [23].

Transverse view of the detector is shown in Fig. 3.3.

Figure 3.3: Scheme of the KLOE detector. The figure is adapted from [28].

The KL and KS mesons, which are created in the φ decays at DAΦNE, are moving
with velocity equal to about (1/5)c. The mean life time of KS is equal to ∼80 ps and for
KL ∼51 ns, so the KS mean decay length is about 0.6 cm while KL ∼3.5 m (it means that
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after this distance, 63% of kaons will decay). KLOE active part has 2 m radius, so it is
able to catch about 40% of long-lived neutral kaon decays. Moreover, KLOE detector must
be able to track particles with momenta covering the range from 50 to 500 MeV, to detect
photons with energy from 20 to 500 MeV with high efficiency and to measure the cluster
energy, time and position in order to determine the decay point of the neutral kaons.

The detector was composed of a cylindrical drift chamber (DC) (to register charged par-
ticles’ tracks), surrounded by an a electromagnetic calorimeter (EmC) (to register particles’
energies, times and positions), both inserted in a superconducting coil which produces an
axial magnetic field of 0.52 T, parallel to the beam axis (to obtain particles’ momenta) [20].

Figure 3.4: KLOE at DAΦNE ring in the accelerator’s building. The figure is adapted from [19].

3.2.1 Drift Chamber

As mentioned in section (3.2), design of the KLOEDriftChamber (DC) [29] was motivated
by the request of high precision detection of charged secondary products from a decay. The
drift chamber should be also as transparent as it is possible for the detection of neutral
particles in calorimeter [23]. Moreover, high and uniform efficiency in the reconstruction
of secondary vertices is required in large volume [19]. Space resolution is limited by the
multiple Coulomb scattering which increases with the atomic number of the material.

The KLOE drift chamber works as every gas detector, based on multiplication mech-
anism. When charged particle travels through gas it undergoes repeated collisions with
electrons inside the gas atoms and ionizes the medium. Electrons of the ion pairs created
along the particle’s trajectory drift to the positive voltage wires [27]. Close to the wire,
due to high intensity electric field they collide with other gas molecules which leads to
further emission of electrons, resulting in electron multiplication and signal detection at
the wire’s end. Particle’s trajectory is bent in a magnetic field and from this curvature it
is also possible to determine particle’s momentum.
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To meet the desirable performances, the KLOE drift chamber was constructed from
over 50 thousand of wires, arranged in 58 cylindrical layers around the beam pipe, giving
a total of more than 12.5 thousand of square drift cells (2x2, 3x3 cm2) (Fig. 3.5 right).
Wires belonging to the same layer are parallel to each other, while each layer is slightly
tilted (stereo angle) with respect to the neighbouring ones [24] in order to reconstruct the
z coordinate along the cylinder axis. The diameter and length of DC are 4 m and 3.3 m,
respectively. The chamber is filled with 90% of helium and 10% of isobutan. Momentum
reconstruction from the curvature of its track has a fractional accuracy of σpp ' 0.5% [27].
The spatial resolution is below 200 µm in the transverse plane (”ϕ-coordinates”) and the
accuracy of vertex reconstruction is about ' 1 mm. On the left side of Fig. 3.5 the drift
chamber barrel before installing it in the detector is shown.

Figure 3.5: Left: KLOE Drift Chamber, right: cells geometry. The figures are adapted from [19].

3.2.2 Electromagnetic Calorimeter

The KLOE calorimeter [30] (Fig. 3.6 left) was designed with many requirements in order to
be an extremely high precision tool to measure neutral kaons decays. It should detect low
energy photons with high efficiency, have a good energy resolution and excellent time and
space resolution to determine vertices of KS and KL neutral decays. Another requirement
is ability to distinguish CP−violating events KL → π0π0 from KL → π0π0π0 (together
with information from the drift chamber) [19]. Therefore, splitting and merging of signals
should be minimized and the calorimeter should cover as much of the 4π angle as it is
possible. Hence, it is not only a calorimeter but also a time-of-flight detector.

In an electromagnetic calorimeter the incoming particle (a photon, electron or positron)
interacting with matter through pair production or bremsstrahlung process (dominant at
high energies) gives rise to repeated interactions in cascade, so called electromagnetic
shower, until all its energy is spent inside the medium. The energy deposited by the elec-
tromagnetic shower in the active volume of the calorimeter is detected, being proportional
to the energy of the incoming particle.

The chosen solution for EmC is a sampling calorimeter, composed of about 200 lead
passive layers (Fig. 3.6 right), each of 1.2 mm thickness, comprising scintillating fiber
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layers of 1 mm diameter. Light is propagating along the fibers of each module and reaches
its ends where photomultipliers are situated.

Figure 3.6: Left: KLOE electromagnetic calorimeter (figure adapted from [19]). Right: single

layer construction (figure adapted from [22]).

The whole calorimeter consists of a ”barrel” and two ”end caps”. The barrel is divided
into 24 trapozoid-shape modules (Fig. 3.7), 23 cm thick, placed along beam direction and
it surrounds the drift chamber. The end caps close hermetically the calorimeter, allowing
to cover 98% of 4π angle. Each endcap is made of 32 vertical modules with length varying
from 0.7 to 3.9 m, bent on both sides in a C-shape [30].

Figure 3.7: Left: CP−violating event KLKS → π+π−π+π− registered at the KLOE calorime-

ter. Right: direct detection of KL (KL crash) in the calorimeter endcap from the decay

KLKS → KLπ
0π0 → KL4γ. Figure is adapted from [27].

Spatial, energetic and time resolutions of this calorimeter, for a photon’s energy in a
range from 20 to 500 MeV, are equal to [22]:

σ(x) = 1 cm, σ(E) =
5.7%√
E(GeV)

, σ(t) =
54 ps√
E(GeV)



3.3. Interaction region 21

3.3 Interaction region

The beam pipe at the interaction point was designed with requirement that all the KS

mesons decay in the vacuum and KL → KS regeneration is minimized in the crucial
interference region, so for the ∆t ≈ 0 (Sec. 2.5.1). Moreover, the beam pipe material should
be chosen in the way that nuclear interactions and photon absorption is minimized [23].
The beam pipe at the KLOE interaction point is shown in Fig. 3.8. The geometry of
elements situated in this region, called also regenerators, is shown in Fig. 3.9.

Figure 3.8: Beam pipe at the e+e− interaction point. The figure is adapted from [27].

The beam pipe has a spherical shape with 10 cm radius and a center at the e+e−

interaction point. It is made of an alloy of 62% beryllium and 38% of aluminium and its
thickness is ∼500 µm. The mean decay length of KS is about 0.6 cm so the distance of
10 cm corresponds to ∼17 life times of short-lived kaon. This assures that all KS decays
are contained inside the sphere. The beam pipe has also a 50 µm thin layer of cylindrical-
shape beryllium with radius of 4.4 cm. It guarantees electrical continuity to the pipe inside
the sphere [20]. In the new KLOE-2 detector it is changed to 30 µm and 3.7 cm radius.
In addition to the spherical and cylindrical beam pipe, the regeneration may also occur
on the inner wall of the drift chamber. It is a cylindrical-shape 750 µm thick carbon fiber
and 150 µm thick aluminium and has 25 cm radius.

Figure 3.9: Scheme of the regenerators’ location at KLOE.
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3.4 MonteCarlo simulations

The KLOE MonteCarlo simulation program, GEANFI, is based on GEANT3 libraries [42],
often used for high energy physics or astrophysics experiments. It reproduces all known
processes rescaled according to a defined luminosity. All relevant machine parameters like
√
s and ~pφ are entered in the MonteCarlo simulation run-by-run [23]. GEANFI includes

also an accurate description of the KLOE detector geometry and material composition,
which includes:

• the interaction region,

• the drift chamber,

• the calorimeter (barrel and endcaps),

• the magnetic field.

Moreover, a set of dedicated routines were elaborated to simulate each sub-detector
response. Hadronic interactions are simulated using the GHEISHA hadronic showers gen-
erator. It has been necessary to carry out a dedicated simulation, since the hadronic
showers package in the GEANT3 and FLUKA libraries does not simulate the hadronic
interactions in the energy range interested for the KLOE experiment. The hadronic cross
sections for low energy kaons, especially for regeneration processes, have been improved
with respect to the original GHEISHA library [23].



4. Phenomenology of KL → KS regeneration

The term regeneration has been introduced in 1955 by Pais and Piccioni in their work
[33] where they predicted creation of short-lived KS mesons when long-lived KL mesons
traverse matter. This phenomena was experimentally discovered in 1961 by Good and
co-workers [34].

Regeneration originates from the fact that the K0 meson interacts differently with
matter (so generally with protons and neutrons) than K̄0. These are strong interactions
that must conserve strangeness and charge as well as barion and lepton numbers. Hence,
several reactions which K̄0 can undergo, e.g.:

K̄0 + p→ Λ0 + π+ (d̄s+ uud→ uds+ d̄u)

K̄0 + n→ Λ0 + π0 (d̄s+ udd→ uds+ d̄d)

are not possible forK0. Therefore, the total cross-section for interaction of K̄0 with nucleon
N is bigger than the corresponding total cross-section of K0:

σT (K̄0N) ≥ σT (K0N), (4.1)

where the equality is valid in the asymptotic region [36].
From the optical theorem (see Appendix A) we have that the total effective scattering

cross-section of the scatterer is equal to (A.3):

σT = =mf(0)
4π

k
, (4.2)

where f(0) is the forward scattering amplitude (so for angle equal to zero) and k denotes
the wave number of kaon. From expression (4.1) and (4.2) one obtains:

|=mf̄(0)| > |=mf(0)|.

Assuming that the real part of f(0) is not correspondingly bigger than <ef̄(0), it follows
that:

|f̄(0)| > |f(0)|.

4.1 Interaction of KL with matter

To understand how the regeneration phenomena occurs we can treat the regenerating
material as a scattering medium. Let us consider that long-lived neutral kaon is passing
through material. An incident pure KL state is written in a form (2.12):

|i〉 = |KL〉 =
1√

2(1 + |εL|2)

[
(1 + εL)

∣∣K0
〉
− (1− εL)

∣∣K̄0
〉]
.

23



24 Chapter 4. Phenomenology of KL → KS regeneration

As it was discussed above, the two components
∣∣K0

〉
and

∣∣K̄0
〉
, are acting differently, and

the final state after scattering in the material reads:

|f〉 =
1√

2(1 + |εL|2)

[
f(ϑ) (1 + εL)

∣∣K0
〉
− f̄(ϑ) (1− εL)

∣∣K̄0
〉]
,

where ϑ denotes the scattering angle and f(ϑ) the scattering amplitude for K0 and f̄(ϑ)
for K̄0. If we change the basis from {

∣∣K0
〉
,
∣∣K̄0

〉
} to {|KS〉 , |KL〉} ((2.11) and (2.12)), we

obtain expression:

|f〉 =
1

2

[
f(ϑ) + f̄(ϑ)

]
|KL〉+

1

2

[
f(ϑ)− f̄(ϑ)

]
|KS〉 , (4.3)

which explicitly shows that the emerging state |f〉 contains a KS component since f(ϑ) 6=
f̄(ϑ). This component is regenerated from the KL beam.

For simplicity let us define:

freg(ϑ) ≡ f(ϑ)− f̄(ϑ)

2
.

Then equation (4.3) reads:

|f〉 =
1

2

[
f(ϑ) + f̄(ϑ)

]
|KL〉+ freg(ϑ) |KS〉 . (4.4)

In particular, in the forward direction (ϑ = 0) the amplitude of KS regenerated by one
scattering center is proportional to f(0)− f̄(0). If one now considers two scattering centers,
the question arises whether these two scatterers will act coherently or incoherenthy [36].

4.2 Coherent and incoherent regeneration

If the KL meson hits two scattering centers A and B situated at a distance d from each
other, then the resulting KS wave will depend on the phase of the incoming wave at the
scattering center. The phase shift between the outgoing waves from near-by scattering
centers can result in a coherent or incoherent action, depending on the density and the
size of the medium and on the kaon momentum [36]. Fig. 4.1 depicts schematically
the discussed scattering. C denotes the plane perpendicular to the momentum vector of
scattered KS , where the difference of phases is relevant.

In this plane amplitudes due to the scattering at centers A and B read:

|ψA〉S = eipSd cosϑfreg(ϑ) |KS〉 , (4.5)

|ψB〉S = eipLdfreg(ϑ) |KS〉 ,

where pS and pL are momenta of KS and KL, respectively. Hence, the phase difference of
both waves in the plane C is equal to:

∆ = d(pS cosϑ− pL). (4.6)

The intensity of KS scattered under ϑ angle on centers A and B is calculated as:

| 〈KS |ψA + ψB〉S |
2 = |freg(ϑ)|2

[
eipLd + eipSd cosϑ

]2
= (4.7)

= |freg(ϑ)|2 · 2 [1 + cos[d(pS cosϑ− pL)]] = |freg(ϑ)|2 · 2(1 + cos ∆).
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Figure 4.1: Scheme of regeneration in two scattering centers.

If now ∆ . 1 one has:

| 〈KS |ψA + ψB〉S |
2 ≈ 4|freg(ϑ)|2 = |freg(ϑ) + freg(ϑ)|2, (4.8)

so coherent addition of the contributions from the two scattering centers.
On the other hand, if ∆ > 1 and one has many scattering centers, the contribution

from cos ∆ is average to zero:

〈cos [d(pS cosϑ− pL)]〉N ≈ 0;

Then for N scattering centers the intensity is N times the intensity from one scattering
centre:

| 〈KS |ψ1 + ...+ ψN 〉S |
2 ≈ N |freg(ϑ)|2 = N | 〈KS |ψ1〉S |

2 (4.9)

and scattering centers act incoherently.
Now one can ask what is the limiting angle for coherence? Making approximation that

cosϑ ≈ 1− (ϑ2/2), the coherence condition reads:

d(pS cosϑ− pL) = d

(
pS − pL − pS

ϑ2

2

)
= d

(
∆p− pS

ϑ2

2

)
. 1, (4.10)

where ∆p is the recoil momentum of the nucleon (scattering center) after kaon scattering.
The maximal distance dmax between two scattering centers when they still act coherently
must satisfy:

dmax

(
∆p− pS

ϑ2

2

)
≈ 1.

In the forward direction (ϑ = 0) from above formula and relation (B.7) (see Appendix B)
one obtains:

dmax ≈
1

∆p
=

1

∆m

pL
mL

. (4.11)
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For kaons produced in the φ decay: pL ≈ 110 MeV/c and taking into account that ∆m ≈
3.5 · 10−6 eV and mL ≈ 498 MeV one obtains (1/eV ≈ 0.197 µm):

dmax ≈ 0.06 · 106 1/eV ≈ 1.25 cm ≈ 2 λKS , (4.12)

where λKS denotes the mean KS decay length. Now one can see that for KL originating
from the φ decay at KLOE, regeneration that occurs in the forward direction is always
coherent since nuclei in material are always closer to each other than 1.25 cm. However,
the probability of coherent regeneration is negligible for KLOE as it will be discussed in
the next section.

If we consider scattering angles different from ϑ = 0, from coherence condition comes
that this angle is maximal when:

d

(
∆p− pS

ϑ2
max

2

)
≈ 0.

Hence:

∆p ≈ pS
ϑ2
max

2

ϑ2
max ≈ 2∆p

pS
∼ 10−12 rad

ϑmax ≈ 10−6 rad, (4.13)

where pS = ∆p+ pL.
According to different scattering ways we expect therefore different regeneration pro-

cesses:

1. Coherent (transmission) regeneration : It appears in the strictly forward direc-
tion (ϑ . 10−6 rad) and coherent addition of amplitudes is from a region of ∼ 2λKS
so few centimeters length.

2. Incoherent (elastic, diffraction) regeneration : It is elastic scattering on nuclei
with incoherent addition of amplitudes. The action of the nucleons inside the nucleus
is coherent and momentum transfer small, not able to excite the nucleus.

3. Inelastic regeneration : This is inelastic scattering with momentum transfer big
enough to break up the nucleus or to excite it. This type of process can be neglected
at the KLOE detector.

4.3 Regeneration probability

To connect the elementary scattering amplitude f(ϑ) − f̄(ϑ) with the macroscopic ob-
served regeneration probability one has to consider coherent and incoherent regeneration
separately.

1. For the coherent regeneration one can define the emerging state from a pure KL

beam while passing through a regenerator as [36]:

|KL〉 → |KL〉+ ρcoh |KS〉 , (4.14)
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where, in the approximation of thin regenerator (d/lS � 1, d=regenerator thickness,
lS = KS decay length), ρcoh is:

ρcoh =
πi

pK
(f(0)− f̄(0))nd

with density of scattering centers equal to:

n =
ρNA

A

and pK is the kaon momentum, ρ the regenerator density, A the atomic weight and
NA the Avogadro number.

For purposes of this thesis, it is interesting to calculate the intensity of (KL +

ρcoh KS)→ π+π− decays per time unit. Using eq. (2.20) one can obtain that [37]:

P± = Γ(KS → π+π−) ·
[
|ρcoh|2e−ΓSt + |η±|2e−ΓLt + (4.15)

+ 2|ρcoh||η±|e−
ΓS+ΓL

2
t cos [∆m · t+ ϕ(ρcoh)− ϕ(η±)]

]
where (2.21):

η± =
〈π+π−|T |KL〉
〈π+π−|T |KS〉

and t is the kaon proper time and Γ(KS → π+π−) the decay width. One can define
the probability of π+π− decays in excess of pure KL → π+π− decays occurring
without regenerator as [37]:

R± =

ˆ ∞
0

[
P±(t)− Γ(KS → π+π−)|η±|2e−ΓLt

]
dt (4.16)

thus this is the probability of the coherent regeneration for KL → KS → π+π−

decays.

2. For the incoherent addition of amplitudes one has that differential cross-section for
one nucleus is given by [36]:

dσinc
dΩ

(ϑ) = |freg(ϑ)|2 =
|f(ϑ)− f̄(ϑ)|2

4
. (4.17)

Integrating formula (4.17) over solid angle one gets that:

σinc =

ˆ
|freg(ϑ)|2dΩ. (4.18)

For a thin regenerator (d/lS � 1), the probability of incoherent regeneration reads
[37]:

Pinc = n σinc d. (4.19)

In the Tab. 4.1 are listed quantitative theoretical evaluations of the incoherent (Pinc)
and coherent (R±) regeneration probabilities as well as modulus of the complex parameter
ρcoh for the KLOE regenerators.
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regenerator material d (µm) Pinc |ρcoh| R±

BP Be 0.05 2.5 · 10−5 ∼ 10−4 ∼ 10−7

DC C 0.7 3.5 · 10−4 0.98 · 10−3 2.6 · 10−6

Al 0.05 0.56 · 10−5 0.34 · 10−4 8.7 · 10−8

Table 4.1: Regeneration probabilities evaluated for momenta pK ≈ 110 MeV/c from theoretical

calculations obtained in the paper [37], made for the beam pipe (BP) and the drift chamber inner

wall (DC) regenerators.

As can be inferred from the above table, the incoherent process dominates at KLOE
over coherent one, both for the beam pipe (BP) and the drift chamber inner wall (DC)
regenerators.



5. Selection of KSKL → π+π−π+π− events

In order to measure the regeneration cross-sections for the KLOE detector, one has
to identify regenerated KS (Kreg

S ) decays in the close vicinity of the cylindrical and the
spherical beam pipe and the drift chamber inner wall, for events where the KL mesons pass
the regenerators (for the KLOE regenerators’ description see Sec. 3.3). Experimentally
the best for this analysis at KLOE is e+e− → φ → KSKL → π+π−KL → π+π−Kreg

S →
π+π−π+π− reaction chain, since KS → π+π− decay is cleaner and easier to reconstruct
than the KS → π0π0. Therefore, in this chapter the procedures used to identify KS →
π+π− decays and to select events containing decays of the KL mesons will be described.

In this thesis data set collected by means of the KLOE detector in 2004-2005 years was
used. It corresponds to an integrated luminosity of ∼1.7 fb−1 (Fig. 3.1). The appropriate
MonteCarlo sample was simulated with GEANFI (Sec. 3.4). The number of events sim-
ulated for each run is equivalent to expectations based on the experimentally derived run
luminosity. Moreover, set of MonteCarlo events consisting of all the φ decays are simulated,
with KS and KL decaying accordingly to experimentally determined branching ratios [18].

5.1 φ meson production

At KLOE, the e+e− beam crossing angle is equal to 25 mrad (Tab. 3.2) which results in
a nonzero boost of the produced φ meson. The boost fluctuations can be described by
gaussians with average momentum [37]:〈

pxφ
〉
≈ −15 MeV/c,

〈
pyφ

〉
≈ 0,

〈
pzφ
〉
≈ 0

and r.m.s. widths are: σpxφ ≈ 0.014 MeV/c, σpyφ ≈ 0, σpzφ ≈ 1.043 MeV/c, where x, y and
z are radial, vertical and longitudinal axes, respectively, defined in Fig. 5.1. This boost
causes that KL and KS momentum spectra are spread in the laboratory frame.

As a very first data selection, a set of requirements is imposed on kinematics of the
e+e− system in the initial state. Based on the Bhabha scattering events for each run it is
required [23]:

• the average value of y and z components of φ total momentum must satisfy:
|pyφ| < 3 MeV/c, |pzφ| < 3 MeV/c;

• the average total energy in the center of mass: |
√
s−mφ| < 5 MeV;

• the average position of the beam crossing point:
|xφ| < 3 cm, |yφ| < 3 cm, |zφ| < 5 cm;

• the spread in the beam interaction region: σx < 3 cm, σz < 3 cm.

29
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Figure 5.1: The reconstruction coordinate system of particles’ decays at KLOE.

The distribution of the φ meson momentum coordinates as well as total value are shown
in Fig. 5.2.

Figure 5.2: Experimental distribution of the φ meson momentum in the KLOE reference frame.
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In Fig. 5.3 the distribution of φ decay point, integrated over all runs, is presented. One
can see, that average z position is equal to 〈zφ〉 ≈ 0.7 cm.

Figure 5.3: Experimental distribution of the position of φ decay point in the KLOE reference

frame.

5.2 Identification of KS → π+π− and KL → π+π− decays (KL tag)

The KL mesons candidates are identified by presence of KS → π+π− decays close to the
interaction region. This type of selection at KLOE is called the KL tag. After identifica-
tion of the KS meson originating from the φ meson decay, one searches for KL that was
produced with the opposite momentum vector in the φ rest frame (Fig. 5.4). Therefore,
the KL tagged decay is searched along the line of its supposed momentum, defined by the
momentum of KS and φ:

~pKtag
L

= ~pφ − ~pKS

and the nominal position of the production vertex, ~xφ



32 Chapter 5. Selection of KSKL → π+π−π+π− events

Figure 5.4: Schematically presented reconstruction of KL tag line of flight.

The event selection starts with the identification of a KS → π+π− originating from the
φ decay by requiring:

• two and only two bent tracks connected to a vertex, corresponding to particles with
opposite charge;

• the vertex within a cylindrical fiducial volume, centered on the nominal φ position,
obtained run-by-run from Bhabha events:

ρ =
√
x2
KS

+ y2
KS

< 10 cm and |zKS | < 20 cm, (5.1)

where the cylindrical fiducial volume is due to the fact that the σz is larger than the
ones along x and y;

• the invariant mass of the two charged particles’ system (calculated assuming that
the observed tracks corresponds to π+ and π− mesons) must be within 15 MeV of
the neutral kaon mass:

|Minv −mK0 | < 15 MeV where M2
inv = E2

tot − |~ptot|
2 ,

~ptot = ~pπ+ + ~pπ− and Etot =

√
m2
π + |~pπ+ |2 +

√
m2
π + |~pπ− |2 (5.2)

• a difference between the total KS momentum (p∗K) and the total momentum of the
two pions calculated in the φ rest frame (p∗tot) must be less than 20 MeV/c. The KS

momentum is given by the two-body kinematics of φ→ KSKL:

|p∗tot − p∗K | < 20 MeV/c

p∗tot = |~p ∗π+ + ~p ∗π− | and p∗K =

√
s

4
−m2

K0 (5.3)

where ~p ∗π+ + ~p ∗π− is the sum of the two pions momenta in the φ rest frame and p∗K
is approximately equal to ∼ 110 MeV/c, mK0 ≈ 498 MeV is neutral kaon mass and
the value of

√
s is obtained from Bhabha events on the run-by-run basis.

If more than one vertex satisfies these criteria, then the one closest to the nominal e+e−

interaction point is identified as the KS decay vertex. The tagging efficiency for finding
KS → π+π− and KL → 2π decays near interaction point amounts to about ∼72% [40].
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In Fig. 5.5 and Fig. 5.6 distributions of KL and KS momenta in the laboratory frame
obtained from the two charged particles’ system (|~pK | = |~p+ + ~p−|) and from

√
s (|~p tag

KL
|

and |~p tot
KS
|) are presented. The difference in these two spectra is due to the fact that total

momenta of ~p tag
KL

and ~p tot
KS

are calculated in the φ rest frame as
√
s/2 and corrected with

φ meson momentum ~pφ whereas the direction is taken from tagging. In these momenta
distributions, the decrease around 110 MeV/c in number of registered events originates
from the fact that in the laboratory frame the emission angles of kaons are not isotropic
because of nonzero momentum of the φ meson in the laboratory.

Figure 5.5: Experimental KL meson momentum distribution obtained from pions momenta (left)

and from |~p tag
KL
| momentum (right) in the laboratory frame.

Figure 5.6: Experimental KS meson momentum distribution obtained from pions momenta (left)

and from |~p tot
KS
| momentum (right) in the laboratory frame.
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Moreover, for finding events Kreg
S → π+π−, interesting for regeneration studies, it is

additionally required:

• two and only two bent tracks connected to a vertex, corresponding to particles with
opposite charge, lying near the KL tagged line of flight;

• the invariant mass of these two particles (assuming that the observed tracks corre-
sponds to π+ and π− mesons) must be within 5 MeV of the neutral kaon mass:
|Minv −mK0 | < 5 MeV/c.

Finally, for the purpose of this analysis, another cut is applied:

• KL decays occur up to 50 cm from the interaction point.

5.3 Signal and background events in MonteCarlo

The effect of the described cuts on the data was studied both for the signal and background
events, using MonteCarlo simulated sample with an equivalent luminosity of ∼1.7 fb−1.
Out of ∼ 3.4 · 108 KL tagged events, ∼ 1.2 · 106 remain after initial cuts described in the
previous section. Contributions from various channels are shown in Tab. 5.1. In addition,

% decay channel % decay channel
45.33
21.93
12.77
10.41
7.42

KL → π±e∓νe

KL → KS → π+π−

KL → π+π−

KL → π±µ∓νµ

KL → π±e∓νeγ

0.54
0.42
0.33
0.23
0.12

KL → KS → π+π−γ

KL → π+π−π0

KL → π+π−γ

KL → γγ

KL → π0π0π0

Table 5.1: Components of the MonteCarlo set after initial cuts.

there is about ∼ 0.5% of decays originating from nuclear interactions of the KL meson
with calorimeter wall nuclei. As can be inferred from Tab. 5.1, signal events constitute
∼ 22% and the dominant sources of background are:

1. KL → π±e∓νe called Ke3 where electron is wrongly identified as pion and neutrino
is not registered (∼ 45%).

2. CP -violating events KL → π+π− (∼ 13%).

3. KL → π±µ∓νµ called Kµ3 where muon is wrongly identified as pion and neutrino is
not registered (∼ 10%).

4. KL → π±e∓νeγ called Ke3γ where electron is wrongly identified as pion and both
neutrino and gamma are not registered (∼ 7%).
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The spherical and the cylindrical beam pipe and the drift chamber of the KLOE de-
tector act as regenerators while KL is traversing them. However, apart from these three
materials, one should also expect background events from regenerated kaons in the drift
chamber gas and wires and in the air between the beam pipe and the drift chamber [37].

The beam pipe and the drift chamber inner wall of the KLOE detector can be considered
as regenerators in which the incoherent process dominates over coherent one (Tab. 4.1).
Therefore, due to the smallness of the coherent effect, in this thesis only the measurement
of the incoherent regeneration cross-sections on BP and DC is discussed, while the coherent
regeneration is only considered as a negligible background.

6.1 Spatial and temporal distributions of kaon decays

After initial selection of data described in Sec. 5.2, a sample of φ→ KSKL → π+π−π+π−

events was extracted including φ → KSKL → π+π−Kreg
S → π+π−π+π− events with

regeneration but also CP−violating φ→ KSKL → π+π−π+π− decays. In figures 6.1 and
6.2, the spatial distributions of KS and KL vertices in planes y − x and ρ− z are shown,
where ρ denotes cylindrical coordinate (transverse radius).

Figure 6.1: Experimental spatial distributions of reconstructedKL vertex. Left: y versus x, right:

ρ versus z.

In Fig. 6.1 is clearly visible the structure induced by the decay points of regenerated
events. In the transverse (x− y) plane it is possible to see the cylindrical regenerators (Be
and DC) as concentric rings with radii of ∼4.4 cm, ∼25 cm, respectively, and as a circle

35
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Figure 6.2: Experimental spatial distributions of KS vertex. Left: y vs x, right: ρ vs z.

with radius of ∼10 cm, while in the polar plane (ρ − z) all the regenerators can be seen
according to their geometry: lines for cylinders (Be and DC) and arcs for the spherical one
(BP). In the case of KS decays, in Fig. 6.2 they occur very close to the interaction point,
due to its short mean decay length value.

The KL → Kreg
S → π+π− regenerated events should be visible as enhancement close

to the regenerators’ positions in the KL decay distance distribution, where this distance is
calculated taking into account φ decay point ~xφ:

dL,S =
√

(xL,S − xφ)2 + (yL,S − yφ)2 + (zL,S − zφ)2 (6.1)

and where ~xKL,S = (xL,S , yL,S , zL,S) is kaon vertex. Indeed, in the right panel of dL,S
distributions in Fig. 6.3, one can see peaks at: ∼4.4 cm, ∼10 cm and ∼25 cm. In the left
panel also distribution for KS is shown and its mean value agrees with kaon mean decay
length equal to ∼0.6 cm. In both distributions the width of a bin equal to 1τS ∼ 0.6 cm
corresponds to the experimental resolution of the KLOE detector.

Increase in number of counts for KL decays is reflected also in the KL proper decay
time distribution. The proper decay time of kaons is calculated as:

t∗L,S =
tL,S
γ

=
1

γ

dL,S
vL,S

, where vL,S = c · βL,S ,

βL,S =
|~p π+

L,S + ~p π−
L,S |√

|~p π+

L,S + ~p π−
L,S |2 +m2

K0

and γL,S =
1√

1− β2
L,S

(6.2)

Here γL,S denotes the Lorentz factor, βL,S is velocity of KL and KS in the laboratory
frame and c is the velocity of light. In Fig. 6.4, the proper decay times distributions for
both KS and KL are presented. For KS the mean value agrees with its mean decay time
equal to ∼0.9 ns.
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Figure 6.3: Experimental distributions of kaon decay distances. Left: KS , right: KL.

Figure 6.4: Experimental distributions of kaon proper decay times. Left: KS , right: KL.

Another very useful distributions are KL decay distances in ρ and r coordinates, where
ρ and r read:

r =
√
x2
KL

+ y2
KL

+ z2
KL

ρ =
√
x2
KL

+ y2
KL

(6.3)
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As the drift chamber inner wall and the beryllium beam pipe are cylindrical, the KL → KS

regeneration is visible in ρ distribution as symmetrical peaks (Fig. 6.5) whereas regen-
eration in the spherical beam pipe manifests itself as a symmetrical enhancement in r

distribution (Fig. 6.6). Experimental results are shown in the left panels and results of
the MonteCarlo simulations in the right panels. In the latter, regeneration as well as
main background components originating from semileptonic and CP−violating events are
shown. Absolute values of simulated contributions were adjusted according to the total
luminosity and corresponding branching ratios.

Figure 6.5: Distributions of KL decay distances in ρ coordinate. Left: data, right: MonteCarlo

simulations.

Figure 6.6: Distributions of KL decay distances in r coordinate. Left: data, right: MonteCarlo

simulations.
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Now one can plot the regenerated KS (Kreg
S ) decay length distributions for appropriate

fiducial volumes, defined as:

Be : 3.4 < ρ < 5.4 cm, |z| < 1 cm

BP : 9 < r < 11 cm

DC : 24 < ρ < 26 cm, |z| < 1 cm (6.4)

so ±1cm from the regenerating surfaces. This is very tight cut to assure that only regen-
erated events are accepted.

The reconstruction of the flight path l ofKreg
S is calculated as a difference betweenKtag

L

impact point on the regenerator and the Kreg
S → π+π− vertex. The first one is obtained

by looking for the point of intersection of Ktag
L line of flight with cylinder (for regeneration

in the Be and DC) or with sphere (for BP). For the detailed calculations the reader is
referred to Appendix C. The decay length l of regenerated KS reads:

l =
√

(xKL − x)2 + (yKL − y)2 + (zKL − z)2,

where ~xKL = (xKL , yKL , zKL) are coordinates of KL → Kreg
S → π+π− vertex for appro-

priate fiducial volumes and (x, y, z) denote coordinates of the Ktag
L impact point. Both of

them are illustrated in Fig. 6.7.

Figure 6.7: Illustration of reconstruction of the Kreg
S decay length l.

In the left panel of Fig. 6.8, distributions of the decay distances l for all three regen-
erators are presented. After detailed examination one can see that for the drift chamber
(DC), the mean value is slightly different from KS mean decay length equal to ∼0.6 cm.
This is due to the very tight fiducial volume cut (6.4) and the fact that the KLOE drift
chamber is shifted slightly down with respect to the reconstruction coordinate system. In
the right panel of Fig. 6.8 the proper decay times are shown, calculated according to equa-
tion (6.2). Also here, for DC there are deviations from the mean value equal to ∼0.9 ns
and the reasons for this are the same.
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Figure 6.8: Experimental distributions of regenerated KS decay distances (left) and times (right)

for appropriate regenerators (as indicated in the figures).
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6.2 KL semileptonic decays

In the simulated sample the background for regenerated events consists mostly of semilep-
tonic decays as can be inferred from Tab. 5.1. In fact KL → π±e∓νe (Ke3), KL → π±µ∓νµ

(Kµ3) and KL → π±e∓νeγ (Ke3γ) decays constitute ∼ 63% of all events. They are
misidentified as π+π− events because of wrong identification of electron or muon as a pion.
Hence, value of the invariant mass of the two charged particles from semileptonic decays
should be less than invariant mass of π+π− system from Kreg

S decay and in this way one
can suppress most of the semileptonic background. To do so the cut |Minv − mK0 | < 5

MeV/c was already applied in Sec. 5.2, where invariant mass was explicitly calculated as:

Minv =

√
2(m2

π +
√

(m2
π + |~pπ+ | 2)(m2

π + |~pπ− | 2)− ~pπ+ · ~pπ−) (6.5)

In Fig. 6.9 the distribution of the difference between the KL invariant mass and nominal
neutral kaon mass (Minv −mK0) after the applied cut is shown.

Figure 6.9: Simulated distribution of difference between reconstructed KL invariant mass and

nominal kaon mass.

Another very useful variable for distinguishing background components is Qmiss:

Qmiss =
√
E2
miss + |~pmiss|2, (6.6)

where missing energy Emiss and missing momentum ~pmiss read:

Emiss = EKL − Eπ+ − Eπ− =
√
m2
K0 + |~pKL |2 −

√
m2
π + |~pπ+ |2 −

√
m2
π + |~pπ− |2

|~pmiss| = |~p/tagKL
− ~pπ+ − ~pπ− | (6.7)

and ~p/tagKL
denotes Ktag

L momentum calculated based on
√
s and the supposed direction for

the tagged kaon. ~pπ+ , ~pπ− are momenta of charged particles originating from KL decay
and Eπ+ and Eπ− are calculated assuming that the charged particles where pions.
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In fact the distribution of Qmiss enables to distinguish very clearly CP−violating events
from most of all the other components. It is visible in Fig. 6.10 where CP−violating events
appear as a peak for small values of Qmiss variable. Semileptonic events manifest them-
selves as symmetrical peaks around ∼ 20 MeV and ∼ 50 MeV whereas regenerated events
cover full range from 0 to ∼ 180 MeV. One can also plot Qmiss(Minv −MK) distribution
(Fig. 6.11) where regenerated events appear as vertical line for values equal to zero.

Figure 6.10: Simulated distribution of Qmiss variable.

Figure 6.11: Simulated distribution of Qmiss(Minv −MK). The applied KL invariant mass cut

±5 MeV around neutral kaon mass is here visible.
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While the Qmiss distribution allows separation of CP−violating events from regener-
ated ones, most semileptonic background that was not reduced by invariant mass cut can
be suppressed by using ∆p variable, defined as:

∆ |~p | =
∣∣∣~p tag
KL

∣∣∣− |~pπ+ + ~pπ− | (6.8)

where definitions of variables are the same as for Qmiss. The ∆p distribution of simulated
events is shown in Fig. 6.12 where it is possible to notice that regenerated events also occur
for the values greater than 10 MeV/c. One can infer that it is due to the fact that there
is some momenta transfer to regenerator during regeneration and this difference between
momentum of Ktag

L and from both reconstructed pions may be interpreted as inelastic
regeneration in the material nuclei that is simulated in MonteCarlo. This events can be
also visible in the Qmiss(∆p) distribution. In the right panel of Fig. 6.13 one can see that
some of regenerated events are visible as bent line. However, this events are not visible
in the data in the left panel of Fig. 6.13, so one can infer that inelastic regeneration is
simulated in the KLOE MonteCarlo with weight that is not properly set. Hence, one can
apply ∆p cut in the range where there are also CP−violating events (i.e. −10 < ∆p < 20)
MeV/c and by doing this suppress most of the semileptonic background.

Figure 6.12: Simulated distribution of ∆p variable. As indicated inside the figure, contributions

from various decays are given in descending order, starting from total contribution and further

with regeneration, CPV , Ke3, Kµ3, Ke3γ.
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Figure 6.13: Qmiss(∆p) distributions. Left: data, right: MonteCarlo simulations.

6.3 Regeneration angle distributions

At KLOE maximum angle for coherent regeneration is equal to ϑmax ≈ 10−6 rad (4.13)
and the probability of coherent regeneration is about two orders of magnitude smaller than
for incoherent one (Tab. 4.1). Hence, regeneration at KLOE occurs mostly incoherently
with the change of the direction of kaon momentum under some ϑ angle. In Fig. 6.14 this
angle is schematically presented.

Figure 6.14: Scheme illustrating definition of the regeneration angle.

The regeneration angle is defined as:

ϑ = acos
~p tag
KL
· (~pπ+ + ~pπ−)

|~p tag
KL
| · |~pπ+ + ~pπ− |

. (6.9)

Fig. 6.15 shows distributions of this angle. The left plot shows experimental results whereas
the right one is obtained from the MonteCarlo simulations. In the latter one can see that
contributions originating from different decays are distributed around different angles. For
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regenerated events the maximum is seen at angle equal to ∼ 25◦ and also an enhancement
is seen at angle of about ∼ 60◦. These two peaks originate from different material com-
position of the beam pipe (25◦) and the drift chamber inner wall (60◦). CP−violating
events correspond to maximum at ∼ 2◦ since they occur without change of the momentum
direction. Kµ3 decays are visible around ∼ 10◦ while Ke3 and Ke3γ around ∼ 20◦.

Figure 6.15: Regeneration angle distribution. Left: data, right: MonteCarlo simulations.

These different angular distributions of semileptonic decays originate from the fact
that electron and muon have not the same masses. In the selected events of Ke3, Kµ3

and Ke3γ decays neutrino carries small momentum fraction due to the invariant mass cut
around neutral kaon mass. Hence, in Ke3 decay electron gains higher momentum than
muon in Kµ3 because electron is lighter. Therefore, ϑ angle will be bigger for semileptonic
decays with electrons and so one can infer that maxima in Fig. 6.15 at ∼ 10◦ and ∼ 20◦

are due to the kinematic cuts applied in the analysis.
One can also plot distribution of regeneration angle versus transverse radius ϑ(ρ)

(Fig. 6.16) and distribution of kaon momentum from two registered charged particles ver-
sus regeneration angle p(ϑ) (Fig. 6.17). Here also semileptonic events are spread at certain
angles whereas regenerated events cover all angular range.
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Figure 6.16: Regeneration angle versus transverse radius ρ distributions. Left: data, right: Mon-

teCarlo simulations.

Figure 6.17: Distributions of kaon momentum obtained from two registered charged particles

versus regeneration angle. Left: data, right: MonteCarlo simulations.



7. Regeneration signal selection

In order to extract number of regenerated events and to minimize the background
additional cuts concerning regeneration signal selection were performed and are described in
this chapter. Since the closest regenerators are ∼ 4.4 cm and ∼ 10 cm from the interaction
point, further cuts on identification of the KS meson originating from the φ meson decay
were carried out so as not to misidentified them with regenerated Kreg

S decays. The cuts
were applied on the following variables:

• KS invariant mass,

• KS vertex position,

• KS momentum nominal value in the φ rest frame.

Moreover, in order to select regenerated KL → Kreg
S → π+π− decays and to separate

peaks originating from both beam pipe regenerators, two cuts were also performed on:

• total momentum difference between KL and π+π−,

• Ktag
L tagged polar angle.

Quantitative description of the applied cuts follows in the next sections.

7.1 Background suppression

7.1.1 KS invariant mass distribution

The first selection requirement is that invariant mass of KS must stay in the range:

492.5 MeV < Minv < 502.5 MeV,

where (5.2):

M2
inv = E2

tot − |~ptot|2.

In Fig. 7.1 this distribution is presented with marked selection area.

7.1.2 KS decay vertex

Another cut is KS vertex position that must stay in the fiducial volume defined as (5.1):

ρ < 2 cm, |zKS − zφ| < 3 cm.

In Fig. 7.2 the distribution of KS vertex position is shown with selection area marked by
blue arrows.
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Figure 7.1: Distribution of invariant mass of KS obtained from data (yellow) and from the Mon-

teCarlo simulations (blue). Differences are due to the resolution differences. Arrows indicate

selection area and the distributions are normalized to unity.

Figure 7.2: Distributions of KS vertex position in ρ− z (first row) and x− y plane (second row).

The selection area is marked in blue. Note that in the upper panel the axes have not the same

scale.
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7.1.3 KS momentum distribution

The last cut on the KS meson kinematics is its momentum nominal value in the φ rest
frame, that reads (5.3):∣∣∣∣|~p ∗π+ + ~p ∗π− | −

√
s

4
−m2

K0

∣∣∣∣ < 10 MeV/c

The Lorentz transformation of pion momentum into the φ rest frame (~p ∗π+ and ~p ∗π−) was
performed as:

~p ∗π = ~p lab
π + γ~βφ

(
γ

γ + 1
~βφ · ~p lab

π − Eπ
)
,

where ~βφ =
~pφ
Eφ

and ~p lab
π is pion momentum vector in the laboratory frame, γ = 1/

√
1− |~βφ|2

and Eπ =
√
m2
π + |~p lab

π |2.
In Fig. 7.3 this distribution with marked selection area is presented. After all the cuts

made on KS in this chapter one is assured that clear KS sample is selected.

Figure 7.3: Distribution of a difference between reconstructed and expected value of the KS

meson momentum in the φ meson rest frame. Arrows indicate selection area and the distributions

are normalized to unity.

7.1.4 Total momentum difference between Ktag
L and π+π−

The most efficient selection of regenerated events by which also background is much sup-
pressed is ∆p variable cut, that is the total momentum difference between Ktag

L and π+π−
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defined as (6.8):

∆|~p| = |~p tag
KL
| − |~pπ+ + ~pπ− |.

It is shown in Fig. 7.4, where selection area is marked, that it is required that the values
of ∆p must stay in a range:

−10 MeV < ∆p < 20 MeV.

Figure 7.4: Distribution of ∆p variable obtained after all previous cuts from the MonteCarlo

simulations (left and right blue) and from data (right yellow). The selection area is marked by

blue lines and the distributions are normalized to unity.

Cut S/B (%)
initial cuts 21.3
Minv of KS 22.4

KS vertex position 22.5
pKS nominal value 22.5

∆p 43.0

Table 7.1: Signal to background ratio for kaons decaying within Be-BP fiducial volume:

0 < ρ < 16 cm.

By applying the above cut, the background is much reduced and the signal to back-
ground ratio (S/B) is nearly twice amplified as can be inferred from Tab. 7.1. In this table
S/B values determined in a range 0 < ρ < 16 cm are quoted and after all cuts discussed
in this section. This fiducial volume comprises the cylindrical (Be) and the spherical (BP)
beam pipe region.
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7.2 Separation of regeneration maxima in transverse radius
distribution

The aim of all the previous cuts was to decrease background in regeneration signal selec-
tion, especially in the region where both beam pipe regenerators are situated (0 < ρ <

16 cm). However, in this region peak from regeneration in the cylindrical beam pipe around
∼ 4.4 cm and in the spherical beam pipe ∼ 10 cm overlap as can be seen in Fig. 7.5.

Figure 7.5: Distributions of registered KL decay vertex positions, as determined after cuts de-

scribed in the previous sections, obtained from data (right) and the MonteCarlo simulations (left).

Hence, additional constraint is imposed on the angle between momentum vector of
tagged KL and z axis (polar angle θ) in order to exclude from the analysis a region where
BP and and Be are close to each other. This angle is schematically presented in Fig. 7.6
and marked by red color. The applied cut is shown in Fig. 7.7 and is equal to:

θ = ^(KL tag, z) ∈ (60◦; 120◦).

Figure 7.6: Schematically presented range of KL polar angle used in the analysis.
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Figure 7.7: Distribution of KL polar angle obtained from data (yellow) and MonteCarlo (blue).

The selection area is marked by blue lines and the distributions are normalized to unity.

After KL polar angle cut the signal to background ratio increases to: S/B=45.5%. In
Fig. 7.8 transverse radius distribution is shown for events for which θ = ^(KL tag, z) ∈
(60◦; 120◦).

Figure 7.8: Distributions of transverse radius ρ after polar angle cut obtained from data (right)

and the MonteCarlo simulations (left).
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Finally, one can see in Fig. 7.9 the difference between transverse radius distributions
after initial cuts described in chapter 5 and after all the cuts discussed in this chapter. It
is visible that application of cuts on KS (invariant mass, vertex position and momentum
nominal value) and KL (∆p and polar angle) increased the signal to background ratio and
improved separation of maxima originating from regeneration in Be and BP.

Figure 7.9: Distributions of transverse radius ρ before (1st row) and after (2nd row) regeneration

signal selection cuts presented in this chapter. The distributions were obtained from data (2nd

column) and the MonteCarlo simulations (1st column).
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8. Determination of the regeneration cross-sections

In this chapter, comparison between simulated and experimental distributions of trans-
verse radius ρ is performed in order to extract number of regenerated events in the beam
pipe and the drift chamber regions. Finally, cross-sections for regeneration in beryllium
(Be), the spherical beam pipe (BP) and the drift chamber inner wall (DC) are calculated.
Obtaining these values it is possible to extract regeneration cross-sections for aluminum
(Al) and carbon (C), which is also presented in this chapter.

8.1 Choice of fiducial volumes

Because the cylindrical and spherical beam pipe are close to each other, the fit is carried
out simultaneously for both of them and separately for the drift chamber. Hence, there
are two fiducial volumes (regions of the regenerating surface) which are defined as:

Be−BP : ρ ∈ (0; 16)cm, DC : ρ ∈ (18; 34)cm,

where transverse radius ρ is defined in eq. (6.3). One can see in Fig. 8.1 and Fig. 8.2 the
data as well as distributions from the MonteCarlo simulations for kaons decay vertices. In
each case a clear signals from KL → KS regeneration is seen over a continuous background
originating from CPV and semileptonic decays of KL.

Figure 8.1: Distributions of the transverse radius ρ for the Be-BP region after all applied cuts

obtained from data (right) and from the MonteCarlo simulations (left).
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Figure 8.2: Distributions of the transverse radius ρ for the DC region after all applied cuts

obtained from data (right) and from the MonteCarlo simulations (left).

8.2 Fit of the MonteCarlo simulations to the data

The MonteCarlo histograms are fit to the data performing maximization of likelihood
using Poisson statistics that explanation can be found in Appendix D. The shapes of the
background and signal are fixed, as obtained from the MonteCarlo simulations, and their
amplitudes are taken as free parameters. From the fit normalization factors for background
and signal are obtained. From Fig. 8.1 and Fig. 8.2 it is visible that semileptonic and CPV
background have similar shapes so one can add them and fit together. The regeneration
from the MonteCarlo simulations in Be, BP and DC is split and fit separately. Hence, for
the Be-BP region one has three scale factors and two in the DC region:

• Be-BP (0-16 cm): 3 scale factors - regeneration in Be, regeneration in BP, background
(semileptonic and CPV)

• DC (18-34 cm): 2 scale factors - regeneration in DC and background (semileptonic
and CPV)

In Fig. 8.3 and Fig. 8.4 the results of the fits are presented. The width of a bin (0.6 cm),
corresponds to 1τS and is equal to the experimental resolution of the KLOE detector. The
obtained number of regenerated events are:

• Nfit
reg(Be): 5487 events

• Nfit
reg(BP): 64662 events

• Nfit
reg(DC): 70357 events
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Figure 8.3: Result of the fit in the Be-BP region.

Figure 8.4: Result of the fit in the DC region.
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8.3 Results for the KLOE regenerators

The cross-section for regeneration depends on the probability of regeneration Preg, density
of scattering centers nt and the thickness of the regenerating surface ∆xt:

σreg =
Preg

nt ·∆xt
, (8.1)

where:

nt = NA
ρt
At

(8.2)

and NA is Avogadro number, ρt denotes target density and At its molar mass.
Probability of the regeneration reads:

Preg =
Nreg

NKL

, (8.3)

where Nreg is the number of regenerated events obtained from the fit Nfit
reg and corrected

for total efficiency εtot:

Nreg =
Nfit
reg

εtot
, (8.4)

while NKL denotes the number of tagged KL that reach regenerator and that can be
approximately calculated from:

NKL = N tag
KL

e−〈l〉/λL −Nreg, (8.5)

where λL is the mean decay length of KL, N
tag
KL

number of tagged KL and 〈l〉 = ρ ·
〈

1
sin θ

〉
is

average path length of KL meson between its production point and regenerating surface.
For determination of the all above contributions to the cross-section formula, the reader

is referred to Appendix E where appropriate calculations were made. The obtained values
are:

• Number of tagged KL: N
tag
KL

=344 551 947

• Number of regenerated events obtained from the fit:

DC : Nfit
regDC

= 70357± 265

BP : Nfit
regBP

= 64662± 254

Be : Nfit
regBe

= 5487± 74

• Average density of scattering centers:

DC : 〈nt ·∆xt〉DC = 6.960 · 1021cm−2

BP : 〈nt ·∆xt〉BP = 4.982 · 1021cm−2

Be : 〈nt ·∆xt〉Be = 0.6459 · 1021cm−2
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• Average length of covered by the KL meson until the regenerating surface:

DC : e−〈l〉DC/λL = 0.9256

BP : e−〈l〉BP /λL = 0.9708

Be : e−〈l〉Be/λL = 0.9865

• The total efficiency εtot = εrec · εsel · εbiastag :

εbiastag = 0.987

Be−BP : εrec · εsel = 0.4250

DC : εrec · εsel = 0.5069

Having all the above values one has to substitute them into the formula for cross-section
(8.1) and the results, taking into account statistical error (Appendix E), are equal to:

σBereg =
PBereg

〈nt ·∆xt〉Be
= (49.96± 0.67stat)mbarn

σBPreg =
PBPreg

〈nt ·∆xt〉BP
= (77.60± 0.31stat)mbarn

σDCreg =
PDCreg

〈nt ·∆xt〉DC
= (75.70± 0.29stat)mbarn

8.4 Systematic uncertainties

The following sources of the systematic uncertainties in the determination of the regener-
ation cross-sections were taken into account:

• uncertainty of regenerator thickness: ∼ 10%

• error on the selection and reconstruction efficiencies: ∼ 1%

• shapes of the simulated distributions: ∼ 2%

• nuclear interactions contamination: negligible

The thickness of the regenerating surfaces are known with 10% accuracy, determined
by their manufacturer:

• Be: ∆xt = (50± 5)µm,

• BP: ∆xt = (500± 50)µm,

• DC: ∆xt = (750± 75)µm for carbon and ∆xt = (150± 15)µm for aluminium.

The errors on the selection and reconstruction efficiencies were taken as ∼ 1% [21] and
the uncertainty in the shape of the simulated distributions was estimated to about ∼ 2%.
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Finally, nuclear interactions contamination was in detailed studied based on the Mon-
teCarlo simulations and their fraction was estimated to ∼ 0.5% (Sec. 5.3). Thus the
uncertainty originating from the estimation of this background source can be neglected.

Addition of the above discussed systematic errors in quadrature results in a total sys-
tematic error of about 10%. This leads to the following final result:

σBereg = (50.0± 0.7stat ± 5.0syst)mbarn

σBPreg = (77.6± 0.3stat ± 7.8syst)mbarn

σDCreg = (75.7± 0.3stat ± 7.6syst)mbarn

8.5 Results for aluminium and carbon

Using the values obtained in the previous section one can extract the cross-sections for the
regeneration in aluminium and carbon, solving a set of equations:

σt
∑

wNt =
∑

σNwNt

where weights wNt are denoted as:

wNt =
ρNt ·∆xt
AN

and t =BP, DC are regenerators, N = Be, C, Al the regenerating materials, AN is the
molar mass of an element N , ρNt denotes density of an element N in the regenerator t
and ∆xt is the thickness of the layer made of element t. Applying the above formula one
obtains that:

σAl =
σBP · (wBP,Be + wBP,Al)− σBe · wBP,Be

wBP,Al
, (8.6)

σC =
σDC · (wDC,C + wDC,Al)− σAl · wDC,Al

wDC,C
. (8.7)

The appropriate weights wNt are equal to:

wBP,Be =
1.85 · 62%

9
· 0.05 = 0.006372,

wBP,Al =
2.7 · 38%

27
· 0.05 = 0.0019,

wDC,Al =
2.7

27
· 0.015 = 0.0015,

wDC,C =

(
1.25 · 40%

12
+

1.72 · 60%

12

)
· 0.075 = 0.009575.

Substituting all appropriate values into formula (8.6) and (8.7) one obtains:

σAlreg = (170± 3stat ± 38syst)mbarn,

σCreg = (61± 1stat ± 11syst)mbarn,

where statistical and systematic errors were calculated as:

δσAl =

√(
δσBP ·

wBP,Be + wBP,Al

wBP,Al

)2

+

(
δσBe ·

wBP,Be

wBP,Al

)2

and similarly for δσC .



9. Conclusions

This thesis aimed at determination of the neutral kaon regeneration cross-section in
beryllium for momentum of pK ≈ 110 MeV/c, what is crucial for the realization of the
KLOE-2 physics program regarding quantum interferometry. This goal was obtained by
analyzing data from regeneration of the KS mesons from the KL mesons in the cylindrical
beam pipe (Be) (made of beryllium) of the KLOE detector. Also the regeneration cross-
sections for the KLOE drift chamber inner wall (DC) made of carbon and aluminium and
the spherical beam pipe (BP) made of alloy of beryllium and aluminium were evaluated.
In addition to the primary aim also the corresponding cross-sections for aluminium and
carbon were extracted from the previous ones.

The KL mesons were produced in the center of the KLOE detector in the collision
region of e+ and e− beams of the DAΦNE collider that worked at the φ resonance peak
(
√
s ≈ 1020 MeV/c). The data sample comprising of ∼ 3.4 · 108 reconstructed neutral

kaon pairs was used in this analysis. The KL mesons were identified based on primary
identification of the KS meson decays into π+π− close to the interaction point. Next, the
number of regenerated events φ → KSKL → π+π−Kreg

S → π+π−π+π− was extracted by
fitting to the data the simulated distributions of the vertex position of theKL meson decays
into π+π−. In this distributions events corresponding to KL → KS regeneration manifest
themselves as peaks at the positions of regenerators. The fit of the simulated distributions
of signal and background to the data was performed and finally the regeneration cross-
sections were determined based on the extracted number of regenerated events and number
of the KL mesons passing through the regenerator.

Obtained in this analysis results for all regenerators are as follows:

σBereg = (50.0± 0.7stat ± 5.0syst)mbarn,

σBPreg = (77.6± 0.3stat ± 7.8syst)mbarn,

σDCreg = (75.7± 0.3stat ± 7.6syst)mbarn,

σAlreg = (170± 3stat ± 38syst)mbarn,

σCreg = (61± 1stat ± 11syst)mbarn.

These values can be compared with existing experimental results and theoretical eval-
uations for kaon momentum of about ∼ 110 MeV/c, listed in Tab. 9.1.

In order to plot derived cross-sections as a function of the atomic weight for BP and
DC one can determine an average atomic weight defined as:

〈At〉 =

∑
AN · wNt∑
wNt

.

For beryllium, carbon and aluminium one has that: ABe = 9, AC = 12, AAl = 27, whereas
for BP and DC, after substituting appropriate values for ρt, AN and ∆xt, one obtains:

61
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value material reference
(55.1± 7.7)mbarn Be CMD-2 (1999) [39]
(40.7± 7.9)mbarn Be theory (1996) [38]
(44.2± 8.6)mbarn C theory (1996) [38]
(18.6± 3.6)mbarn Al theory (1996) [38]

(59.6± 0.6stat ± 6.0syst)mbarn BP KLOE (2006) [21]
(60.2± 0.8stat ± 6.0syst)mbarn DC KLOE (2006) [21]

Table 9.1: Available data and theoretical evaluations for the KS incoherent regeneration cross–

sections at kaon momentum ∼110MeV/c.

〈ABP 〉 = 13.13 and 〈ADC〉 = 14.03. All the results are presented in Fig. 9.1, where the
linear fit was performed to the results from this analysis for Be, C, BP , DC and Al. The
assumed linear dependence is based on the fact that for cross-sections corresponding to
higher particles’ momenta this kind of behavior is observed, as it is shown in [38].
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Figure 9.1: Experimental and theoretical regeneration cross-sections situation for kaon momen-

tum ∼110MeV/c. The linear fit to the results obtained from this analysis was also performed.

The result of this thesis for beryllium: σBereg = (50.0±0.7stat±5.0syst)mbarn is between
the one evaluated theoretically: (40.7 ± 7.9)mbarn and the only existing measurement:
(55.1± 7.7)mbarn from the CMD-2 detector. It is worth to stress that both experimental
results agree with each other within uncertainties.

One can see that for BP and DC the values extracted in this analysis from KLOE 2004-
2005 data: σBPreg = (77.6±0.3stat±7.8syst)mbarn and σDCreg = (75.7±0.3stat±7.6syst)mbarn
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are comparatively large with the one obtained in 2006 from KLOE 2001-2002 data: σBPreg =

(59.6± 0.6stat ± 6.0syst)mbarn and σDCreg = (60.2± 0.8stat ± 6.0syst)mbarn. This difference
may be due to the fact that in the previous analysis, because of the lower luminosity, it was
impossible to disentangle between signals from the cylindrical and spherical beam pipes
and the polar angle cut (Sec. 7.2) was not performed. Also the fit shapes were assumed to
be Gaussian whereas in this analysis they were taken as determined using the MonteCarlo
simulations.

The extracted result for carbon obtained in this analysis: σCreg = (61±1stat±11syst)mbarn
agrees within uncertainties with theoretical value: (44.2 ± 8.6)mbarn. However, there is
large discrepancy between the regeneration cross-section determined for aluminium: σAlreg =

(170 ± 3stat ± 38syst)mbarn and that from the theoretical prediction: (18.6 ± 3.6)mbarn.
There are several reasons for this. On the one hand, using only theoretical cross-sections
for beryllium (40.7 mbarn) and aluminium (18.6 mbarn) one gets an unreasonable low
cross-section for BP that is equal to 35.6 mbarn and calculated from:

σBP =
σAl · wBP,Al + σBe · wBP,Be

wBP,Al + wBP,Be
,

where the values for weights w can be found in Sec. 8.5. On the other hand, the result for
Al is very sensitive to variations of measured cross-sections for Be and BP, from which it
was extracted. For comparison, the plot (Fig. 9.2) was made, where in the vertical axis

Figure 9.2: Cross-section for beryllium versus cross-section for aluminum. The red lines are based

on the results from this analysis where the horizontal one is for Be and the slope corresponds to

BP. The blue line is CMD-2 result for Be and the green one corresponds to the old KLOE result

for BP.
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the cross-section for beryllium is presented and in the horizontal axis the cross-section for
aluminum. The red lines are the results from this analysis where the horizontal one is for
Be measurement and the slope is described based on the BP regeneration cross-section:

σBe =
σBP · (wBP,Be + wBP,Al)− σAl · wBP,Al

wBP,Be
,

The green line corresponds to the old KLOE result for BP and the blue one is CMD-2
result for Be. It can be seen that it is almost impossible to accommodate the theoretical
prediction of ∼ 20 mbarn for Al cross-section with the experimental data, while the data
themselves suggest much higher value (approximately in the range 100-200 mbarn).

In the original note of [38], authors explained that the theoretical prediction of regen-
eration cross-section for aluminum, in the kaon momentum range of 100-200 MeV/c, is
expected to change abruptly. They advised the reader about possibility that their pre-
dictions could be not correct and should be taken with care. Thus, the result presented
here, being in the case of C and Al the first measurement of regeneration cross-sections
at P = 110 MeV/c, do not seem to confirm this theoretical prediction. The linear fit
presented in Fig. 9.1 is intended only to guide the eye of the reader and might represent
a reasonable approximation of the behavior of the regeneration cross-section as a function
of the atomic weight in the shown range.



A. The optical theorem

In quantum physics, the scattering amplitude is the amplitude of the outgoing spherical
wave relative to the incoming plane wave in the scattering process. A large distance away
from the scatterer it is given approximately by the wave function [35]:

ψ(r) ≈ eikz + f(ϑ)
eikr

r
, (A.1)

where r is the coordinate vector, eikz is the incoming plane wave with the wave vector k
along the z axis, e

ikr

r is the outgoing spherical wave, ϑ is the scattering angle and f(ϑ) is
the scattering amplitude. All higher terms are negligible since they vanish more quickly
than 1

r2 . For large values of z the binomial theorem
(

(x+ y)n =
∑n

k=0

(
n
k

)
xn−kyk

)
gives:

r =
√
x2 + y2 + z2 ≈ z +

x2 + y2

2z
(A.2)

The intensity is proportional to the square of the amplitude ψ(r) hence implying approxi-
mation (A.2) in (A.1), one obtains:

|ψ(r)|2 =

∣∣∣∣eikz +
f(ϑ)

r
eikzeik(x2+y2)/2z

∣∣∣∣2 =

(
eikz +

f(ϑ)

r
eikzeik(x2+y2)/2z

)
·

·
(
e−ikz +

f∗(ϑ)

r
e−ikze−ik(x2+y2)/2z

)
=

= 1 +
f∗(ϑ)

r
e−ik(x2+y2)/2z +

f(ϑ)

r
eik(x2+y2)/2z +

f(ϑ)f∗(ϑ)

r2
≈

≈ 1 +
f∗(ϑ)

z
e−ik(x2+y2)/2z +

f(ϑ)

z
eik(x2+y2)/2z +

|f(ϑ)|2

z2
.

If we neglect the 1
z2 term and use the fact that A+A∗ = 2 <eA we have:

|ψ(r)|2 ≈ 1 + 2 <ef(ϑ)

z
eik(x2+y2)/2z

Now one can integrate over a screen in the x− y plane for small angles f(ϑ) ≈ f(0), where
f(0) is the amplitude of the wave scattered to the center of a distant screen. One obtains:

ˆ +∞

−∞
|ψ(r)|2 da ≈ A+ 2 <ef(0)

z

ˆ +∞

−∞
eikx

2/2zdx

ˆ +∞

−∞
eiky

2/2zdy,

where A is the integrated area of the surface. The exponential parts can be treated as
Gaussians so:

ˆ +∞

−∞
|ψ(r)|2 da ≈ A+ 2 <ef(0)

z

(√
z

ik
·
√

2π

)2

= A−=mf(0)
4π

k
.

This is the difference of the amount of energy that would reach the screen without scattering
A, lessened by an amount =mf(0)4π

k . This amount is the total energy scattered because of
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conservation of energy, thus it is the total effective scattering cross-section of the scatterer.
The optical theorem is usually written in the form:

σT = =mf(0)
4π

k
. (A.3)



B. Recoil momentum and energy of the nucleus in the kaon
scattering

To calculate the recoil momentum of the nucleus ∆p and regeneratedKS momentum pS

values one can consider the four-momentum vector conservation of kaons and the scattering
centers:

PL + S = PS + S′, (B.1)

where four-momentum vectors for KL and KS are denoted by PL and PS , respectively,
and for the scattering center it is S before and S′ after the collision. At the beginning, the
scattering center was at rest so S = (M, 0) and KL four-momentum was: PL = (EL, ~pL).
After the collision situation changed to: PS = (ES , ~pS) and S′ = (E′, ~p ′) = (M + (EL −
ES), ~pL − ~pS). Using these notations one can see that:

(PL − PS)2 = (EL − ES)2 − (~pL − ~pS)2 = (E′ −M)2 − ~p ′2. (B.2)

Mass of the scattering center is significantly large with respect to the kaon mass, so one
has that S2 = S′2 so M2 = E′2 − ~p ′2 and the formula (B.2) reads:

(EL − ES)2 − (~pL − ~pS)2 ≈ 2M(M − E′) = 2M(ES − EL). (B.3)

Hence:

(EL − ES)2 − (~pL − ~pS)2 + 2M(EL − ES) = 0, (B.4)

where EL−ES is the recoil energy of the target and ~pL−~pS is the recoil momentum. Since
M is much bigger than EL and ES (M � EL,S) so:

2M(EL − ES) = 0, (B.5)

and then ES ≈ EL:

p2
L +m2

L = p2
S +m2

S

(pL − pS)(pL + pS) = −(mL −mS)(mL +mS)

pL − pS = −∆m
mL +mS

pL + pS
. (B.6)

Finally, taking into account that mL ≈ mS and pL + pS ≈ 2 · pL, the equation (B.6) reads:

∆p = ∆m
mL

pL
. (B.7)

Since ∆m ≈ 3.5 · 10−6 eV and the KLOE momentum for KL is equal to pL ≈ 110 MeV/c,
the recoil momentum of nucleus is of the order:

∆p ≈ 15.8 · 10−6 eV/c. (B.8)
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Taking into account that ∆E � M one can derive from equation (B.4) that the recoil
energy ∆E = EL − ES is approximately equal to:

∆E ≈ (∆p)2

2M
. (B.9)

For heavy nucleus (A ≈ 100), M ≈ 100 GeV and for pL = 0.1 GeV/c one obtains:

∆E ≈ 10−22 eV/c2. (B.10)



C. KL impact point on the regenerator

In order to obtain coordinates of the KL meson impact point on the regenerator (that
at KLOE can be cylinder or sphere) one has to calculate coordinates of point of intersection
of line with sphere and cylinder.

In three dimensions, a line is the set of points (x, y, z) which may be described by the
following parametric equations in which A = (xA, yA, zA) is any point on the line and the
directional vector ~u = [u1, u2, u3] is parallel to the line:

x = xA + t · u1

y = yA + t · u2 where t ∈ <e
z = zA + t · u3

. (C.1)

A sphere with center (x0, y0, z0) and radius r is the set of points (x, y, z) such that:

(x− x0)2 + (y − y0)2 + (z − z0)2 = r2, (C.2)

whereas an equation for a cylinder with radius ρ and hight h reads:{
x2 + y2 = ρ2

−h ≤ z ≤ h
. (C.3)

Both pairs of equations (C.1), (C.2) and (C.1), (C.3) are system of four equations with
four unknowns (x, y, z, t). Solving this for sphere one obtains two points of intersection:

t1,2 =
−1

u2
1 + u2

2 + u2
3

(
u1 · xA + u2 · yA + u3 · zA ±

±
√

(u1 · xA + u2 · yA + u3 · zA)2 − (u2
1 + u2

2 + u2
3) · (x2

A + y2
A + z2

A − r2)
)
.

These two results are presented schematically in Fig. C.1, where the directional vector is
also shown.

One can see that only one result, t2, is in the proper direction:

t2 =
−1

u2
1 + u2

2 + u2
3

(
u1 · xA + u2 · yA + u3 · zA +

−
√

(u1 · xA + u2 · yA + u3 · zA)2 − (u2
1 + u2

2 + u2
3) · (x2

A + y2
A + z2

A − r2)
)
.

Hence the correct coordinates of the intersection point with a sphere are:
x = xA + t2 · u1

y = yA + t2 · u2

z = zA + t2 · u3

.
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Figure C.1: Two points of intersection of line with sphere shown as vectors (orange and blue

ones). The unitary direction vector (red) is also presented.

Figure C.2: Two points of intersection of line with cylinder shown as vectors (orange and blue

ones). The unitary direction vector (red) is also presented.

If now one solves the system of equations (C.1) and (C.3) for a cylinder, one gets:

t3,4 =
−u1 · xA − u2 · yA ∓

√
ρ2
(
u2

1 + u2
2

)
− (u2 · xA − u1 · yA)2

u2
1 + u2

2

.

These two results are presented schematically in Fig. C.2.
Here also only one result, t4, is in the proper direction:

t4 =
−u1 · xA − u2 · yA +

√
ρ2
(
u2

1 + u2
2

)
− (u2 · xA − u1 · yA)2

u2
1 + u2

2

and the coordinates of the intersection point with a cylinder are:
x = xA + t4 · u1

y = yA + t4 · u2

z = zA + t4 · u3

.
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In order to calculate the KL impact point on the regenerator, one has to use the KL tag

as an directional vector:

~u ≡
~p tag
KL∣∣∣~p tag
KL

∣∣∣
and as point A, the φ decay point:

A ≡ ~xφ.

One also has to substitute values for r and ρ, appropriate for the KLOE regenerators, and
coordinates of a center of the sphere equal to (x0, y0, z0) = (0, 0, 0).
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D. Fitting with finite MonteCarlo statistics

Most of the following text is based on paper [43] so more interested readers are referred
to this article.

Analysis of results from particle physics experiments often involves estimation of the
composition of a data sample, based on the MonteCarlo simulations of the various sources.
To do so, one can fit to the data simulated MonteCarlo shapes of these sources by requiring
that they ”fit the best”. However, the χ2 minimization technique is inappropriate because
data values are binned in such a way that the number of data points in many bins are
small. Hence, a maximum likelihood using Poisson statistics is often used, taking into
account that MonteCarlo statistics used are finite.

The common problem is a determination the proportions Pj of the different sources in
the data. There is no analytic form available for the distributions of these sources, only
samples of ”data” generated by the MonteCarlo simulation. Therefore, one has to bin the
data, dividing them into n bins, where in every bin the number of events in the real data
is di. The number fi of events in ith bin, originating from m sources, read:

fi = ND

m∑
j=1

Pjaji/Nj (D.1)

where aji is the number of MonteCarlo events from source j in bin i. ND is the total
number of events in the data sample and Nj the total number in the MonteCarlo sample
for source j, both defined as:

ND =

n∑
i=1

di, Nj =

n∑
i=1

aji. (D.2)

The Pj are then the actual proportions and should sum to unity. Writing pj = NDPj/Nj ,
one obtains:

fi =

m∑
j=1

pjaji. (D.3)

One approach is to estimate pj by adjusting them to minimize:

χ2 =
∑
i

(di − fi)2

di
(D.4)

but this assumes that the distribution for di is Gaussian and it is only good approximation
at large numbers. If many di are small, one has to consider Poisson distribution and then
the probability for observing a particular di reads:

e−fi
fdii
di!

. (D.5)
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Thus, the estimates of the proportions pj are found by maximizing the total likelihood

(L =
∏n
i=1 e

−fi f
di
i
di!

) or its logarithm (the term ln di! is skipped because it does not depend
on fi):

lnL =

n∑
i=1

di ln fi − fi. (D.6)

However, this does not account for the fact that the MonteCarlo samples used may also
be finite size, leading to statistical fluctuations in the aji.

The correct way to view this problem is as follows. For each source, in each bin, there
is some expected number of events Aji and then:

fi =
m∑
j=i

pjAji. (D.7)

Hence, the total likelihood which is to be maximized is the combined probability of the
observed di and aji:

lnL =
n∑
i=1

di ln fi − fi +
n∑
i=1

m∑
j=1

aji lnAji −Aji. (D.8)

To find the maximum one has to differentiate equation (D.8) and set the derivatives to
zero. One obtains two sets of equations:

n∑
i=1

diAji
fi
−Aji = 0 ∀j (D.9)

dipj
fi
− pj +

aji
Aji
− 1 = 0 ∀i, j (D.10)

Equation (D.10) can be rewritten as:

1− di
fi

=
1

pj
(
aji
Aji
− 1) ∀i, j (D.11)

while defining:

ti = 1− di
fi

(D.12)

it reads:

Aji =
aji

1 + pjti
. (D.13)

Hence, if di is not equal to zero then:

di
1− ti

= fi =
∑
j

pjAji =
∑
j

pjaji
1 + pjti

. (D.14)

If these n equations are satisfied with defined Aji then all the m× n equations (D.10) are
satisfied.

For a given set of pj the algorithm solves equations (D.14) for the ti (D.12), giving the
Aji (D.13).



E. Evaluation of the contributions for the cross-section
formula

1. Average
〈

1
sin θ

〉
Angular distribution of KL meson in φ rest frame is proportional to sin2 θ∗, where θ
is KL polar angle, and it reads [21]:

dN

dΩ∗
=

dN

dϕd cos θ∗
∝ sin2 θ∗, (E.1)

where ϕ is azimuthal angle of KL. Hence, the average value of 1
sin θ for the cylindrical

regenerators is calculated taking into account KL angular distribution as [21]:〈
1

sin θ

〉
=

´ π−θmin
θmin

1
sin θ · sin

2 θd cos θ´ π−θmin
θmin

sin2 θd cos θ
=

sin θmin cos θmin − θmin + π/2

2(cos θmin − cos3 θmin/3)
, (E.2)

where θmin is minimal angle for regeneration to occur, schematically presented for
the cylindrical beam pipe regenerator in Fig. E.1. In fact, because of the polar angle
cut applied in Sec. 7.2, this angle for all regenerators is equal to:

θmin = 60 deg ≈ 1.047 rad

Hence, substituting this value into formula (E.2) one obtains:〈
1

sin θ

〉
= 1.044. (E.3)

Figure E.1: Schematic presentation of θmin angle for the cylindrical beam pipe.

2. Average density of scattering centers

One can calculate, for all three regenerators, the average value of 〈nt ·∆xt〉 =〈
NA·ρt·∆xt

At

〉
which is a denominator in the cross-section formula (8.1):
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• DC

〈nt ·∆xt〉DC =
〈

1
sin θ

〉
·NA

[
ρAl
AAl
·∆xAl +

(
ρC1
AC
· 40% +

ρC2
AC
· 60%

)
·∆xC

]
=

= 1.044 · 6.022 · 1023
[

2.70
27 · 0.015 +

(
1.25
12 · 0.4 + 1.72

12 · 0.6
)
· 0.075

]
=

= 6.960 · 1021cm−2

• BP

〈nt ·∆xt〉BP = NA

(
ρAl
AAl
· 38% + ρBe

ABe
· 62%

)
·∆xBP =

= 6.022 · 1023
(

2.70
27 · 0.38 + 1.85

9 · 0.62
)
· 0.05 =

= 4.982 · 1021cm−2

• Be

〈nt ·∆xt〉Be =
〈

1
sin θ

〉
·NA

(
ρBe
ABe
·∆xBe

)
=

= 1.044 · 6.022 · 1023
(

1.85
9 · 0.005

)
=

= 0.6459 · 1021cm−2

3. KL mean decay length

KL mean decay length is calculated as:

λL = τL · βL · c,

where τL = 51.16 ns, c = 29.98 cm/ns and βL reads:

βL =
|~pKL |
EKL

=
|~pKL |√

m2
K0 + |~pKL |2

.

Since mK0 ≈ 498 MeV, and for KLOE momenta of KL |~pKL | ≈ 110 MeV/c, one
obtains:

βL ≈ 0.22,

λL ≈ 331 cm.

4. Average path length of the KL meson until the regenerating surface

The average path length of KL until the regenerating surface 〈l〉 can be calculated
using value of

〈
1

sin θ

〉
(point 1) for the regenerators situated at ρDC = 25 cm, rBP =

10 cm and ρBe = 4.4 cm and substituting the value of λL (point 3):

• DC

〈l〉DC = ρDC

〈
1

sin θ

〉
= 25 cm · 1.044 = 26.089 cm ⇒ e−〈l〉DC/λL = 0.9243

• BP

〈l〉BP = 10 cm ⇒ e−〈l〉BP /λL = 0.9703
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• Be

〈l〉Be = ρBe

〈
1

sin θ

〉
= 4.4 cm · 1.044 = 4.592 cm ⇒ e−〈l〉Be/λL = 0.9862

5. Efficiencies

The total efficiency for identification of Kreg
S → π+π− decays reads:

εtot = εrec · εsel · εbiastag ,

where εrec is reconstruction efficiency, εsel selection efficiency and εbiastag is tag bias
efficiency, explained below.

• The tag bias efficiency [41]

The tagging procedure (Sec. 5.2) is not perfect, because the tagging efficiency
depends slightly on the evolution of KL. All the events in which KL interacts in
the calorimeter, escapes the detector, or decays into any final state are included.
The difference in tagging efficiency in each case depends on the tagging algo-
rithm and the minimization of such differences is used to optimize the tagging
criteria. To correct for this effect, one defines the tag bias for the detection of
KL decays to a final state k as the ratio of the tagging efficiency for KL → k in
the fiducial volume to the overall tagging efficiency, determined without regard
to the evolution of the KL. The tag bias for channel k is thus:

εbiastag =
εtagk
εtagtot

and for regenerated events into π+π− is equal to:

εbiastag = 0.987

• Reconstruction and selection efficiency

Reconstruction and selection efficiencies εrec · εsel are obtained from the Mon-
teCarlo simulations for the appropriate fiducial volumes (Sec. 8.1) as a ratio
between the number of reconstructed regenerated events passing the selection
and the number of generated regenerated events. The obtained values are equal
to:

Be−BP : εrec · εsel = 0.4250

DC : εrec · εsel = 0.5069

6. Regeneration probability

For the calculation of the regeneration probabilities that read:

Preg =
Nfit
reg

εtot ·N tag
KL
· e−〈l〉/λL
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one has to know the number of tagged KL (N tag
KL

), the number of regenerated events
obtained from the fit (Nfit

reg) for all three regenerators and substitute values of expo-
nential factor e−〈l〉/λL (point 4) and total efficiencies εtot (point 5). The first two are
listed below:

• Number of tagged KL: N
tag
KL

=344 551 947

• Number of regenerated events obtained from the fit (Sec. 8.2):

DC : Nfit
regDC

= 70357

BP : Nfit
regBP

= 64662

Be : Nfit
regBe

= 5487

Finally, for the appropriate regenerators, one obtains:

• DC

PDCreg =
Nfit
regDC

εDCtot ·N
tag
KL
· e−〈l〉DC/λL

= 5.269 · 10−4

• BP

PBPreg =
Nfit
regBP

εBPtot ·N
tag
KL
· e−〈l〉BP /λL

= 3.866 · 10−4

• Be

PBereg =
Nfit
regBe

εBetot ·N
tag
KL
· e−〈l〉Be/λL

= 3.227 · 10−5

7. Statistical errors

The statistical error is calculated as:

δσreg =
1

εtot · 〈nt ·∆xt〉

√√√√(δNfit
reg

NKL

)2

+

(
Nfit
reg

N2
KL

δNKL

)2

≈

≈ 1

εtot · 〈nt ·∆xt〉
· δN

fit
reg

NKL

=

√
Nfit
reg

NKL · εtot · 〈nt ·∆xt〉

Substituting all appropriate values one obtains:

• DC

δσDCreg = 0.29 mbarn

• BP

δσBPreg = 0.31 mbarn

• Be

δσBereg = 0.67 mbarn
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