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Abstract

Quantum entanglement of the group of particles, is a fascinating quantum
mechanical phenomenon, without the classical analogy, which happens when
the system state can be treated only as a whole, and the constituent par-
ticles cannot be described separately. The simplest example in which the
quantum entanglement can be manifested is the polarized two-photon sys-
tem. Indeed such a case was analyzed both theoretically and experimentally
many times. However, most of the studies were concentrated on the optical
photons regime. For higher-energetic photons, the polarization cannot be
measured by using standard devices such as polarizers. However, the partial
polarization estimation is possible by exploiting the Compton scatterings
process. In this work, the analysis of a high-energetic, polarized two-photon
system probed by the doubly Compton scattering process, is considered.
The model is described using the quantum information theory formalism. In
addition, the model is incorporated to the Monte Carlo C++ library. The
simulations of the various quantum states are performed and the results are
compared with the expectations from the theory.
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Streszczenie
(Abstract in Polish)

Splątanie kwantowe zespołu cząstek to fascynujące zjawisko mechaniki kwan-
towej, pozbawione klasycznej analogii, które ma miejsce, gdy stan układu
można traktować tylko jako całość, a cząstek składowych nie da się opisać
oddzielnie. Najprostszym przykładem, w którym może zamanifestować się
splątanie kwantowe, jest spolaryzowany układ dwufotonowy. Układ ten
był wielokrotnie analizowany zarówno teoretycznie, jak i eksperymental-
nie. Jednak większość badań koncentrowała się na zakresie fotonów op-
tycznych. W przypadku fotonów o wyższej energii polaryzacji nie można
zmierzyć za pomocą standardowych urządzeń, takich jak polaryzatory. Jed-
nak częściowe oszacowanie polaryzacji jest możliwe dzięki wykorzystaniu pro-
cesu rozpraszania Comptona. W niniejszej pracy rozważana jest analiza
wysokoenergetycznego, spolaryzowanego układu dwufotonowego, próbkowa-
nego w procesie podwójnego rozpraszania Comptona. Model zjawiska opisano
przy użyciu formalizmu kwantowej teorii informacji. Opisany proces został
zaimplementowany w postaci biblioteki Monte Carlo C++. Następnie, przepro-
wadzano symulacje różnych stanów kwantowych, a wyniki porównano z przewi-
dywaniami teorii.
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Chapter 1

Introduction

1.1 Introduction

Quantum mechanics (QM) is a fundamental theory describing the behaviour
of particles in the atomic and the subatomic scale [12]. Many of the QM
phenomena cannot be explained by the classical analogies, which on one hand
makes QM difficult to interpret and understand, on the other hand makes
it fascinating. Quantum entanglement (QE) is one of such a phenomena.
QE of the group of particles appears, when the system state can be treated
only as a whole, and the constituent particles cannot be described separately.
The simplest example in which the QE can be manifested is the two-photon
system.

The photon polarization is a degree of freedom, which is the quantum
analog of the classical polarization of the electromagnetic wave interpreted as
the geometrical orientation of the oscillation of the electric field with respect
to the direction of propagation.

The polarization of the two-photon system was analyzed both theoret-
ically and experimentally many times. Indeed, the canonical experiments
and paradoxes of QM such as EPR were analysed in the two-photon sys-
tems [3]. However, most of the studies were concentrated on the optical
photons regime, where the light polarization can be measured by using stan-
dard optical devices such as polarizers. For higher-energetic photons, the
partial polarization estimation is still possible by exploiting the Compton
scatterings process [19].

The measurement of the photon polarization with Compton scattering
was recently proposed in the context of the development of novel medi-
cal imagining techniques in positron emission tomography by the J-PET
project [18]. In the positron emission tomography the radio-pharmaceutical
administered to the patient is absorbed by the patients cells. Further, the
radio-isotopes decay via β+ process and consequently the positron is emit-
ted. Next, the positron together with an electron from the human body can
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10 CHAPTER 1. INTRODUCTION

form a meta-stable atom called positronium. The positronium atom is likely
to decay into a pair of two photons. The properties of such a system can
be experimentally measured by using the J-PET detector [18], which apart
from being the prototype medical scanner turn out to be a perfect device
for the fundamental physics studies [18], including the investigation of the
quantum photon correlations [18].

In the process of preparation to the experimental measurements as well
as during the data analysis, it is of high importance to be able to compare the
experimental data with the Monte Carlo simulations based on the theoretical
models implementations.

There exist several physics simulation libraries such as Geant4 [1] that
provide various implementations of Compton scattering for polarized and
unpolarized photons, however their functionality is very limited. None of
them support the concept of the correlated photons nor allow choosing the
arbitrary initial polarization states.

In the frame of this thesis, the polarized two-photon system probed by
the doubly Compton scattering process, is considered. The model is based
on the quantum information theory formulation proposed by prof. Beatrix
Hiesmayr [13]. The model is implemented in the form of the Monte Carlo
library, that can be used to simulate a various experimental observables of
the two-photon system originating from the decay of the positronium state.
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1.2 Scope of the thesis

The objective of this thesis is the development of the Monte Carlo simulation
model describing the two-photon correlation system probed by the doubly
Compton scattering. The mathematical description of Compton scattering
is given in the quantum information formulation in the language of Kraus
operators. The model is incorporated to the Monte Carlo C++ library.
The simulations of the various quantum states are performed and the results
are compared with the expectations from the theory.

The thesis is composed of 5 chapters. In the theoretical part, I provide
the introduction to the concept of photon polarization state Sec.2.1, then
I focus on the theory of the density probability matrices and I introduce
the Kraus operators concept Sec.2.4. In the next chapter, short reminder
of the Compton scattering process is given Sec.2.5. Next section Sec.2.6
is dedicated to the reformulation of the Compton process in the language
of the Kraus operators. Final part Sec.2.7 of theory covers the concept of
the observable for the J-PET [19] experiment and prediction of it shapes
for different polarization states. The second part of the thesis presents the
implementation Sec.3 of the Monte Carlo simulations and the results for the
separated states Sec.4.1, mixed states Sec.4.2 and entangled states Sec.4.3.
The thesis is summarized in the last chapter Sec.5.

The results presented in this thesis were obtained in the frame of the
J-PET project, under the guidance of Dr. Wojciech Krzemien, with collab-
oration of prof. Beatrix Hiesmayr.
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Chapter 2

Theory

2.1 Photon and polarization states

Historically, the beginning of the concept of photon has started [24] with the
Einstein explanation of the photoelectric effect in 1905. He postulated that
a light being an electromagnetic wave of the frequency ω and described by
the wave vector k⃗ of length k = ω

c must, in some situations, be treated as
quantized. Thus, Einstein suggested that the light in fact consists of parti-
cles with the energy E = ℏω and the momentum p⃗ = ℏk⃗,which received a
name "photon" by the Gilbert Lewis in 1926 [24]. In today’s modern particle
theories [7]. photon is treated as massless particle with the intrinsic angular
momentum (spin) equal to 1 . Furthermore, it is a carrier of the electromag-
netic interactions and it obeys the Bose-Einstein statistics. Finally, even to
a single photon we can attribute the property called polarization.

The photon polarization is a degree of freedom, which is the quantum
analog of the classical polarization of the electromagnetic wave interpreted as
the geometrical orientation of the oscillation of the electric field with respect
to the direction of propagation.

There exists several formalisms to describe the polarization of light. Some
of them are rooted in the classical wave-based description of light, therefore
we will start with it.

As it was mentioned above, the light is an oscillation of the electro-
magnetic field. First, we should start from the classical interpretation [4],
where the light vibration is defined by the vibrating vector, which can be
introduced from the Maxwell’s equations. The electric field E(t) is real-
valued however we introduce it is a complex field and its observable part is
its real part. To do that we represent the real field as a Fourier integral:

E(t) =

∫ ∞

−∞
dωe−iωtE(ω)

where E(ω) is the field spectral amplitude. Additionally, lets split this inte-
gral into two parts known as the positive-frequency and negative-frequency

13



14 CHAPTER 2. THEORY

fields [11]:

E(+)(t) =

∫ ∞

0
dωe−iωtE(ω)

E(−)(t) =

∫ 0

−∞
dωe−iωtE(ω)

which are complex conjugates (because the spectral amplitude of real field
E∗(ω) = E(−ω)):

[E(+)(t)]∗ = E(−)(t), [E(−)(t)]∗ = E(+)(t)

The observed field is proportional to its real part as mentioned before:

E(t) = E(+)(t) + E(−)(t) = Re{E(+)(t)}

Let’s define the wave plane with two orthogonal unit vectors (x̂,ŷ,x̂ · ŷ = 0)
on it and let ẑ be the direction of wave propagation, hence the vibration of
the electric field E⃗ is [11]:

E⃗ = Re{(ax̂+ bŷeiϕ)ei(ωt−kz−Φ)} (2.1)

Ex = a cos(ωt− kz − Φ), Ey = b cos(ωt− kz − Φ− ϕ) (2.2)

where Eq. 2.2 describes E⃗ components on the wave plane. For further dis-
cussion, we change the time of the wave origin in such way that:

Ex = a cos(ωt), Ey = b cos(ωt− ϕ) (2.3)

If the phase difference is ϕ = π
2 we have left-handed elliptical polarization and

for ϕ = −π
2 we have right-handed elliptical polarization [11]. Additionally, if

amplitudes a = b we have analogous circular polarization. Moreover, for the
phases ϕ = (2n + 1)π,n ∈ Z we have linear polarization (vibration vector
oscillates along one line defined by the angle α by b = a cosα). Hence, any
polarization can be always treated as the addition of two opposite circular
polarizations.

In many cases we deal with the unpolarized light which is described by
the same formula Eq. 2.3 however parameters a,b,ϕ are random functions
of time [4] - in other words, the electric vector moves randomly, without
preferred direction on the wave plane [11].

Presented results gives the most complete classical description of the
polarization state of light in vector form. However, we can introduce two
other representations of polarization, knows as the Jones and the Stokes
representation.
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2.1.1 Jones representation

Let’s return the positive-frequency field and as we did it before, lets assume
the plane wave propagates along the ẑ [10]:

E⃗(+)(r, t) = E⃗0(t)e
−iωt+ikz

where E⃗0(t) is the amplitude which we decompose in two vectors along the
x̂ (horizontal,H) and the ŷ (vertical,V) direction:

E⃗0(t) = E⃗H(t) + E⃗V (t)

The Jones vector is defined as [10],[22]:

ϵ⃗ =

(
α
β

)
=

1√
S0(t)

(
EH(t)
EV (t)

)
where S0(t) is the instantaneous intensity of the light wave:

S0(t) = |EH(t)|2+|EV (t)|2 (2.4)

Parameters α and β meet the normalization condition |α|2+|β|2= 1 and we
define them as:

α = cos
ϑ

2
, β = eiϕ sin

ϑ

2

where ϑ ∈ [0, π] and ϕ ∈ [0, 2π) is the relative phase. For such defined Jones
vector we can define linear polarized light (ϕ = 0) [10]:

ϵ⃗H =

(
1
0

)
, ϵ⃗V =

(
0
1

)
or diagonal (α = β = 1√

2
) and anti-diagonal (α = −β = 1√

2
) polarization

[10]:

ϵ⃗D =
1√
2

(
1
1

)
, ϵ⃗A =

1√
2

(
1
−1

)
or if change in the definition of D/A the phase from ϕ = 0 to ϕ = π

2 we
receive the right-/left-circularly polarization [10]:

ϵ⃗R =
1√
2

(
1
i

)
, ϵ⃗L =

1√
2

(
1
−i

)
2.1.2 Stokes representation

The Jones vector is directly related to the electric field [22], therefore it is
not suitable for representing the partially polarized or unpolarized light. The
Stokes vectors were introduced to mitigate this problem [22]:

S⃗ =

S1S2
S3

 (2.5)
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S1 = |EH |2−|EV |2 (2.6)

S2 = 2Re{E∗
HEV } (2.7)

S3 = 2Im{E∗
HEV } (2.8)

S2
0 = S2

1 + S2
2 + S2

3 (2.9)

where Si are Stokes observables and S0 is defined by Eq. 2.4 and the Eq. 2.9
describes the dependence between these observables. Furthermore, we can
express observables S2, S3 in the same way as it is for S1 but for different
bases:

S2 = |ED|2−|EA|2

S2 = |EL|2−|ER|2

Hence, the Stokes observables can be interpreted as the difference of inten-
sities measured in two orthogonal polarization modes [22]:

S1 = IH − IV , S2 = ID − IA, S3 = IL − IR

The mean value S̄j of the Stokes observables are called the Stokes parameters
and we use them to describe the partially polarized light by the degree of
polarization [10],[22]:

P =

√√√√ 3∑
j=1

(
S̄j
S̄0

)2

and the fully polarized light has P = 1, from the other side the unpolarized
light has P = 0 and partially polarized light has this value between these
two extremes. If we define the normalized Stokes vector we recover the
connection with the Jones vector [22]:

σ⃗ =
S⃗

S0
=

 |α|2−|β|2
2Re{α∗β}
2Im{α∗β}

 =

 cosϑ
sinϑ cosϕ
sinϑ sinϕ


2.1.3 Quantum mechanic representation

We start this section from the particle state representation for the pho-
ton polarisation. First step is to define the space of polarization states
which is the the Hilbert space H - the vector space over a complex C
numbers with defined the complete scalar product [7]. For our purpose we
define two-dimensional Hilbert space with the complete orthonormal basis
{|H⟩ , |V ⟩} ∈ H (⟨H|V ⟩ = 0,⟨H|H⟩ = ⟨V |V ⟩ = 1) and each element of this
space (polarization state) can be expressed as:

|⃗ϵ⟩ = α |H⟩+ β |V ⟩ (2.10)
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which is properly normalized |α|2 + |β|2 = 1, α, β ∈ C. Here, we can treat
the states {|H⟩ , |V ⟩} as two eigenstates of the Pauli matrix σz:

σz =

(
1 0
0 −1

)
, σz |H⟩ = |H⟩ , σz |V ⟩ = − |V ⟩

However, definition of polarization state Eq. 2.10 includes the global phase
which we cannot measure - it is possible to measure the difference between the
states {|H⟩ , |V ⟩}. Due to that, we can replace above two complex numbers
with three real numbers α, β, ϕ ∈ R where the last one is the relative phase
between {|H⟩ , |V ⟩}:

|⃗ϵ⟩ = α |H⟩+ exp(iϕ)β |V ⟩

We can parameterize α, β with an angle θ ∈ R to automatically fulfil the
normalization condition:

|⃗ϵ⟩ = cos
θ

2
|H⟩+ exp(iϕ) sin

θ

2
|V ⟩ (2.11)

The basis {|H⟩ , |V ⟩} is not the only one - in fact we have an infinite number
of possible basis choice. However, two other special bases are essential from
the point of view of optics and the issues discussed in this work:

|D⟩ = 1√
2
(|H⟩+ |V ⟩), |A⟩ = 1√

2
(|H⟩ − |V ⟩) (2.12)

|R⟩ = 1√
2
(|H⟩+ i |V ⟩), |L⟩ = 1√

2
(|H⟩ − i |V ⟩) (2.13)

where Eq. 2.12 are two eigenstates of the Pauli matrix σx (linear polarization:
diagonal and antidiagonal) and Eq. 2.13 are two eigenstates of the Pauli
matrix σy (circular polarization: right- and left-hand):

σx =

(
0 1
1 0

)
, σx |D⟩ = |D⟩ , σx |A⟩ = − |A⟩

σy =

(
0 −i
i 0

)
, σy |R⟩ = |R⟩ , σy |L⟩ = − |L⟩

Now, we can define the Stokes and Jones vector for such states. To do that,
first we have to use the occupation number representation defined in the
Fock space - the infinite direct sum of set of Hilbert spaces H representing
states with 0,1,...,N particles [8]:

F(H) =

∞⊕
n=0

Hn
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where Hn is the Hilbert space with n-photons. Here, we will no focus on
the detailed description [8] of the Fock space but instead we will use it do
describe how to translate classical model of polarisation to the quantum one.
To introduce that, first we have to replace the electric field with electric field
operators and photon creation-annihilation operators. Such set of operators
act on the quantum states of polarized light.

Here we consider a single mode specified by a plane-wave monochromatic
modes. We have a quantization box with size L and we assume that the field
distribution is periodic in all three Cartesian coordinates - only a discrete
set of wave-vectors are allowed [15]:

k⃗ = (kx, ky, kz, σ), ki =
2niπ

L
, ni ∈ Z

and σ is the polarization that can take one of two values (linear, circular,
elliptic) - but these two polarization states have to be orthogonal. For such
defined modes, we can define the quantum field as a superposition over modes
[15]:

Ê(+)(r⃗, t) =
∑
k

Ê(+)eik⃗r⃗−ωk⃗
t

Ê(−)(r⃗, t) =
∑
k

Ê(−)eik⃗r⃗−ωk⃗
t

amplitudes Ê(+), Ê(−) are given as:

Ê(+) = c
k⃗
a
k⃗

Ê(−) = c∗
k⃗
a†
k⃗

where a
k⃗
, a†

k⃗
are photon annihilation and creation operator in mode k⃗ (sum-

mation over the indices ni) with frequency ω
k⃗

and [17]:

c
k⃗
= i

√
ℏω

k⃗

2ϵ0L3

The Hamiltonian for each mode is given by [17]:

H
k⃗
= ℏω

k⃗

(
a†
k⃗
a
k⃗
+

1

2

)
For our further discussion lets use the linear polarization modes (H,V) de-
fined by the not Hermitian operators a†H,V ̸= aH,V with the following not
commutation and commutation relations:

[aH , a
†
H ] = [aV , a

†
V ] = 1
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[aH , a
†
V ] = [aH , aV ] = ... = 0

which is strictly an effect of polarization modes orthogonality.
The annihilation (and creation) operators for different modes such as

diagonal/antidiagonal (D,A) and righ-/left-circular (R,L) polarization modes
are connected with horizontal/vertical modes via:

aD,A =
1√
2
(aH ± aV ) (2.14)

aR,L =
1√
2
(aH ± iaV ) (2.15)

Fort each mode the creation-annihilation operators form the photon-number
N̂ operators:

a†HaH = N̂H , a
†
V aV = N̂V

which are Hermitian (N̂ †
i = N̂i) and because of their Hermicity their cor-

responds to the real observables - they can be measured. The eigenvalues
of this operators are non-negative integer numbers and are called the Fock
states |N⟩ - the number of photons populating a mode is fixed and does not
fluctuate:

N̂i |N⟩i = Ni |N⟩i
and the annihilation-creation operators act on such states as follow:

aj |N⟩j =
√
N |N − 1⟩j

a†j |N⟩j =
√
N + 1 |N + 1⟩j

With such defined tools we can consider a single-photon state which is a
superposition of N=1 Fock states in the horizontal and vertical polarization
modes:

|ϵ⟩ = α |1⟩H |0⟩V + β |0⟩H |1⟩V = α |1⟩H + β |1⟩V (2.16)

where |α|2+|β|2= 1. Let’s comments what above equation means. As we
said, the state of the single photon is a superposition of Fock space for N=1
(because one photon) which means we have two modes (H,V) and only one
particle to occupy modes - hence we can have one photon in mode H and zero
photons in mode V (|1⟩H |0⟩V ) or zero photons in mode H and one photon
in mode V (|0⟩H |1⟩V ). Second part means that the photon spreads over two
polarization modes H and V.

Moreover, from the Eq. 2.14 and Eq. 2.15 we have:

|1⟩D =
1√
2
(|1⟩H + |1⟩V ), |1⟩A =

1√
2
(|1⟩H − |1⟩V )

|1⟩L =
1√
2
(|1⟩H + i |1⟩V ), |1⟩R =

1√
2
(|1⟩H − i |1⟩V )
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The Jones vector for one-photon state Eq. 2.16 is [5] [6]:

|ϵ⟩ =
(
α
β

)
We replace the classical Stokes observables with the Hermitian Stokes oper-
ators [5],[6]:

Ŝ0 = a†HaH + a†V aV

Ŝ1 = a†HaH − a†V aV

Ŝ2 = a†HaV + a†V aH

Ŝ3 = i(a†HaV − a†V aH)

which correspond to the real observables and have the following commutation
relations:

[Ŝ0, Ŝk] = 0, k ∈ 1, 2, 3 (2.17)

[Ŝk, Ŝl] = iϵklmŜm, k, l,m ∈ 1, 2, 3 (2.18)

The equality Eq. 2.17 tells us that the polarization and the intensity are
separated concepts - the form of polarization does not depend on it size (in-
tensity). From the other hand, due to the noncommuation between operators
in Eq. 2.18 we cant have the full information about the photon polarization
because the measurement of one parameters has an impact on the other one.

The degree of the polarisation is defined as:

P =

√√√√√√ 3∑
j=1


〈
Ŝi

〉
〈
Ŝ0

〉
2
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2.1.4 Comparison of representations

The presented introduction of the concept of light polarization and its vari-
ous representations in terms of classical and quantum physics shows a wide
spectrum of possibilities for interpreting and measuring this property of light.
For the full polarized light we can use the Jones representation which is di-
rectly related to the photon’s electric field. From the other side, an alterna-
tive for partially polarized light it is better to use the Stokes representation.
Both representations have their important roles in the classical optics and
its quantum version can be applied to the quantum optics. For the purposes
of this thesis, a natural approach dictates to use the Jones representation,
however, due to the common use of the Stokes representation in program-
ming libraries such as Geant4, it is important to present and understand it.
In the table Tab. 2.1 a set of different representations is presented.

Table 2.1: Comparison of the polarisation representations

Type Name Jones (α, β)T Stokes (σ1, σ2, σ3)
T QM state

linear horizontal (1, 0) (1, 0, 0) |H⟩
linear vertical (0, 1) (−1, 0, 0) |V ⟩
linear diagonal 1√

2
(1, 1) (0, 1, 0) |D⟩

linear antidiagonal 1√
2
(1,−1) (0,−1, 0) |A⟩

circular right-hand 1√
2
(1, i) (0, 0, 1) |R⟩

circular left-hand 1√
2
(1,−i) (0, 0,−1) |L⟩
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2.2 Two-photon state

Figure 2.1: Two photons system. The star represents the emission point.
Colored parallelogram represent the polarization plain for each photon.

Let’s consider a most general polarized two-photon state described in the
basis {|H⟩i , |V ⟩i}, i ∈ {1, 2},

(2.19)|ψ⟩ = a |H⟩1 |H⟩2 + b |H⟩1 |V ⟩2 + c |V ⟩1 |H⟩2 + d |V ⟩1 |V ⟩2
= a |HH⟩+ b |HV ⟩+ c |V H⟩+ d |V V ⟩

where a, b, c, d ∈ C and |a|2 + |b|2 + |c|2 + |d|2 = 1. We can distinguish two
types of states |ψ⟩: separable and entangled. We say that the state |ψ⟩ is
separable if and only if it can be written as a tensor product of two one-
photon states |ψ⟩ = |ψ1⟩ ⊗ |ψ2⟩, where |ψi⟩ ∈ C2. Otherwise a given state
|ψ⟩ is entangled.
For the state |ψ⟩ we can derive a simple rule which distinguishes between
separable and entangled states. Let’s assume |ψ⟩ = |ψ1⟩ ⊗ |ψ2⟩ and |ψ1⟩ =(
x
y

)
and |ψ2⟩ =

(
u
v

)
then we have that:

|ψ1⟩ ⊗ |ψ2⟩ =


xu
xv
yu
yv


which implies that if |ψ⟩ is separable then

a
b
c
d

 =


xu
xv
yu
yv


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and after simple algebraic calculations we obtain the separability condition
for |ψ⟩ as:

ad− bc = 0 (2.20)

We can define as many entangled states as we want , for example the state
below is an entangled one:

1√
2
(|HV ⟩+ eiϕ |V H⟩), ϕ ∈ R, ad− bc = −eiϕ ̸= 0

however, there exist a preferred set of entangled states which create an ortho-
normal basis and plays an important role in the development of the quantum
computing. The mentioned set of states is called the Bell states and it is
defined as follows:∣∣ϕ±〉 = 1√

2
(|HH⟩ ± |V V ⟩),

∣∣ψ±〉 = 1√
2
(|HV ⟩ ± |V H⟩)

We may ask which states there are more in terms of the two-photon system -
separable or entangled? To answer that question first we have to come back
to the idea of the Bloch sphere Fig. 2.2 which is the geometrical represen-
tation of a single quantum state (i.e. single photon polarisation). On the
poles of such sphere we place the basis’s vectors and require from the state
to be normalized - explicitly, we postulate that our state is given by then
Eq. 2.11. The Bloch sphere is 2-sphere S2 (dim(S2) = 3), hence the space of
2-states like Eq. 2.19 is defined by the product of two Bloch spheres S2×S2

(dim(S2×S2) = dim(S2)+dim(S2) = 6). All entangled states have to be in
such 6-dimensional space, however the separable states lays in the subspace
due to condition Eq. 2.20 - we have two dependent parameters which reduce
the dimension of our space of states to the 4-dimensional subspace. From
above, we see that the number of possible separable states is always less then
the number of the entangled ones.



24 CHAPTER 2. THEORY

(a) |H⟩ (b) |V ⟩

(c) |D⟩ (d) |A⟩

(e) |R⟩ (f) |L⟩

Figure 2.2: Visualization of the polarization bases on the Bloch sphere.
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2.3 Mixed states and density operators

The state vector formalism allows to describe the photon systems correspond-
ing to fully polarized (or coherent) light. However, if we want to be able to
describe also a partly polarized light, we must use the density operator ap-
proach. This formalism is a generalization of the state-vector description.

If the photon system is fully polarized, then we say that the system is in
the pure state, otherwise it is in the mixed state.

The mixed state captures the idea of the statistical mixture e.g. let’s
consider a source of light that produces the different polarization states (en-
semble of the pure states |ψ1⟩ , ..., |ψn⟩) with different probabilities pi such
that

∑
i pi = 1. The final system is described by so called density operator

ρ defined as:
ρ̂ =

∑
k

pk |ψk⟩ ⟨ψk|

The density operator is the Hermitian operator ρ̂ = ρ̂† with the unit trace
Tr(ρ̂) = 1 and is non-negative ∀ |ϕ⟩ ∈ H ⟨ϕ| ρ̂ |ϕ⟩ ≥ 0.

By given orthonormal basis {|i⟩} in n dimensional Hilbert space associ-
ated with the system we can define the corresponding matrix with density
operator, known as the density matrix ρij :

ρij = ⟨i| ρ̂ |j⟩

. If we expand a pure state |ψk⟩ over an orthonormal basis {|i⟩} :

|ψk⟩ =
∑
i

c
(k)
i |i⟩ , ci ∈ C

then the density matrix can be expressed as:

(2.21)
ρij =

∑
k

pk ⟨i|ψk⟩ ⟨ψk|j⟩

=
∑
k

pkc
(k)
i c

(k)∗
j

Now we can easily distinguish the mixed state from the pure one just by
using a following rule:

Tr(ρ̂2)

{
= 1, pure state
< 1,mixed state

The diagonal terms ρii represents the probability Pi that the system is left
in the state |i⟩ after measuring the observable whose eigenstates are {|i⟩}
(ρii represents the population of the state |i⟩):

ρii = Tr(ρ̂Pi), Pi = |i⟩ ⟨i|
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The off-diagonal terms ρij represents interference between the states |i⟩ and
|j⟩ (we call ρij as coherences). If ρij ̸= 0 even after averaging over the
statistical mixture, q quantum-coherence effect between the states |i⟩ and
|j⟩ remains.

Any mixed state density matrix can be expressed as a weighted sum of
other density matrices, in an infinite number of different ways. From the
other side, the pure state can only be expressed in one unique way.
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2.4 System evolution

2.4.1 Unitary operation

To describe the evolution of a quantum system over time that is not disturbed
by the external environment (closed system) we use the the unitary operation
Ut : Hn → Hn which has to meet four conditions [14]:

∀t ∈ R∀ |ψ⟩ ∈ Hn : ⟨ψUt|Utψ⟩ = ⟨ψ|ψ⟩ (2.22)

∀t ∈ R : Ut

(
n∑
i=1

αi |ψ⟩

)
=

n∑
i=1

αiUt |ψ⟩ (2.23)

∀t1, t2 ∈ R : Ut1+t2 = Ut1 · Ut2 (2.24)

∀t0 ∈ R : lim
t→t0

Ut |ψ(0)⟩ = lim
t→t0

|ψ(t)⟩ = |ψ(t0)⟩ (2.25)

where Eq. 2.22 is th condition of keeping the norm (if at the beginning we
have a probability distribution, then after the realization of evolution there is
also a probability distribution), Eq. 2.23 requires from Ut that it transforms
each of the base states of the |ψ⟩ state independently, Eq. 2.25 tells us that
the time evolution is continuous.

The function Ut satisfying the conditions Eq. 2.22,Eq. 2.23,Eq. 2.24 is
represented by a group of unitary operators [14].

Additionally, if the Ut satisfying all four conditions we have the Stone’s
theorem telling us that there exists exactly one hermitian operator H satis-
fying the relation [14]:

Ut = exp(−itH)

which gives us the evolution of the state:

|ψ(t)⟩ = exp(−itH) |ψ(0)⟩

If we differentiate the last equation we receive the Schrodinger’s equation:

i
d

dt
|ψ(t)⟩ = H |ψ(t)⟩

In the language of density matrix ρ we introduce the time evolution as:

U(ρ) =
∑
i

piU |ψi⟩ ⟨ψi|U † = UρU †

2.4.2 Measurement operation

Quantum measurement is described by the set of {Mi} operators [20] oper-
ating in the state space of the measured system and we use them to calculate
the probability distribution of possible results and to describe the state after
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the measurement. Before the measurement, the probability that the mea-
surement operation will give us i-th result is:

p(i) = ⟨ψ|M †
iMi|ψ⟩

and the state of system after the measurement is:∣∣ψ′〉 = Mi |ψ⟩√
⟨ψ|M †

iMi|ψ⟩

The measurement operators meet the completness condition:∑
i

M †
iMi = 1

which make sure that the sum or all probabilities sum to the one.
In the language of the density matrices, the probability to measure the

m-th value by the observable Mm for the state |ψi⟩ is [20]:

pm|i = ⟨ψi|M †
mMm|ψi⟩ = Tr(M †

mMm |ψi⟩ ⟨ψi|)

and for the set of the initial states the probability to receive the value m-th
is:

pm =
∑
i

pm|ipi =
∑
i

piTr(M †
mMm |ψi⟩ ⟨ψi|) = Tr(M †

mMmρ)

After the measurement of the state described by the initial density matrix ρ
and receive the m-th result, the density matrix transforms as follow:

ρm =
∑
i

pi
Mm |ψi⟩ ⟨ψi|M †

m

Tr(M †
mMmρ)

=
MmρM

†
m

Tr(M †
mMmρ)

2.4.3 General quantum operations

If we want to include the influence of the environment on the system time
evolution we have to introduce the non-unitary evolution [21],[14], which is
irreversible. We start from the assumption that the system is complex: we
have the basic system S and the environment E. We can assume that the
basis system is independent of the environment:

ρ′SE = U(ρS ⊗ |e0⟩ ⟨e0|)U †

where the |e0⟩ is the initial environment state.
To extract the evolution of the basic system we have to perform the

partial trace on the environment [21]:

ρ′S = Λ(ρS)

= TrE(ρ′SE)
=
∑
i

⟨ei|ρ′SE |ei⟩

=
∑
i

EiρSE
†
i
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where the {|ri⟩} is the environment’s orthonormal basis and the Ei is the
operator acting in the basic system space:

Ei = ⟨ei|U |e0⟩

Such defined quantum operation Λ we call the quantum channel and it is
described by the mapping:

ρ′ = Λ(ρ) =
∑
i

EiρE
†
i ,
∑
i

E†
iEi ≤ 1 (2.26)

The operator Ei is the Kraus operator [16] and the representation of the
quantum operations described by Eq. 2.26 we call the Kraus representation.

Kraus operators are not defined unequivocally due to infinity number of
possible the environment’s orthonormal basis.

To give the physical meaning for the operation Λ Eq. 2.26 it has to meet
four conditions [14]:

ρ = ρ† ⇒ Λ(ρ) = Λ†(ρ) (2.27)

Tr(ρ) = 1 ⇒ Tr(Λ(ρ)) = 1 (2.28)

ρ ⩾ 0 ⇒ Λ(ρ) ⩾ 0 (2.29)

HS ⊗HE ∋⩾ 0 ⇒ (ΛS ⊗ 1E)ρ ⩾ 0 (2.30)

where Eq. 2.27 is the hermisity conservation condition, Eq. 2.28 is the trace
conservation condition, Eq. 2.29 is positive value conservation condition,
Eq. 2.30 requires from the Λ to be completely passivity condition. First
three conditions guarantee that the operation Λ(ρ) transform the density
matrix ρ to the the density matrix ρ′. Additionally, all four conditions are
met if and only if Λ(ρ) =

∑
iEiρE

†
i for some set of the Kraus operators.
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2.5 Compton scattering

The Compton effect is an inelastic scattering process in which a photon scat-
ters on a charged particle (typically electron) [2]. When photon is scattered
off, part of its energy is transferred to the electron which causes the reduction
of photon frequency [7].

We remind the derivation of the frequency shift equation, first presented
by Compton [23]. Let’s consider the system presented in the Fig. 2.3, where
the incoming photon has the energy Ei = hν (frequency ν) and the mo-
mentum k⃗i =

Ei
c k̂i (where k̂i is photon propagation direction), and outgoing

photon with the energy E′ = hν ′ and momentum k⃗′ = E′

c k̂
′. Before the

scattering, the electron is at the rest , and it acquires the momentum p⃗ after
the scattering.

Figure 2.3: System for calculate the frequncy shift.

From the energy and momentum conservation laws we obtain:

Ei +mec
2 = E′ +

√
c2p2 +m2

ec
4 (2.31)

Ei
c
k̂i =

E′

c
k̂′ + p⃗ (2.32)

For the simplicity we can assume that the initial photon propagates along
the axis x (k̂i = x̂), then the outgoing photon direction lays on the plane x-y
k̂′ = cos θx̂+ sin θŷ, hence, from Eq. 2.32 the electron momentum is:

p⃗ = (px, py)
T , px =

Ei
c

− E′

c
cos θ, py = −E

′

c
sin θ

and after the substitution of p to Eq. 2.31 we receive the frequency shift:

E′

Ei
=
ν ′

ν
=

1

1 + Ei
µ (1− cos θ)

, µ = mec
2 = 511 keV (2.33)
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Figure 2.4: Visualization of the Compton scattering. Incoming photon k⃗
(red arrow) has the same direction as the local z-axis. Outgoing photon k⃗′

(blue arrow) has a direction defined by the two spherical angles θ, ϕ.

Klein and Nishina derived the cross-section of the polarized scattered
photon in the Compton process by solving the perturbed solution of the Dirac
equation under the incoming radiation field (photon) [23]. Klein-Nishina
formula:

dσpol
dΩ

=
1

2
r20

(
E′

Ei

)2 [E′

Ei
+
Ei
E′ − 2(k̂′ · e⃗i)

]

where the e⃗i (e⃗i · k̂i = 0) is the incident electric field direction and r0 =
1

4πε0
e2

mec2
is the classical electron radius (e is the elementary charge, ε0 is

the vacuum permittivity). We receive more useful form of this equation if
we note that the scattering angle (angle between the incident and scattered
photon) as θ ∈ [0, π] and the angle between the scattering direction k̂′ and
the direction of the polarization ϵ̂i of the incident photon as ϕ ∈ [0, 2π],
which leads to a formula for linearly polarized photons:

dσpol
dΩ

=
1

2
r20

(
E′

Ei

)2 [E′

Ei
+
Ei
E′ − 2 sin2 θ cos2 ϕ

]
(2.34)

The differential cross section for unpolarized photon can be obtained by
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averaging over azimuthal angle:

(2.35)
dσunpol

dΩ
=

1

2π

∫ 2π

0
dϕ

dσpol
dΩ

=
1

2
r20

(
E′

Ei

)2 [E′

Ei
+
Ei
E′ − sin2 θ

]

which in the limit E′ → Ei reduces to the Thomson differential cross section:

dσT
dΩ

= lim
E′→Ei

dσunpol
dΩ

=
1

2
r20(1 + cos2 θ)

In Fig. 2.5 the distributions of the differential Compton cross-section as
a function of the scattering angle for several incoming photon energies are
presented. In Fig. 2.6 the differential cross-sections as a function of scattering
polar angle and azimuthal angle, are shown.

Figure 2.5: The differential cross section Eq. 2.35 for different energies for
the incoming photon: Ei = 0.01µ (red),Ei = 0.1µ (black),Ei = 1.0µ (blue).
As the photon energy increases, small scattering angles are more preferable.
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(a) Ei = 0.01µ (b) Ei = 0.1µ (c) Ei = 1.0µ

Figure 2.6: The differential cross section Eq. 2.34 for the incoming photon
with different energies as a function of the scattering angle θ and azimuthal
angle ϕ. The darker the color, the lower the value of the function.
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2.6 Compton scattering in the quantum informa-
tion theory formalism

The Compton scattering of the polarized photon was reformulated in the
quantum information formalism in [13]. Here we recall the most important
steps of this formulation. We start with the Klein-Nishina formula for the
polarized photon as:

dσpol
dΩ

=
r0
2
K2(ki,Θ)

(
γ(ki,Θ)− 2 + 4|ϵ′∗j · ϵl|2

)
(2.36)

K(ki,Θ) =
1

1 + ki(1− cosΘ)
(2.37)

γ(ki,Θ) = K(ki,Θ) +K−1(ki,Θ)

cosΘ = k̂i · k̂′ = cos θ′ cos θ + cos
(
ϕ− ϕ′

)
sin θ′ sin θ

where the function K(ki,Θ) in Eq. 2.37 is redefined the frequency shift
Eq. 2.33, ϵl is the initial polarization,ϵj is the final polarization state, Θ is
the scattering angle, {θ, ϕ} and {θ′, ϕ′} are initial k̂i and final k̂′ momentum
direction in the spherical coordinates.

We introduce the Kraus operators with respect to the linear polarization
basis {|H⟩ , |V ⟩} for the initial state with the density matrix ρ1 where:

K1 =
√
γ(ki,Θ)− 21

K2 =
√
2

(
fHH fHV
fV H fV V

)
fHH =

〈
H ′∣∣H〉 = cos θ′ cos θ cos

(
ϕ− ϕ′

)
+ sin θ′ sin θ

fHV =
〈
H ′∣∣V 〉 = i cos θ sin

(
ϕ− ϕ′

)
fV H =

〈
V ′∣∣H〉 = −i cos θ′ sin

(
ϕ− ϕ′

)
fHV =

〈
V ′∣∣V 〉 = cos

(
ϕ− ϕ′

)

1As pointed in [13] for this Kraus operator definition, the completeness relation:∑
i

K†
iKi ̸= 1

is not fulfilled since the term corresponding to energy ratio was factored out.
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In the language of Kraus operators the formula Eq. 2.36 transform to:

dσpol
dΩ

=
r0
2
K2(ki,Θ)

2∑
j=1

Tr(KjρK†
j) (2.38)

This cross-section Eq. 2.38 can be easily generalized to any number n of
photons :

dσnpol
dΩ

=
(r0
2

)n( n∏
k=1

K2(kik ,Θk)

)
2∑

l1,...,ln=1

Tr(K(1)
l1

⊗...⊗K(n)
ln
ρK(1)†

l1
⊗...⊗K(n)†

ln
)

where K(k)
lk

means lk-th Kraus operator for the k-th photon (k-th subsystem).
In our studies we focus on the two-photons system:

dσ2pol
dΩ

=
(r0
2

)2( 2∏
k=1

K2(kik ,Θk)

)
2∑

l1,l2=1

Tr(K(1)
l1

⊗K(2)
l2
ρK(1)†

l1
⊗K(2)†

l2
)

(2.39)
Here, we can perform a simple calculations and see one interesting thing
which is the independence of the differential cross-sections for the separated
state. We start from the two-photons separated state described by the den-
sity matrix ρab = ρa⊗ρb and what we want to see is the fact that the product
of two differential cross-sections (each given by the Eq. 2.38) gives us the for-
mula Eq. 2.39 for the matrix ρab. To do that we need two properties of the
Kronecker product for matrices A,B,C,D:

Tr(A⊗B) = Tr(A)Tr(B) (2.40)

(A⊗B)(C ⊗D) = (AC)⊗ (BD) (2.41)

Let’s focus on the traces:
2∑

la =1

Tr(K(a)
la
ρaK(a)†

la
)

2∑
lb =1

Tr(K(b)
lb
ρbK

(b)†

lb
)

=
2∑

la,lb=1

Tr(K(a)
la
ρaK(a)†

la
)Tr(K(b)

lb
ρbK

(b)†

lb
)

=

2∑
la,lb=1

Tr([K(a)
la
ρaK(a)†

la
]⊗ [K(b)

lb
ρbK

(b)†

lb
])

=
2∑

la,lb=1

Tr([K(a)
la

⊗K(b)
lb
]([ρaK(a)†

la
]⊗ [ρbK

(b)†

lb
]))

=

2∑
la,lb=1

Tr([K(a)
la

⊗K(b)
lb
][ρa ⊗ ρb][K

(a)†

la
⊗K(b)†

lb
])
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where the third line is the effect of the property Eq. 2.40 and fourth and fifth
line are the effect of using Eq. 2.41. The final result is indeed the Eq. 2.39
for separated state.

Before we go further we introduce two additional functions - the envelope
function F(ki,Θ) and the visibility V(ki,Θ):

F(ki,Θ) = K2(ki,Θ)
(
γ(ki,Θ)− sin2 θ

)
(2.42)

V(ki,Θ) =
sin2 θ

γ(ki,Θ)− sin2 θ
(2.43)

The envelope function is proportional to the differential cross-section of the
unpolarized photon Eq. 2.35 up to the constant r0 and plays role of the
amplitude. The visibility function multiplies the interference terms and de-
scribes how much the influence of the photon polarization effect is visible
in the differential cross-section. Hence, depends on the scattering angle Θ
and the initial energy of the photon ki the polarization effect is more or less
visible - in fact, for the scattering angles Θ = {0, π} the differential cross-
section gives the same results and the one for the unpolarized photon and for
specific angle Θ0 which is the global maximum of the visibility function the
polarization effect is the most visible [13]. As consequence only for non-zero
visibility the polarization effects can be experimentally probed. The shape
of the visibility function for the 511 keV photon is shown in Fig. 2.7.

Figure 2.7: The visibility Eq. 2.42 as a function (blue line) of the scattering
angle Θ for ki = 1 (511 keV) photon. The red line indicates the position of
the function maximum - which is 81.66 deg (≈ 1.4252 rad).
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We rewrite Eq. 2.38 in terms of the visibility and the envelope functions:

dσpol
dΩ

=
r0
2
F(ki,Θ) (1− V(ki,Θ) [(ρHH − ρV V ) cos(2Φ) + 2Im(ρHV ) sin(2Φ)])

(2.44)
By using the formula Eq. 2.39 one can calculate the explicit expressions

for the differential cross-section depending on the initial state.
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2.7 Observables for J-PET experiment

In our studies we consider photon pairs produced from the para-positronium
decay [9, 19], which produces two photons each with energy 511 keV (ki = 1).
The most favourable condititions for the observation of the photon correla-
tions would correspond to the selection of the scattering region in which the
that visibility function is maximized as it was discussed for Eq. 2.44. The
maximal visibility is obtained for the the scattering angle of Θ0 = 81.66 deg.

We will use two kind of histograms: (I) two dimensional histogram which
represents a projection of the differential cross-section on the plane ϕ1−ϕ vs
ϕ2−ϕ. The different interference shapes can be observed for different polar-
ization states. The second histogram (II) is a one-dimensional distribution
of ∆ϕ = ϕ1 − ϕ2.

We define a weight function f(x1, x2) (xi = ϕi−ϕ) for constant scattering
angles Θ1,Θ2:

f(x1, x2) =

dσstate
dΩ

r20
4 F(ki,Θ1)F(ki,Θ2)

mentioned histogram is in this case a sum of above function for different
scattering angles. Examples of the theoretical histograms ϕa−ϕ vs ϕb−ϕ for
the maximal visibility angle Θ0 are presented for the separable Fig. 2.8,
mixed Fig. 2.9 and entangled Fig. 2.10 states.

To introduce ∆ϕ histogram [9, 19], first we make a variables substitution
∆ϕ = ϕ1 − ϕ2 = x1 − x2, hence x1 = ∆ϕ− x2 and to weight function g(∆ϕ)
for such histogram is:

g(∆ϕ) =

∫ 2π−ϕ
−ϕ dx2f(∆ϕ− x2, x2)∫ 2π

−2π d∆ϕ
∫ 2π−ϕ
−ϕ dx2f(∆ϕ− x2, x2)

where ϕ is the azimuthal angle in the momentum direction vector of the
initial photon. Examples of the theoretical ∆ϕ histogram are presented
Fig. 2.11 for different polarization states.
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(a) |HH⟩ (b) |VV⟩

(c) |HV⟩ (d) |VH⟩

Figure 2.8: Histograms (ϕb − ϕ) vs (ϕa − ϕ) (Θ0 = 81.66 deg) for separable
states |HH⟩,|HV ⟩,|V H⟩ and |V V ⟩. Each state has specific pattern which
can be used to distinguish them visually from others.
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(a) |HH⟩ and |VV⟩ (b) |HV⟩ and |VH⟩

Figure 2.9: Histograms (ϕb − ϕ) vs (ϕa − ϕ) (Θ0 = 81.66 deg) for the mixed
states : |HH⟩ and |V V ⟩, |HV ⟩ and |V H⟩.
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(a) |ϕ−⟩ (b) |ψ+⟩

Figure 2.10: Histograms (ϕb − ϕ) vs (ϕa − ϕ) (Θ0 = 81.66 deg) for the
entangled states |ϕ−⟩ = 1√

2
(|HH⟩ − |V V ⟩) and |ψ+⟩ = 1√

2
(|HV ⟩ + |V H⟩).

The pattern in the histograms is unique for these states and at the same
time completely different from those for separable Fig. 2.8 and mixed states
Fig. 2.9.
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(a) HHVV family (b) HVVH family

Figure 2.11: Comparison of ∆ϕ for different polarization states for the max
visibility scattering angle (Θ0 = 81.66 deg). We can distinguish two groups:
(a) HHVV family (states: |ϕ−⟩, |HH⟩,|VV⟩, mix of the |HH⟩ and |VV⟩); (b)
HVVH family (states: |ψ−⟩, |HV⟩, |VH⟩ and mix of the |HV⟩ and |VH⟩). In
both plots, green line represents unpolarized situation, blue line is a separable
(and mixed) state and the orange one is a entangled state. The following
conclusions can be drawn from the presented histograms: (1) separable states
cannot be distinguished from their statistical mixture; (2) separable states
|HH⟩ and |VV⟩ (|HV⟩ and |VH⟩) cannot be distinguished among themselves
(to distinguish between them we need (ϕb − ϕ) vs (ϕa − ϕ) histogram); (3)
the extremes of the histogram for the entangled state have higher values (up
to the absolute value) than for the separable ones.
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Simulation model

We redefine the formula Eq. 2.11 to:

|⃗ϵ⟩k = cosϕi |H⟩k + exp(iϕj) sinϕi |V ⟩k

where the index k ∈ {a, b} represents the first and second incoming photon,
i ∈ {1, 2} is photons index for photons probability amplitude and j ∈ 11, 22
is photons indexes for its global phases. Angle ϕi controls polarization’s
state probability amplitude, ϕj controls the global phase value. Vectors
{|H⟩k , |V ⟩k} construct photon polarization linear basis for given direction
of photon (θk, ϕk). Due to the energy-momentum conservation, the photons
originating from the para-positronium decay must propagate in the opposite
direction, therefore we can reduce the number of variable into two angles
(θ, ϕ) where:

θa = θ, θb = π − θ, ϕa = ϕ, ϕb = π + ϕ

and polarization states can be described by single basis {|H⟩ , |V ⟩} controlled
by mentioned two angles as follow:

{|H⟩1 , |V ⟩1} = {|H⟩ , |V ⟩}, {|H⟩2 , |V ⟩2} = {|H⟩ ,− |V ⟩}

which provides general formulas for incoming photons polarization states:

|ϵ⟩1 = cosϕ1 |H⟩+ exp(iϕ11) sinϕ1 |V ⟩

|ϵ⟩2 = cosϕ2 |H⟩ − exp(iϕ22) sinϕ2 |V ⟩

Such defined states can be used to declare any separated state for two pho-
tons by manipulating four parameters (ϕ1, ϕ2, ϕ11, ϕ22) - examples of values
can be found in the Tab. 3.1.
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Table 3.1: Examples of ϕ1, ϕ2, ϕ11, ϕ22 parameters values for different sepa-
rated 2-polarization states in the linear basis {|H⟩ , |V ⟩}.

State ϕ1 [rad] ϕ2 [rad] ϕ11 [rad] ϕ22 [rad]
|HH⟩ 0 0 0 0
|HV ⟩ 0 π

2 0 0
|V H⟩ π

2 0 0 0
|V V ⟩ π

2
π
2 0 0

|RL⟩ π
4

π
4

π
2 −π

2

For the separated states we use differential cross-section function as a
product of separated photons Eq. 2.36:

dσ2pol
dΩ

=
dσpol
dΩ

(|ϵ⟩1 ,
∣∣ϵ′〉

1
) ·

dσpol
dΩ

(|ϵ⟩2 ,
∣∣ϵ′〉

2
) (3.1)

To introduce separated and entangled states we have first define the orthog-
onal polarization states |ϵ⊥⟩ such that ⟨ϵ⊥|ϵ⟩ = 0 :

|ϵ⊥⟩1 = − sinϕ1 |H⟩+ exp(iϕ11) cosϕ1 |V ⟩

|ϵ⊥⟩2 = − sinϕ2 |H⟩ − exp(iϕ22) cosϕ2 |V ⟩

and the differential cross-section as:

dσ2pol
dΩ

=
1

2

[
dσpol
dΩ
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∣∣ϵ′〉

1
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dσpol
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2
) +

dσpol
dΩ
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∣∣ϵ′〉

1
) ·

dσpol
dΩ

(|ϵ⊥⟩2 ,
∣∣ϵ′〉

2
)

]
(3.2)

which realizes the formula Eq. 2.39. Provided formula gives possibility to
generated mixed states. To enable entangled states it is required to set
additional condition which is:

ϕ1 = ϕ

which is explicitly taking only one slice from the Fig. 2.10. That defined en-
tangled states represents entangled states possible for the para-positronium
decay. Such defined states can be used to declare any mixed state and
allowed entangled states for two photons by manipulating five parameters
(ϕ1, ϕ2, ϕ11, ϕ22, β) - examples of values can be found in the Tab. 3.2.
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Table 3.2: Examples of ϕ1, ϕ2, ϕ11, ϕ22, β parameters values for different sep-
arated 2-polarization states in the linear basis {|H⟩ , |V ⟩}.

State ϕ1 [rad] ϕ2 [rad] ϕ11 [rad] ϕ22 [rad] β

|HH⟩+ |V V ⟩ 0 0 0 0 False
|HV ⟩+ |V H⟩ 0 π

2 0 0 False
|ψ+⟩ 0 π

2 0 0 True
|ϕ−⟩ 0 −π 0 0 True

General workflow of the Monte Carlo method can be found on the Fig. 3.1.
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Figure 3.1: Visualization of Monte Carlo method used to simulate Compton
scattering for given polarization states (ϕ1, ϕ2, ϕ11, ϕ22) and initial incoming
photon direction (θ, ϕ). Drawing of out-coming photons is continued until
it meets the Monte Carlo condition. As output are returned directions of
first (θa, ϕa) and second (θb, ϕb) scattered photon. Parameter β controls
simulating of the entangled state. Parameter γ tells which differential cross-
section use for the calculations: if γ = False use Eq. 3.1 else use Eq. 3.2.
By KN we mean the method which prepares necessary variables and use the
proper formula for the differential cross-section calculation.
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Another important aspect of the Monte Carlo simulations is to estimate
the probing range of the KN function. In the hit and miss method we draw
a number from a uniform distribution in a given range [0, αKN,max], where
the αKN,max should be greater then maximal value of KN function. This
value can be calculated explicitly from the differential cross section, however
the faster method is to estimate this number from histogram of KN function
values Fig. 3.2 - in this problem the reasonable acceptable value is equal
to αKN,max = 0.9 under the assumption that the initial energy of emitted
gamma is equal 511 keV.

Figure 3.2: Comparison of KN values for different scattering angle ranges
for |HH⟩: full range (black), in the circle with radius 30 deg (red) and for a
point with max visibility theta (blue). As can be seen from the histogram
all values of KN function for different cuts are below values without cuts and
maximal value of KN function is lower than 0.8. This histogram was used
to estimate the αKN,max = 0.9.
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Chapter 4

Results

In the experiment , we do not know a priori what is the initial polarization
of the photons and what is the fraction of the different polarization states.
Furthermore, it must be taken into account that in a real experiment one
will be limited by the obtained visibility values.

In the following sub-sections, I present the results of the Monte Carlo
simulations for three different categories of polarization states: separable
states, mixed states, and entangled states. For each polarization state, I ran
three types of simulations:

1. acceptation of all scattering angles Θa,Θb - this represents situations
when we do not impose any selection conditions on the measured data,
so the polarization effects should be strongly weakened by the visibility
dumping.

2. acceptation of scattering angles Fig. 4.1 limited to the circle (Θa −
Θ0)

2+(Θb−Θ0)
2 ≤ R2

Θ (Θ0 = 81.66 deg, RΘ = 30 deg) - it represents a
situation similar to the real experiment when we measure the scattering
angles to a certain extent due to the energy resolution of the detector
and the polarization effects should already be significantly visible

3. acceptation of scattering angles equal to the maximum visibility Θa =
Θb = Θ0 = 81.66 deg - this represents an ideal situation in which the
effects of photon polarization are revealed in the maximum way.
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Figure 4.1: Distribution of the scattering angles for the first Θa and second
Θb photon. Red circle (with radius 30 deg around the point Θa = Θb =
Θ0 = 81.66 deg) represents the cut when we accept only scattering angles
inside it.

(a) (b)

Figure 4.2: Examples of two types of histograms presented in this section: (a)
ϕa−ϕ vs ϕb−ϕ histogram, (b) ∆ϕ . Histograms ∆ϕ are always presented as
a set of three - each for the different simulation: black line is for all scattering
angles, red line is for the scattering angles is the circle and the blue one is
for Θa = Θb = Θ0 = 81.66 deg.
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4.1 Separable states

From the separable states I chose four linear polarizations:

|ϵ⟩ = |H⟩1 ⊗ |H⟩2 = |HH⟩ , ρHH =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0



|ϵ⟩ = |H⟩1 ⊗ |V ⟩2 = |HV ⟩ , ρHV =


0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0



|ϵ⟩ = |V ⟩1 ⊗ |H⟩2 = |V H⟩ , ρV H =


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0



|ϵ⟩ = |V ⟩1 ⊗ |V ⟩2 = |V V ⟩ , ρV V =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1


As can be seen each state has its own unique distribution of maxima - explic-
itly by looking on the histogram we can guess which histogram represents
which state and the same situation we have for the shifted histogram Fig. 4.3
- where again we have set of some unique maxima. Even for the full range of
scattering angles we have visible similar shape as it was presented in Fig. 2.8,
which gains its full shape when we accept only scattering angles equal Θ0

Fig. 4.5. As can be seen, when we compare results for ideal situation Fig. 4.5
with more realistic model Fig. 4.4 there is no significant differences, which
tells us we should observe such polarizations states easily on the histogram
if they are present in reality.

From the other side, as it was explained in the section Sec.2.7 we see
(Fig. 4.6) that from the histogram ∆ϕ we cannot distinguish between states
(|HH⟩ , |V V ⟩) and (|HV ⟩ , |V H⟩) - because of that it is important to plot
two dimensional histograms too. Moreover, from the comparison curves i.e.
from the Fig. 4.6a we see a huge impact of the selection method on the
∆ϕ shape.
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(a) |HH⟩ (b) |VV⟩

(c) |HV⟩ (d) |VH⟩

Figure 4.3: The cross-section projection to the plane (ϕb−ϕ) vs (ϕa−ϕ) for
all scattering angles θ1, θ2 ∈ [0, π] for separable states |HH⟩,|HV ⟩,|V H⟩ and
|V V ⟩.
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(a) |HH⟩ (b) |VV⟩

(c) |HV⟩ (d) |VH⟩

Figure 4.4: The cross-section projection to the plane (ϕb−ϕ) vs (ϕa−ϕ) for
scattering angles in the circle for separable states |HH⟩,|HV ⟩,|V H⟩ and
|V V ⟩.
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(a) |HH⟩ (b) |VV⟩

(c) |HV⟩ (d) |VH⟩

Figure 4.5: The cross-section projection to the plane (ϕb−ϕ) vs (ϕa−ϕ) for
the max visibility scattering angle for separable states |HH⟩,|HV ⟩,|V H⟩ and
|V V ⟩.
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(a) |HH⟩ (b) |VV⟩

(c) |HV⟩ (d) |VH⟩

Figure 4.6: Comparsion of ∆ϕ for different polarization configurations (sep-
arable states |HH⟩,|HV ⟩,|V H⟩ and |V V ⟩) and different selection methods:
all scattering angles (black), inside the theta circle (red), max visibility theta
(blue).
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4.2 Mixed states

As mixed states examples, I chose two linear polarization mixtures :

ρHH,V V =
1

2
(ρHH + ρV V ) =

1

2


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1



ρHV,V H =
1

2
(ρHV + ρV H) =

1

2


0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0


However, for the shifted histograms Fig. 4.7 we see something similar to the
assembly of the histograms from the Fig. 4.3. We see that with the stricter
selection conditions we receive the better image of the situation.

What is the key in this subsection is the observation that from the
∆ϕ histogram we cannot distinguish from it if we have a measurement for
the separable state Fig. 4.6 or the mixed state Fig. 4.10 - both histograms
have the same shapes and values.

(a) |HH⟩ and |VV⟩ (b) |HV⟩ and |VH⟩

Figure 4.7: The cross-section projection to the plane (ϕb−ϕ) vs (ϕa−ϕ) for
all scattering angles θ1, θ2 ∈ [0, π] for the mixed states : |HH⟩ and |V V ⟩,
|HV ⟩ and |V H⟩.
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(a) |HH⟩+|VV⟩ (b) |HV⟩+|VH⟩

Figure 4.8: The cross-section projection to the plane (ϕb−ϕ) vs (ϕa−ϕ) for
scattering angles in the circle for the mixed states : |HH⟩ and |V V ⟩, |HV ⟩
and |V H⟩.

(a) |HH⟩+|VV⟩ (b) |HV⟩+|VH⟩

Figure 4.9: The cross-section projection to the plane (ϕb−ϕ) vs (ϕa−ϕ) for
max visibility scattering angle mixed states : |HH⟩ and |V V ⟩, |HV ⟩ and
|V H⟩.
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(a) |HH⟩+|VV⟩ (b) |HV⟩+|VH⟩

Figure 4.10: Comparison of ∆ϕ for different polarization configurations
(mixed states : |HH⟩ and |V V ⟩, |HV ⟩ and |V H⟩) and different selection
methods: all scattering angles (black), inside the theta circle (red), max
visibility theta (blue).



4.3. ENTANGLED STATES 59

4.3 Entangled states

I chose two entangled states:

|ϵ⟩ = 1√
2
(|HH⟩+ |V V ⟩) =

∣∣ϕ−〉 , ρϕ− =
1

2


1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1



|ϵ⟩ = 1√
2
(|HV ⟩+ |V H⟩) =

∣∣ψ+
〉
, ρψ+ =

1

2


0 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0


We can say few words about ∆ϕ histogram Fig. 4.11. As can be seen, the
stricter selection conditions the more different are histograms of entangled
states from the separated states. Generally, we can easily distinguish between
separated states |HH⟩ , |V V ⟩ and |ϕ−⟩ or |HV ⟩ , |V H⟩ and |ψ+⟩.

(a) |ψ+⟩ (b) |ϕ−⟩

Figure 4.11: Comparison of ∆ϕ for different polarization configurations (en-
tangled states: |ψ+⟩and |ϕ−⟩) and different selection methods: all scattering
angles (black), inside the theta circle (red), max visibility theta (blue).
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Chapter 5

Summary

In this thesis, the model of a polarized two-photon system probed by the
doubly Compton scattering was investigated. The formulation of the Comp-
ton process in the quantum information language was used to define the
model. Subsequently, the model was implemented in the form of a C++ MC
library. The library allows for defining different initial polarization states
and includes the visibility effects.

The MC library was used to generate experimental observables such as
the difference between the azimuthal angles of the outgoing photons. Dif-
ferent initial polarization states were generated. The interference patterns
were compared. The obtained results show that we are able to effectively
simulate all the necessary polarization states for a two-photon system from
para-positronium decay.

In the next step, the developed model will be incorporated into the
Geant4 simulation package. This will enable the simulation of the discussed
phenomenon for various detector geometries and the design of an effective
selection method for real experimental data gathered by the J-PET collabo-
ration. Finally, different polarization predictions will be compared with the
experimental data.
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