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This review introduce extracellular vesicles (EVs) to a molecular imaging field.

The idea of modern analyses based on the use of omics studies, using high-

throughput methods to characterize the molecular content of a single

biological system, vesicolomics seems to be the new approach to collect

molecular data about EV content, to find novel biomarkers or therapeutic

targets. The use of various imaging techniques, including those based on

radionuclides as positron emission tomography (PET) or single photon

emission computed tomography (SPECT), combining molecular data on EVs,

opens up the new space for radiovesicolomics—a new approach to be used in

theranostics.
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Introduction

What is omics?

The magic word omics appeared in the 1980s as a figment of the imagination and

extraordinary creativity of three scientists in the field of genetics: Dr. Thomas H. Roderick

(a geneticist at the Jackson Laboratory, Bar Harbor), Dr. Frank Ruddle (Yale University)

and Dr. Victor McKusick (The Johns Hopkins University) in 1986. During an

international meeting in Kuska (1998) on the feasibility of mapping the entire human

genome, they “assembled” a short sub-meeting to discuss starting a new genome-oriented

scientific journal. The invention of a new word by T.H. Roderick was the beginning of this

vocabulary scientific activity which, like a rush of life-giving water, spilled over all the

specialties of molecular biology, yielding crops in the form of all kinds of omic fruits

(Kuska, 1998). Following genomics, the word proteomics was first proposed much later by

MarcWilkins in 1995 to describe the variety of proteins that make up the whole organism

(Yadav, 2007). A typical downstream neologism is a portmanteau derived from two

words: a core that describes the biological or molecular level of analysis and the suffix

-omics to denote all studies conducted on a wide scale in a living organism.

The outstanding development of molecular biology techniques, such as mass

spectrometry, molecular sequencing, and chromatographic techniques, caused the

creation of many datasets containing quantitative and qualitative characteristics, as

the results of large-scale experiments: genomics, transcriptomics, metabolomics,
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mirnomics and lipidomics (Skotland et al., 2017; Skotland et al.,

2020), as well as glycomic studies (Gerlach and Griffin, 2016)

(Figure 1). These datasets are stored in repositories as open data

sources and are constantly expanded and cured. Great

improvements have also been observed in cytometric

methods, including flow cytometry techniques, using high-

resolution flow cytometry based on the scattering angle

analysis and the development of imaging flow cytometry,

which is a combination of quantitative flow power with high-

quality analysis of large numbers of images. This allowed for the

improvement of resolution of flow cytometry for spatial

discrimination between nuclear and cytoplasmic fluorescence

or cellular morphometry (Pierzchalski et al., 2011).

These new approaches in molecular biology have been

transferred to cytometry, a laboratory technique, which

development resulted in providing new parameters,

complementary to fluorescence intensity, e.g. like fluorescence

localization, cell shape and morphology. Translation of new

characteristics derived from biochemistry and molecular biology

to cellular systems, expressed as the imaging data, together with the

strength of “population” statistics, opened up a new window for a

novel branch of systemic study—cytomics (Valet et al., 2006).

Cytomics is defined as the multimolecular cytometric analysis of

cell and cell system heterogeneity by means of supervised or

unsupervised data-mining algorithms. This approach allows for

data extraction and effective analysis of multi-parameter data sets

in order to obtain the maximum information about the molecular

phenotypes of cells (Valet et al., 2006; Valet, 2022)

Another example of this emergence is the formation of the word

radiomics that currently appeared in the medical literature. Despite

some controversies that may result from the connotation of this

word, the literature adopts radiomics as the application not only

radiological examinations, but all imaging tests aimed at

comprehensive diagnosis to extract a large number of

quantitative features from digital images (Figure 1). The main

directions and applications of radiomics to personalize the patient

treatment have been established by the “Father of Radiomics” Dr

Robert (Bob) J. Gillies in his fundamental article (Gillies at al., 2016).

FIGURE 1
Hierarchical organization of the data workflow for the systemic data collection and analysis. The left branch represents imaging data, the right
branch represents the omic data. Such organization of the data collection systems is showing the integration and synergy of imaging and laboratory
diagnostics for new biomarkers discovery. Liquid biopsy, including extracellular vesicle samples, is an alternative for traditional histology. On the top,
radiomics and vesicolomic are coupled to form radiovesicolomics as the new approach in medical imaging and theranostics.
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The next step in the development of the concept of comprehensive

image data analysis is the idea of using data from the whole-body

(WB) images—imiomics (Strand et al., 2017). The concept of

imiomics derived from the holistic Magnetic Resonance Imaging

(MRI) data analysis, where the information in each voxel is collected

from a patient to compare between patients or analyzed over time

and integratedwith other omics data within a patient to visualized fat

tissue distribution (Lind et al., 2019).

In our scheme, in an equal level of this creative terminology, we

have placed the second term, created to draw attention to the

comprehensiveness and emergence of research into new

biomarkers: extracellular vesicles (EVs)—vesicolomics. Starting from

this article, we would like to apply the vesicolomics as a new concept to

characterizeEVs and collect data to extractmaximal information from

standard and high-throughput methods used in EV research.

What omics can do for theranostics?

Theranostics is a portmanteau word derived from terms

therapeutic (Greek therapeia) and diagnostics (Greek diagnõsis).

Without an accurate diagnosis, based on laboratory or imaging

tests, an appropriate treatment cannot be applied. Theranostics

means the use of molecular and functional imaging to determine

the location, size and type of a lesion. It can be a neoplastic lesion, but

also other types of lesions, such as an enlarged thyroid gland, prostate

gland, pituitary gland, inflammatory lesion and the like (Opalińska

et al., 2021). If the marker for the lesion localization is a radioisotope

(radioactive element), diagnostics consists in measuring the signal

(radiation), and analyzing the distribution of the radiation signal in

four dimensions: 3D in space and a time dimension. The

simultaneous use of radioactive isotopes for diagnosis also enables

radiotherapy, which may be used alone or in combination with other

treatments for the individual patient (Weineisen, et al., 2015; Królicki

and Kunikowska, 2021). Omics is an approach to the foundation of

new biomarkers that allows objective extraction and selection of new

therapeutic and diagnostic targets based on the analysis of clinical and

experimental (genetic, biochemical, histological and imaging) data

(Gillies et al., 2016; Wróbel 2021).

The new therapeutic targets are very important for

theranostics, there is limited number of theranostic

radionuclides (Choiński and Łyczko, 2021; Matulewicz 2021),

but the number of theranostic biomarkers and targets is endless.

Extracellular vesicles—new objects
for omics

Extracellular vesicles definition and
classification

EVs are nano- and micro-sized double-layered membrane

entities produced by most cell types and released into biological

fluids enabling cell-to-cell communication at close or distant sites

(Kim et al., 2014). These nano- and microfragments of cell

membranes are classified according to their formation and

differences in size (diameter), into subgroups, including exosomes

(Ex) with a diameter of 30–100 nm, ectosomes with a diameter of

100 nm to 1 μm (Figure 2), and apoptotic bodies (AB) with a size

between 1 and 5 μm(Gurunathan et al., 2021). A single cell can release

different types of EVs, resulting their heterogeneity within the EVs

subtype. Currently, the recommendations of the International Society

of Extracellular vesicles (ISEV), namely the 2018 MISEV guidelines,

endorsed the use of the term “extracellular vesicles” (small,mediumor

large) instead of e.g. exosome, ectosome etc. (Théry et al., 2018).

Vesicolomics as the multimodal approach
for EVs characterization

The dynamic development of cell biology and, above all, the

interest of biologists and biophysicists in EVs, resulted in offering new

research tools and techniques used in material sciences and their

application in research at the subcellular and nanoscale levels, e.g.

atomic force microscopy (Gajos et al., 2017; Stępień et al., 2018)

infrared Attenuated Total Reflectance (ATR) spectroscopy (Stępień

et al., 2018; Paolini et al., 2020), dynamic light scattering (DLS) (van

der Pool et al., 2013) and tunable resistive pulse sensing (van der Pol

et al., 2013). Such analyses, combined with results of high-throughput

techniques, produce a vast number of multiparametric (quantitative

and qualitative) data from less number of examined samples. It needs

systematic and multimodal analyses for integration of omics datasets

and selection highly correlated biological features using different

bioinformatics methods like Canonical Correlation Analysis (CCA)

(Jun et al., 2018; Turek et al., 2020; Wróbel 2021) or deep/machine

learning algorithms for better selection of biological interrelationships

(Stahlschmidt et al., 2022).

EVs as biomarkers for liquid biopsy

The rapid expansion of molecular biology techniques, including

high-throughput genetic techniques such as DNA and RNA

sequencing (next generation sequencing—NGS) (Cheng et al., 2014;

San Lucas et al., 2016), as well as mass spectroscopy techniques in

proteomic, lipidomic,metabolomic and glycomic (Williams et al., 2018)

studies, has created new perspectives for offering extracellular vesicles

as biomarkers indifferent pathologies. CirculationEVs are present in all

body fluids to offer a high level of sensitivity and specificity of the non-

invasive medical procedure through the collection of body fluid

samples such as blood or urine (Stępień et al., 2012; Stępień et al.,

2020). EVs were proposed as biomarkers in such diseases as diabetes

(Tokarz et al., 2015, 2019; Alexandru et al., 2016; Stępień et al., 2018;

Kamińska et al., 2022; Roman et al., 2019), cardiovascular diseases

including stroke (Lee et al., 1993; Lundström at al., 2020), myocardial

infarction (Stępień et al., 2012; Burrello et al., 2020), atherosclerosis and
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stable coronary artery disease (Chyrchel et al., 2019; Gkaliagkousi et al.,

2021). The uniqueness of EVs in terms of their molecular composition

has become a great promise to be explored as a new source of

biomarkers in liquid biopsy, which was recognized in cancer

diagnostics (Surman et al., 2018; Möller and Lobb, 2020; Stępień

et al., 2021a).

Immune system and the dynamics of EV
biodistribution

The average plasma half-life of intravenously delivered EVs is

reported to be between 30 and 80 min (Lai, et al., 2014;

Charoenviriyakul et al., 2018) (Figure 2B). It is due to the

phagocyting activity of mononuclear phagocyte system (MPS),

which is generally involved in biodistribution, organ

accumulation and a half-life of EVs. Most of the intravenously

delivered EVs are internalized and transported by phagocyting

cells and ultimately accumulate in the spleen, lungs, liver, and

gastrointestinal tracts (Matsumoto, et al., 2017; Charoenviriyakul

et al., 2018) (Figure 2C). In such targeting organs EVs have the

preference to endothelial and Kupffer cells (Kooijmans et al.,

2016; Németh et al., 2021). The EV half-life can be potentially

increased by the reduction of cationic α-D-mannose

monosaccharide or phosphatidylserine exposure (Escrevente

et al., 2011; Matsumoto et al., 2017). Such modifications of

FIGURE 2
Schematic representation of different EVs radiolabeling methods. Surface radiolabeling, covalent binding, and intraluminal radiolabeling (A).
Radiolabeled EVs injected into a patient bloodstream (B) delivers radiation therapy and drugs specifically and directly to disease sites (C). Createdwith
BioRender.com.
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EVs to control their uptake and biodistribution are called “eat

me/do not eat me” strategy to achieve effective drug delivery:

MPS saturation (eat me) to increase dendritic cells stimulation or

EV uptake by cancer cells or avoid phagocytosis and increase

organ targeting (do not eat me) (Escrevente et al., 2011; Choi

et al., 2019; Belhadj et al., 2020).

Interestingly, the cellular origin of EVs also influence their

distribution, suggesting that EVs from different cellular sources

have different targeting properties. In order for EVs to perform

their function, they must first bind to the target cell, and it is

known that different EVs are able to preferentially bind to specific

target cell types. This innate ability of EVs to bind to target cells is

a feature that can be exploited to target EV drug carriers to the

desired sites of action.

Extracellular vesicles as drug delivery
systems

In addition to the outstanding and unique diagnostic

applications of EVs as a liquid biopsy, the other virtually

limitless potential of EVs is seen, as possible drug delivery

systems (DDS) in many diseases (van Dommelen, et al., 2012;

Hwang et al., 2015; Kojima, et al., 2018). Exosomes as nanoscale

membrane vesicles with a special ability to target specific cells

may serve as carriers to mediate a horizontal gene transfer. This

potential has been firstly recognized as the transfer of mRNA or

short, non-coding RNA (micro RNA-miRNA) in health and

diseases (Baj-Krzyworzeka et al., 2006; van Dommelen et al.,

2012) to set new directions for research on the biomimetic

properties of EVs. Currently, loading of EVs with exogenous

miRNA or pre-miRNA is a tempting strategy to achieve the

antitumor effect of EVs (Ohno et al., 2013; Sutaria et al., 2017).

The most important characteristic to nominate EVs as

candidates for contemporary DDS are as follows: biological

stability, cell targeting, plasma protein interactions

(pharmacodynamics) and controlled drug release.

Biological stability and lifespan of
extracellular vesicles

EVs are continuously released parental cell and uptaken by

target cells, which can be distant significant, thus it is impractical

to evaluate the lifespan of an average vesicle, and such

information is still missing. The EV stability and shelf life in

biological fluids is better described. The best conditions for EV

storage is freezing. The small EVs (exosomes) preserve their size

and protein content at -80°C for 28 days, showing comparable

biodistribution to freshly isolated ones (Wu et al., 2021). Also

freezing temperatures preserved most EV particles, and 4°C and

20°C would cause significant loss of EVs (Lőrincz et al., 2014).

Biological activity of exosomes is significantly increase after

addition of trehalose to improve their long-term stability

(Bosch, et al., 2016; Charoenviriyakul et al., 2018). In contrast,

dendritic cells-derived EVs are stable and can be stored frozen for

at least 6 months (Alvarez-Erviti et al., 2011). Another way to

enhance EV stability is a modification by polyethylene glycol

(PEGylation) to achieve better blood residence and cell targeting

(Kooijmans et al., 2016; Shi, et al., 2019).

Cell targeting by extracellular vesicles

The pivotal feature of EV-based DDS is their targeting

capacity, which is limited by two physiological boundaries: a

vascular barrier and a target recognition. Systemic

administration via intra venous injection of EVs is not

effective when target cells are located distantly (organized

tumor) or when delivery is to the brain. In such case the

direct administration to the organ or by peritoneal injection is

a method to improve cell targeting (Wiklander et al., 2015; Chen

et al., 2021). The other method is to tag of EVs with a signaling

peptide or ligand to improve targeting (Alvarez-Erviti et al.,

2011). The generation of tagged EVs through transfection with

ligand expression vectors for lactadherin or Rabies Viral

Glycoprotein (RVG) peptides is a proposed protocol for a

direct cell targeting (Alvarez-Erviti et al., 2011; Matsumoto

et al., 2017; Kojima et al., 2018). Lamp2b, and tetraspanins

could serve as a promising strategy for active targeting of

cancer cells for therapeutic exosomes (Kojima et al., 2018;

Wang, 2022). The other strategy is to produce tumor EVs

(Tu-EVs), which have a natural housing behavior to target

cells (Lara, et al., 2020; Gong et al., 2021) or are used as a

tumor antigens-adjuvant utilizing Tu-EVs as a tumor cell-based

vaccine to target dendritic cells (DCs) (Huang et al., 2022). EVs

from HEK293T cells accumulated in subcutaneous tumors,

which may be exploited by EV-based anticancer therapies

(Murphy et al., 2019).

“Eat me” strategy can be also used to improve cell targeting by

altering the EV glycation pattern (Escrevente et al., 2011; Choi et al.,

2019) (see Cell targeting by extracellular vesicles). Very promising

approach to EV targeting is using EVs derived from immune cells:

macrophages or dendritic cells (DCs) to target inflammatory sites

and regulate the inflammatory response. This strategy is applied to

deliver therapeutic agent directly to neural cells, brain tumors

(Alvarez-Erviti et al., 2011; Liang et al., 2021) or affect antitumor

immune responses (Fernández-Delgado et al., 2020).

Passing the brain-blood barrier by EVs to
achieve therapeutic effect in glioma

Several types of circulating EVs interact with brain

microvascular endothelial cells and modulate the integrity of

the brain-blood barrier (BBB), e.g. glioma-derived EVs can pass
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the intact BBB and are detected in the peripheral blood of

patients (García-Romero et al., 2017). This process is

controlled by various mechanisms among them inflammation

being the larger contributor. A similar mechanism can be used by

DDD to target glioma cell in the brain enhanced by adoptive

transcytosis to enter the central nervous system parenchyma

(Krämer-Albers et al., 2022). To deliver drugs to brain tumors,

peptide-modified EVs need to be generated to pass the BBB and

targeted glioma. The best results are observed for a peptide

targeting low-density lipoprotein receptor-related protein-1

(LRP1), which mediates the transcytosis across the BBB, such

as Angiopep-2 peptide or the integrin family protein - leukocyte

function associated antigen 1 (LFA-1) (Shan et al., 2022; Zhu

et al., 2022). The other strategy may apply tumor derived EVs as a

potential glioma vaccination due to their ability to display tumor

antigens that can activate DCs, which can then activate

CD8+ T cells having antitumor potential (Fernández-Delgado

et al., 2020).

Systems radiomics and extracellular
vesicles tracking

Radiomics can be performed with tomographic images obtained

from computed tomography (CT), magnetic resonance imaging (MRI)

or positron emission tomography (PET) (Gillies et al., 2016). The most

sensitive imagingmodality is PET (Alavi et al., 2021), allowing to detect

10−11–10−12M concentrations of radiolabeled agent, which is an

equivalent of nanograms for an injection to a human body

(Skotland et al., 2022). Single photon emission computed

tomography (SPECT) is more convenient because of availability of

radionuclides anddetectors, nevertheless the sensitivity of this technique

is one order of magnitude lower then PET (Skotland et al., 2022). In

preclinical (animal) studies, the most common modalities are optical

and fluorescence techniques utilizing lipophilic fluorescence dyes

(Kojima et al., 2018; Wu et al., 2021). The greatest advantage of

fluorescence markers is their accessibility and utility, the

disadvantage is the low sensitivity falling to the concentration of

FIGURE 3
Strategy to use different omics and imaging modalities for characterization of extracellular vesicles (EVs) to define new biomarkers and
therapeutic targets for disease recognition and treatment. The same tools for proteome, mirnome, genome, transcriptome, lipidome and
metabolome analyses may serve for EV characterization (vesicolome). Created with BioRender.com.
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fluorescent agent in the range of 10−9–10−11M and the limit for depth

detection between 1 and 10 cm (Lázaro-Ibáñez et al., 2021; Skotland

et al., 2022). These EV imaging approaches are used in preclinical

studies and needs the translation to clinical practice (Arifin et al., 2022).

Strategies for radiolabeling of EVs

Since extracellular vesicles are the cell-derived structures enveloped

by a lipid bilayer, which is like a typical biological membrane, the

strategies for EV labeling are almost identical with those for cell

labelling (Gawne et al., 2022). Consequently, EVs can be

radiolabeled by surface tagging or intraluminal loading methods

(Figure 2A). In the surface radiolabeling, radionuclide can be a part

of a stable radiopharmaceutical (antibody or ligand) whish recognize a

specific antigen or receptor on a EV surface (Morishita et al., 2015).

Alternatively, a radiopharmaceutical can be directly incorporated to a

lipid membrane. In the covalent bounding strategy, a useful chelator

for various radioisotopes (e.g. NOTA) can be conjugated with the

amine group of the membrane proteins on EVs (Royo et al., 2019; Shi

et al., 2019; Jung et al., 2020; Lázaro-Ibáñez et al., 2021). In the

intraluminal radiolabeling strategy, a lipophilic radiotracer can easily

penetrate to the EV lumen or ionophores allow radionuclides to be

transported across the lipid membrane where they can be trapped as

their loose lipophilicity (Son et al., 2020; Khan et al., 2022).

In vivo tracking of EVs

Current studies demonstrated that radiolabeling is the most

sensitive EV tracking approach for a quantitative biodistribution

and pharmacokinetic study (Lázaro-Ibáñez et al., 2021). EVs

radiolabeled with a bifunctional chelator as

diethylenetriaminepentaacetic acid (DTPA) and the indium

trivalent isotope ([111In]-DTPA) were detected in BALB/c tumor-

bearingmice at a dose of 1011 vesicles administered i. v. (Lázaro-Ibáñez

et al., 2021). With its radioactive decay half-life (t1/2) of 2.83 days, the
111In isotope is an appropriate forEVs imaging studies that extend over

several days. The alternative isotope is technetium (99mTc) with its

radioactive t1/2 of 6 h. The advantages of
99mTc radiolabeling an easy

preparation of a radiopharmaceutical before its administration and the

emission of a monochromatic γ radiation (140.5 keV, 98.6%) make

this radioisotope achievable for different preclinical and clinical

studies. For both radionuclides, SPECT and SPECT/CT are

imaging modalities in biodistribution studies (Hwang et al., 2015;

Lázaro-Ibáñez et al., 2021). However, for the in vivo EV tracking,
99mTc radiolabeling appears to be inefficient due to its short decay half-

life t1/2. Using this radiotracer, the uptake of red blood cell-derived

exosome-mimetic vesicles (99mTc-RBC-EMVs) was shown to be dose-

and time-dependent reaching its maximum at 12–18 h of incubation,

too long to be clinically applicable (Son et al., 2020).

The in vivo PET imaging of EVs is achievable by the

gallium 68Ga (t1/2 = 68 min), cooper 64Cu (t1/2 = 12.7 h),

zirconium 89Zr (t1/2 = 78.4 h) and iodine 124I (t1/2 = 100 h)

isotopes, with the increasing half-life (Royo et al., 2019; Jung

et al., 2020; Khan et al., 2022). The advent of high sensitivity

total-body PET scanners opens possibility for an efficient in vivo

tracking of EVs in the whole human body simultaneously (Stępień

et al., 2021b; Vandenberghe et al., 2020) (Figure 2C). The long half-

life of mentioned radionuclides are ideal for long term in vivo

tracking of EVs, but for the practical achievability of a radionuclide

decides its chemical properties and the availability of a biological

ligand, which determines radiolabeling conditions (Khan and de

Rosales, 2021).

Radiovesicolomics—Applications of
EVs in nuclear imaging

Nuclear imaging, especially PET, in the extremely developing

imaging modality having the most realistic perspective to be used in

radiovesicolomics. Themain advantage of nuclear imaging is ability to

obtain 3D whole body images (Khan and de Rosales, 2021; Lázaro-

Ibáñez et al., 2021). Notably, recently a new generation of PET

scanners was introduced enabling dynamic and kinetic model

based imaging of all tissues and organs simultaneously (Badawi

et al., 2019; Karp et al., 2020; Moskal et al., 2021c; Moskal and

Stępień, E. Ł. 2020; Prenosil et al., 2022; Spencer et al., 2021). Another

advantage of SPECT or PET imaging modalities is their very high

sensitivity reaching a factor 10−6 with compare to MRI. This allows

application of the radionuclide in a dose from very small dose

0.2–1MBq per mouse for whole-body imaging with the use of

EVs in a concentration 1010 of particles/Gram body weight (p/g)

(Lázaro-Ibáñez et al., 2021; Khan et al., 2022). Depending on imaging

radionuclides and the detection system, the applied dose can vary from

37 kBq (125I-biotin) (Matsumoto et al., 2017) to 5–10 MBq ([111In]

DTPA) (Lázaro-Ibáñez et al., 2021), 7MBq (64Cu-NOTA) (Banerjee

et al., 2019), 3.7MBq (99mTc) (Son et al., 2020), 2MBq (64Cu-NOTA)

(Shi et al., 2019), and 0.2–1 89Zr-PANC1 (Khan et al., 2022) to track/

image EVs using either SPECT or PET in amouse. Radiovesicolomics

may benefit also from the new multi-photon PET scanners (Moskal

et al., 2020; Moskal et al., 2021a; Moskal et al., 2021b; Moskal et al.,

2021c) which enable simultaneous multi-tracer imaging (Moskal and

Stępień, 2022) and hence studying simultaneously the kinetics of two

different types of EVs by marking them with different isotopes.

Radiovesicolomics in cardiovascular
diseases

Regenerative medicine is the promising perspective for use of

EVs in cardiovascular Theranostics (Gąsecka et al., 2018), Recent

studies have shown that EVs exhibit various regenerative properties

valuable in the treatment of cardiovascular disease. EVs derived from

bonemarrowmesenchymal stem cells improve cardiac function and

promote angiogenesis in acute myocardial infarction (AMI) (Wang
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et al., 2017). These pro-angiogenic potential arises from paracrine

effectors regulated by NF-kB signaling including platelet-derived

growth factor (PDGF), epidermal growth factor (EGF), and

fibroblast growth factor (FGF) identified both in endothelial and

stem cell derived EVs (Tokarz et al., 2015; Anderson et al., 2016).

Another possible mechanism is epigenetic regulation via miRNA

carried by EVs which may have both pro- and anti-angiogenic

activity (Bei et al., 2017; Stępień et al., 2018; Wang et al., 2017). The

transfer of these bioactive molecules is possible due to the

internalization of EVs by the recipient angiogenic cells (Durak-

Kozica et al., 2018). In this case, radiovesicolomics proposes the use

of imaging studies, with the use of radionuclide-labeled EVs. This

approach will allow the precise location and distribution of EVs

having an angiogenic potential in the treatment of heart failure

caused by hypoxia or inflammation (Figure 3).

Radiovesicolomics in diabetes

Global diabetes mellitus prevalence in the population ages

20 to 79 reached 9.8% in 2021. Among many complications

caused by diabetes, microvascular complications are the most

common, typically including retinopathy, nephropathy, and

neuropathy, and contribute to increased treatment costs. To

lower the cost of treating diabetic complications, new and

sensitive biomarkers are needed to accelerate the diagnosis

process and allow for the elimination of diabetic

complications at the early stage of the disease. To this end,

EVs appear to be an ideal biomarker demonstrating their

characteristic molecular profile, including miRNA, proteins,

lipids and metabolites (Tataruch-Weinert et al., 2016;

Kamińska et al., 2021; Kamińska et al., 2022) (Figure 3).

There is lack of imaging studies using EVs in the course of

diabetes as a carrier of radionuclides and the development of safe

and efficacious delivery strategies for EVs in diabetes therapies is

still the unmet need in theranostics (Li et al., 2022).

Radiovesicolomics in cancer

The concept of omics and theranostics is related to

personalization of treatment, which is of greatest importance in

terms of neoplastic disease. What is most important in personalized

medicine is the development of a treatment procedure tailored to the

patient’s condition, his genetic predispositions (which are mainly

related to themetabolic capacity of the drug) and the production of a

drug targeted at a given type of cancer. The deep characteristic of

EVs content in cancer is giving the opportunity to find new

biomarkers (shedding cancer proteins, metabolites, miRNAs)

related with cancer development and metastasis, or recognizing

the new metabolic targets (Surman et al., 2018; Möller and Lobb,

2020; Stępień et al., 2021a). Using the example of overall glioma, EVs

as the entities passing the BBB barrier, can serve as prognostic and

therapeutics approaches (García-Romero et al., 2017; Krämer-

Albers, 2022). Radiovesicolomis will help to develop strategies for

tumor EVs (Tu-EVs) labelling and use them for recognition of

cancer location or monitoring cancer interaction with other cells e.g.

immune cells, which are modulated by Tu-EVs.

Conclusion

This review is the first proposal of radiovesicolomic

approaches in theranostics. Undoubtedly, the results of the

studies gathered in this manuscript demonstrate that

manufacturing, radiolabeling and administering EVs is feasible

and safe, but there are still some limitations as the unknown

lifespan of an average EV, the availability of detection systems

and unknown mechanism of EV accumulation. The advantages

of radionuclide-based imaging modalities make them a

promising tool to validate the use of EVs in clinical setting, as

they have a potential to characterize in vivo the pharmacokinetics

and biological behavior of extracellular vesicles. Although PET

offers better quantification two- or even 3-fold higher sensitivity

than SPECT, the latter is still the most widely used imaging

technology due to cost-effectiveness, availability and the

existence of a wider range of suitable radionuclides. The

strategies described here demonstrate how molecular imaging

can be useful in guiding the development of biomedical

applications of EVs for medical diagnosis and treatment in the

ever-evolving field of nanotechnology and theranostics.
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