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Abstract

In this article a theoretical model for the η-mesic 3He non-mesonic decay channels is presented. We 
present the resultant relative momentum distribution of bound 3He-η as well as in-medium branching ratios 
of η → 2γ and η → 3π0, which are crucial for the Monte Carlo simulations of measured processes and 
thus for the experimental data interpretation. As an example we also apply the model for the estimation of 
the detection efficiency of the WASA-at-COSY detector.
© 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND 
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

In the surrounding universe, aside from usual matter like atomic nuclei, a variety of un-
common exotic objects can be found. Although many of them, such as hypernuclei [1], 
tetraquarks [2], pentaquarks [3] or dibaryons [4–6] have already been discovered and investi-
gated, still many exotic systems are theoretically predicted but never experimentally confirmed. 
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Mesic nuclei, consisting of a nucleus bound via the strong interaction with a neutral meson are 
one example. They are currently one of the hottest topics in nuclear and hadronic physics, both 
from experimental [7–12] and theoretical [13–34] standpoints. Some of the most promising can-
didates for such bound states are η(η′)-mesic nuclei since the η-nucleon interaction was found to 
be attractive [35,36] while the imaginary η′-nucleus potential for near threshold is significantly 
smaller than the modulus of the real part [37].

Recently performed studies of hadron- and photo-production of the η meson result in a wide 
range of values of the ηN scattering length indicating that the η meson-nucleon interaction is 
attractive and strong enough to create even light η-nucleus bound systems [15–19,38–40]. How-
ever, none of the experiments performed till now have found a clear signature confirming their 
existence. They only provided signals which might be interpreted as indications of the η-mesic 
nuclei as well as allow the determination of the upper limits of the total cross section for the 
bound state formation [7–9,11,12,23,25,41–54].

One of the most recent and promising experiments related to η-mesic Helium nuclei have 
been performed by the WASA-at-COSY Collaboration [7–9,55]. The measurements were carried 
out with high statistics with the WASA detection setup in deuteron-deuteron (4He-η) [7–9] and 
proton-deuteron (3He-η) [56,57] fusion reactions using the ramped beam technique.

The analysis dedicated to search for 4He-η mesic nuclei in dd → 3Henπ0 and dd → 3Hepπ−
processes resulted in the upper limits of the total cross section at a 90% confidence level equal 
to roughly 3 nb and 6 nb, respectively [8]. The determined excitation functions were compared 
with the predictions of the model proposed in Ref. [14], this allowed to put a constraint on the 
η-4He optical potential parameters [7].

The analyses and interpretations of all experiments up till now have been performed assuming 
a mechanism according to which (after the η-mesic nucleus creation) the η meson is absorbed on 
one of the nucleons inside helium and may propagate in the nucleus via consecutive excitations 
of nucleons to the N∗(1535) state, until the resonance decays into the nucleon-pion pair. Thus far, 
Monte Carlo simulations, used for the estimation of the detector systems registration efficiency, 
have been carried out assuming that the N∗ momentum distribution is the same as the distribution 
of nucleons [58]. Only recently the first model describing the N∗ momentum in the N∗-3He
bound state was proposed in references [22,59]. Another theoretical model predicting non-Nπ

decays of the mesic-helium formed via two-nucleon absorption process was pointed in Refs. [33,
60].

Recently, a new mechanism of the hypothetical η-mesic helium decay was considered, namely 
via η meson decay while it is still “orbiting” around a nucleus. In order to avoid complications 
due to final state interactions neutral decay channels such as η → 2γ and η → 3π0 → 6γ con-
stituting more than 70% of η meson decays [61] are best suited for these studies. The dedicated 
measurement was performed for the first time with the WASA-at-COSY facility to search for 
η-mesic 3He in pd → 3He2γ and pd → 3He6γ reactions.

In this article we present a theoretical model for the η-mesic 3He non-mesonic decay channels. 
We present the resulting relative momentum distribution of bound 3He-η as well as in-medium 
branching ratios of η → 2γ and η → 3π0, which are crucial for the Monte Carlo simulations of 
measured processes and hence for the experimental data interpretation. As an example we apply 
the model for the estimation of the detection efficiency of the WASA-at-COSY detector.

Our goal is to know the η-nucleus interaction and hence the (non)existence of the quasi-stable 
bound states. The criterion of the existence of quasi-stable bound states with long enough life-
time can be verified by the measurement of binding energy and the width of the state and by 
experimental determination of the in-medium branching ratios of η decay into 2γ and 3π0.
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Fig. 1. Scheme of the 3He-η mesic nucleus production and decay in pd → 3He2γ reaction.

2. Theoretical model

A theoretical model has been developed in order to describe the kinematics of the decay of 
η-mesic 3He nucleus in pd → 3He2γ and pd → 3He6γ processes. The proposed mechanism 
proceeds according to the scheme shown in Fig. 1. The proton-deuteron collision leads to the 
creation of 3He nucleus bound with the η meson via strong interaction. The bound η meson is 
orbiting inside the nucleus until it decays into 2γ or 3π0, where 3π0 decay almost immediately 
to 6γ . The 3He nucleus plays the role of a spectator in the decay processes. It is assumed, that 
the η meson is moving with Fermi momentum inside mesic nucleus before decaying into 2γ

or 3π0. The Fermi momentum distribution is evaluated based on the calculated η wavefunction 
described in detail in the next subsection.

2.1. Structure of the η bound state and in-medium branching ratios of η → 2γ and η → 3π0

The structure of the hypothetical η bound state produced in pd → 3Heη reaction can be 
described as the solution of the Klein-Gordon equation:[

− ��2 + μ2 + 2μUopt(r)
]
ψ(�r) = E2

KGψ(�r), (1)

with EKG and μ denoting the Klein-Gordon energy and 3He-η reduced mass, respectively. The 
Uopt(r) is the optical potential describing the interaction between 3He and η, and is assumed to 
have the functional form:

Uopt(r) = (V0 + iW0)
ρ(r)

ρ0
, (2)

where ρ(r) is the density distribution of 3He and ρ0 is the normal nuclear density ρ0 =
0.17 fm−3. The 3He density distribution ρ(r) is obtained by the theoretical calculation described 
in Refs. [62–64].

The equation is solved numerically for several sets of real (V0) and imaginary (W0) optical 
potential parameters to obtain the Klein-Gordon energy EKG and the wavefunction ψ(�r). The 
binding energy Bs and the nuclear absorption width �abs of the η bound state are defined via the 
Klein-Gordon energy EKG as Bs = Re(μ −EKG) and �abs = −2Im(EKG), respectively. We show 
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Table 1
The binding energies Bs and nuclear absorption widths �abs values for the 3He-η ground (0s) states obtained by solving 
Eq. (1) are listed with the optical potential parameters (V0, W0) assumed in the present calculation. Evaluated in-medium 
branching ratios BR∗ are also shown (see details in text).

(V0,W0) [MeV] (Bs, �abs) [MeV] BR∗
η→2γ

BR∗
η→3π0

−(75,20) (4.06, 15.66) 3.30 × 10−5 2.73 × 10−5

−(90,20) (11.16, 20.65) 2.50 × 10−5 2.07 × 10−5

−(75,1) (5.96, 0.76) 6.78 × 10−4 5.62 × 10−4

−(90,1) (12.67, 1.02) 5.06 × 10−4 4.20 × 10−4

Fig. 2. Fermi momentum distribution of the η meson in 3He-η bound system estimated for (V0, W0) = −(75,20) MeV 
(thick solid line), (V0, W0) = −(75,1) MeV (thick dotted line), (V0, W0) = −(90,20) MeV (thin solid line), and 
(V0, W0) = −(90,1) MeV (thin dotted line). The distributions are normalized to be 1 in the whole momentum range.

the assumed strength of the optical potential parameters (V0 and W0), the obtained binding energy 
Bs, and nuclear absorption width �abs in Table 1. In addition to the strongly absorptive potential 
with W0 = −20 MeV, we also assumed the weakly absorptive potential with W0 = −1 MeV as 
indicated in Ref. [7] for the 4He-η system.

By transforming the coordinate space wavefunction ψ(�r) obtained by solving Eq. (1), we can 
derive the momentum space wavefunction in the form φ( �p) = R(p)Y	m(p̂) using:

φ( �p) = 1

(2π)3/2

∫
ei �p·�rψ(�r)d�r , (3)

and we can evaluate the relative 3He-η momentum distribution using |R(p)|2, where R(p) sat-

isfies the normalization condition 
∫

|R(p)|2p2dp = 1.

The momentum distributions |R(p)|2p2 for four sets of potential parameter values are pre-
sented in Fig. 2. We also derive the momentum space wavefunction of the nucleon φN( �p) =
RN(p)Y00(p̂) in the same manner using the coordinate space s-wave nucleon wavefunction 

N(�r), which is assumed to be related to the nucleon density distribution ρ(r) via ρ(r) =
A|
N(�r)|2 with the nuclear mass number A.
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Fig. 3. Fermi momentum distribution of a nucleon in 3He (solid line) and 4He (dotted line) nuclei evaluated by the 
theoretical nuclear density distributions (see details in text).

We show in Fig. 3 the calculated momentum distribution of the nucleon |RN(p)|2p2 based on 
the 3He and 4He density distributions [62–64].

One can see that in general the momentum distributions for a nucleon inside 3He and in 4He 
are broader then the distributions of the relative 3He-η momentum, though the distributions for 
a nucleon inside 3He are comparable with the one for 3He-η for V0 = −754 MeV.

We can also evaluate the in-medium branching ratios BR∗ for η → 2γ and η → 3π0 decay 
channels below the η threshold using the calculated nuclear absorption width �abs as,

BR∗
η→2γ /η→3π0 = �η→2γ /η→3π0

(�tot
η + �abs)

, (4)

where �η→2γ /η→3π0 is the width of the in-vacuum η decay to 2γ or 3π0, �tot
η is the total width 

of η meson in vacuum (1.31 keV) [61] and �abs is the nuclear absorption width obtained from 
Klein-Gordon equation. From the in-vacuum branching ratios BRη→2γ /η→3π0 reported in [61], 
�η→2γ and �η→3π0 can be calculated as

�η→2γ = 0.3941 × 1.31 keV = 0.516 keV, (5)

�η→3π0 = 0.3268 × 1.31 keV = 0.428 keV . (6)

The estimated branching ratios in medium BR∗ are listed in the 3rd and 4th column in Table 1. 
They vary from about 2 × 10−5 to 7 × 10−4 depending on the optical potential parameters.

The calculated BRs has to be corrected due to the Final State Interaction (FSI) effects of pions 
with the 3He nucleus. We found that the FSI reduces the strength of the signal to half and the 
effect should be taken into account for the planning and/or analyzing the experiments.

2.2. Monte Carlo simulation

The theoretical model described in previous subsection will be applied in the realistic Monte 
Carlo simulations of the η-mesic production in the pd → 3He2γ and pd → 3He6γ reactions. In 
the first step, the geometrical acceptance of the WASA detector [65,66] as a function of the excess 
energy Q near the kinematical threshold for η meson production was evaluated. In the simulation, 
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the 3He nucleus is assumed to be a spectator and the bound η has the energy determined by its 
mass and binding energy. The decay distribution is assumed to be isotropic in the η meson rest 
frame and the sum of the momenta of the emitted particles are the same as the η Fermi momentum 
in the center of mass frame. In the final state, the 3He nucleus has the recoil momentum and 
energy.

The acceptance was determined for the simultaneous registration of 3He in the Forward De-
tector (covering polar angles from 3◦ to 18◦) and γ quanta in the Central Detector (covering 
polar angles from 20◦ to 169◦) and was found to be about 60% and 40% for pd → (3He-η)bound

→ 3He2γ and pd → (3He-η)bound → 3He6γ reactions, respectively.
The realistic simulations including the detector responses and all analysis conditions, will be 

crucial for the interpretation of the experimental data, in particular data collected by WASA-at-
COSY Collaboration. The simulation results will be compared with experimental data to choose 
the most optimal analysis selection conditions as well as to allow the estimation of the overall 
detection and reconstruction efficiency for the considered processes including all analysis crite-
ria.

3. Conclusions

In May 2014, WASA-at-COSY Collaboration performed a search for η-mesic Helium in 
proton-deuteron collisions. For the first time the hypothetical 3He-η bound state was searched 
for in non-mesonic pd → 3He2γ and pd → 3He6γ decays. For the purpose of the experimental 
data interpretation, a new theoretical model for the η-mesic helium was developed, according to 
which the mesic nucleus decays without η meson absorption. The Fermi momentum distribution 
was determined for a bound η meson orbiting around the 3He nucleus for different combinations 
of the 3He-η optical potential parameters. The performed calculations allowed, for the first time, 
the estimation of the branching ratio for η → 2γ and η → 3π0 decay channels in the nuclear 
medium.

The obtained Fermi momentum distribution will allow the determination of the efficiency for 
η-mesic 3He production processes and its non-mesonic decays, namely pd → (3He-η)bound →
3He2γ and pd → (3He-η)bound → 3He6γ .
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