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The possibility for the existence of the exotic NNN ∗ states is explored with the objective
of calculating the N∗ momentum distribution inside such nuclei. Even though the latter
is an essential ingredient for the analysis of the experimental data on the pd → pdπ0,
pd → pppπ− and pd → pnnπ+ reactions aimed at finding an η-mesic 3He, the data
analysis is usually performed by approximating the N∗ momentum distribution by that
of a nucleon. Here, we present calculations performed by solving the three-body Faddeev
equations to obtain the momentum distribution of the N∗ inside possible (N∗)+np,
(N∗)0np and (N∗)+-d states. The N∗ momentum distributions are found to be much
narrower than those of the nucleons and influence the data selection criteria.
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1. Search for Exotic States

The past few decades have seen extensive searches of various exotic states of mesons
and nuclei.1 Unstable bound states of the neutral η mesons and nuclei is one such
example which has been hard to find experimentally (see Refs. 2–5 for reviews on
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the experimental as well as theoretical searches). Though a clear and conclusive
evidence for the existence of η-mesic nuclei has still not been found (see, how-
ever, Ref. 6 and the claim in Ref. 7 which was re-examined in Ref. 8 where the
authors attributed the peak structure to an artifact arising from the complicated
background structure of quasi-free pion production) there are several indications
of its existence. For example, η production with protons scattered on light nuclei
such as the deuteron9 and with photons on 3He8,10 show sharply rising ampli-
tudes at energies close to threshold. This is usually taken as an indication of the
strong η-nucleus interaction which could make the existence of an η-mesic nucleus
possible.

An important ingredient in the search for η-mesic nuclei is the S11 N∗(1535)
resonance. Experimental analyses for the formation of an η-mesic nucleus11–13

assume the η-nucleon interaction to proceed via the formation of an N∗ resonance
as an intermediate state. For example, the analysis in Ref. 12 for the search of an
η-mesic 4He is carried out by assuming the reaction to proceed as dd → (4He-
η)bound → (N∗-3He) → 3He Nπ. Therefore, for such a reaction below the η meson
production threshold, an off-shell η meson produced in a dd collision, is assumed
to be absorbed on one of the nucleons in the helium nucleus and may propagate
inside the nucleus by consecutive excitations and decays of the N∗ to a nucleon
and η (off-shell) until it finally decays into an on-shell pion and a nucleon. Thus,
in principle, within this description, as long as the η-mesic state exists, an N∗ also
exists inside the nucleus. It is then natural to ask if one can consider the existence
of unstable bound states of N∗ and nuclei.14 If they do exist, one can investigate
the motion of a bound N∗ inside the nucleus. Such an investigation was carried out
in Refs. 14 and 15 and loosely bound N∗-nuclear states with a large decay width
were found in case of N∗-3He and N∗-24Mg.

In this work, we investigate the possibility for N∗NN bound states to exist and
if they do, calculate the momentum distribution of the N∗ inside such exotic nuclei.
The motivation for such an undertaking comes from the fact that theN∗ momentum
distribution is an important input for simulations done by the experimentalists in
order to determine the kinematics and detector acceptance in the analysis of data
on the pd → pdπ0, pd → pppπ− and pd → pnnπ+ reactions aimed at finding an
η-mesic 3He nucleus.16 In the absence of a calculation such as the present one, the
data analysis is carried out by approximating the N∗ momentum distribution by
that of a nucleon inside 3He. The results of the three-body Faddeev calculations
of this work show that the above assumption is not appropriate and provides the
necessary distributions for a better experimental analysis.

2. Three-Body Calculations for the Motion of N∗ in N∗NN States

Three-body bound state calculations are often performed by solving Faddeev equa-
tions in a partial wave basis. In Ref. 18, however, a new way of solving the Faddeev
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equations directly as a three-dimensional (3D) integral equation without employing
partial wave decomposition was proposed. The method has since then been applied
for the study of different systems. This kind of a nonpartial-wave approach has
been applied for the investigation of exotic states like the αΛΛ19 as well as atomic
systems20 such as the 4He dimer. In this work, we shall follow the approach pro-
posed in Ref. 18 and solve the Faddeev equations to find bound states of the N∗

and two nucleons. For details of the three-body formalism, we refer the reader to
Ref. 18 and explain the theoretical framework only briefly.

2.1. Elementary potentials

The N∗–n and N∗–p interaction is written using the one-pion and η exchange
potential with the same diagrams and assumptions as in Ref. 15. In principle,
there could be additional contributions from two pion exchange (ρ meson exchange
diagram) and other box diagrams. However, considering the exploratory nature of
this work and also the fact that there is no data available to fix the NN ∗ → NN ∗

potentials, we leave such an undertaking for the future.
To remind the reader briefly, in Fig. 1, we show the diagrams considered for

example for the propagation of a positive N∗. Diagrams involving the N∗N∗ π or
N∗N∗ η couplings which are hardly known will not be considered. Apart from the
couplings being unknown, the potential in this case turns out to be spin dependent
(and so also suppressed as compared to the leading term in the potential of Fig. 1).
The πNN ∗ and ηNN ∗ couplings (with N∗(1535,1/2−)) are given by the following
interaction Hamiltonians21:

δHπNN∗ = gπNN∗Ψ̄N∗τΨN · Φπ + h.c.

δHηNN ∗ = gηNN∗Ψ̄N∗ΨN · Φη + h.c.
(1)

Using the standard Feynman diagram rules and including an off-shellness at the
vertices through form factors containing the parameters Λπ and Λη (see Ref. 15 for
details), the momentum space forms of the elementary potentials used in this work

Fig. 1. Elementary NN ∗ → NN ∗ processes considered in this work.
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are given by

V(N∗)+p(|p − p′|) = − g2
N∗π

|p− p′|2 +m2
π

(
Λ2

π −m2
π

Λ2
π + |p− p ′|2

)2

− g2
N∗η

|p − p′|2 +m2
η

(
Λ2

η −m2
η

Λ2
η + |p − p′|2

)2

,

V(N∗)+n(|p − p′|) = − g2
N∗π

|p− p′|2 +m2
π

(
Λ2

π −m2
π

Λ2
π + |p− p′|2

)2

(τ1 · τ 2),

(2)

where gN∗x (with x = π and η) are the coupling constants at the N∗Nπ and N∗Nη
vertices and are chosen from the available values given in literature (see Table 1
of Ref. 15). The factor in big round brackets takes care of the off-shell nature of
the exchanged mesons. The elementary potentials for the (N∗)0 interaction with a
nucleon can be written in a similar way. The isospin operator (τ 1 ·τ 2) gives a factor
of 2 in this case. The choice of the neutron–proton potential entering the calculation
of (N∗)+ −n−p three body bound state calculation is that of a Malfliet–Tjon type
potential given by a Yukawa overlap form as in22:

Vnp(|p− p′|) = − Va

2π2

1
µ2

a + |p − p′|2 +
Vr

2π2

1
µ2

r + |p − p′|2 , (3)

with Va = 3.1769 fm−1, µa = 305.86MeV, Vr = 7.291 fm−1 and µr = 613.69MeV.
In case of the (N∗)0 − p− p system, we also consider a Yukawa overlap form which
is linked to the 1S0 partial wave of the Reid Soft Core potential.23

2.2. Faddeev equations and momentum distributions

As mentioned above, we directly solve the three-body Faddeev equations by the
method without partial wave decomposition.18 The realistic nucleon–nucleon poten-
tial like a meson theoretical version includes the operators of the spin-orbit and the
tensor force. The method is extended to apply on such operator-form potential.24

Since our potentials in Eqs. (2) and (3) are only of a scalar form except for the
isospin part, therefore, the simple method of Ref. 18 is enough to solve our Faddeev
equations.

Here, we would briefly like to introduce the equations and the method. The
degrees of freedom by selecting coordinates fixed to the nucleus can be reduced
only to 3 because of the body-fixed frame. Taking the center-of-mass system, we
use two Jacobi momenta p and q. Figure 2 shows three sets of the momenta for
each particle channel. For instance, the subscript i of the momenta corresponds to
the spectator label of the ith particle. The three variables of the wave function are
given by the magnitudes of the Jacobi momenta pi, qi and the angle θi between the
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Fig. 2. Jacobi coordinates (p, q) of the three-body system. The subscript i in the coordinates
signifies the ith spectator particle.

momenta.

pi ≡ mjkk −mkkj

mj +mk
, (4)

qi ≡ (mj +mk)ki −mi(kj + kk)
mi +mj +mk

, (5)

cos θi ≡ pi · qi

piqi
, (6)

The other momenta pj , qj , pk and qk are given by the ith momenta pi and qi.

pj = − mi

mk +mi
pi − mk(m1 +m2 +m3)

(mk +mi)(mj +mk)
qi, (7)

pk = − mi

mi +mj
pi +

mj(m1 +m2 +m3)
(mj +mk)(mi +mj)

qi, (8)

qj = pi − mj

mj +mk
qi, (9)

qk = −pi − mk

mj +mk
qi, (10)

where ki is the intrinsic particle momentum and mi is the ith particle mass. The
wave function Ψ consists of the Faddeev components ψi (i = 1, 2, and 3);

Ψ = ψ1 + ψ2 + ψ3.

The components satisfy the Faddeev equations

ψi(pi,qi) = 〈piqi |ψi〉 = ψi(pi, qi, θi) (11)

= G0

∫
d3p′iti(pi,p′

i)〈p′
jq

′
j |ψj〉 +G0

∫
d3p′′i ti(pi,p′′

i )〈p′′
kq

′′
k |ψk〉,

(12)
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where pj and q′
j are functions of p′

i and qi, and, p′′
k and q′′

k are also functions of p′′
i

and qi, respectively, and ti and G0 are the two-body t-matrix and the three-body
free Green’s function, respectively.

Equation (12) is regarded as an eigen value equation. The binding energy is
found when the eigen value equals to 1. Arnold’s method for the equation is used
in Ref. 18.

Performing calculations for two parameter sets, gN∗π = 1.09, gN∗η = 2.07 (which
we shall refer to as Set 1)25 and gN∗π = 1.05, gN∗η = 1.6 (Set 2)26 we find the
(N∗)+ − n − p system to be bound by Eb = −2.75MeV in case of Set 1 but
not bound with Set 2. The (N∗)0 − p − p system is not bound in any case. The
parameter Λπ = 1.3GeV and Λη = 1.5GeV in both cases. The relative momentum
distribution of the N∗ and the two nucleons inside the three body bound states can
be evaluated as

T (q) =
1
4π

∫
Ψ(p,q)2dpq2dΩq, (13)

where q is the (N∗)+−(np) relative momentum and p, the two-nucleon momentum
vector. T (q) is normalized such that

4π
∫ ∞

0

T (q)dq = 1. (14)

In Fig. 3, the momentum distributions corresponding to the above (N∗)+ − n− p

state and the (N∗)+-deuteron state are shown. Considering the deuteron bind-
ing energy of 2.22MeV and subtracting it from Eb = −2.75MeV of the 3-body
bound state, (N∗)+ −n− p, the N∗-deuteron separation energy is −0.53MeV. The

(a) (b)

Fig. 3. (a) Momentum distribution of a positive N∗ inside a three-body bound (N∗)+ − n − p
(with a binding energy of −2.75MeV) as compared to that of a proton inside 3He27 and (b) the

relative momentum distribution of a positive N∗ and a deuteron inside a bound N∗-(np) state
with (np) being a deuteron (normalized to 1).

1950066-6



October 25, 2019 11:27 WSPC/S0218-3013 143-IJMPE 1950066

N-N-N∗ model calculations for experimental η-mesic 3He searches

momentum distribution in this case is calculated as

T (q)N∗d =
1
4π

∫ (∫
Ψ(p,q)φd(p)dp

)2

q2dΩq, (15)

where q and p are the N∗-d and n − p relative momenta. The normalization of
T (q), namely,

Nd = 4π
∫
T (q)N∗ddq, (16)

gives the probability to find a bound deuteron inside the three-body (N∗)+ −n− p

bound state and is found to be 0.7163. The momentum distribution shown in Fig. 3
(solid line [b]) corresponds to the calculated T (q) divided by 0.7163 (and is hence
normalized to 1).

In order to note the difference between the nucleon and N∗ momentum distribu-
tions inside the N∗NN states, in Fig. 4, we compare these momentum distributions
inside the (N∗)+np and (N∗)0np states. It is interesting to note that the neu-
tron distributions are quite similar in both systems. However, the existence of the
Coulomb force between the (N∗)+ and the proton causes the proton distribution
in (N∗)+np to slightly increase in the smaller momentum region as compared to
that in (N∗)0np.

A few remarks about the implication of the existence of the exotic N∗NN states
in the context of the experimental η-mesic search are in order here. Considering
the model where the N∗ propagates inside the nucleus and eventually decays by
N∗ → πN , we have the following possibilities for the decay of the N∗NN states:
(i) (N∗)+np → π+nnp, (ii) (N∗)+np → π0pnp, (iii) (N∗)0pp → π0npp and (iv)
(N∗)0pp → π−ppp. The WASA data which is being analyzed involves all possible

(a) (b)

Fig. 4. (a) Comparison of the momentum distributions of an N∗ (solid line), proton (dot-dashed

line) and neutron (dashed line) inside the bound (N∗)0 − n − p (left panel) and (N∗)+ − n − p
(right panel) states.
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channels of the reaction, pd → NNNπ, with N = p or n. The nonexistence of an
(N∗)0pp state (within the model of the present work) would imply that it is not
likely to observe the η-mesic 3He state in the channel, pd→ pppπ−. The existence
of the (N∗)+np state implies that the likely channels to find η-mesic 3He are,
pd → nnpπ+ and pd → nppπ0. We note that since the binding energy of these
exotic states is small, the Coulomb interaction also plays a role in deciding if the
system is bound or not. The (N∗)0pp system is not bound but the (N∗)0np is found
to be bound. If we would neglect the Coulomb force between the two protons, the
(N∗)0pp would also be bound by about 0.8MeV.

We remind the reader that in our calculations, the NN force of the N∗pp (N∗nn)
system is taken to be the Reid Soft Core potential which is used only in the 1S0

state. The 1S0 state has no bound state. For the NN force of the N∗np system,
we take the Malfliet–Tjon potential which takes into account both the 1S0 and 3S1

states. Therefore, the Malfliet–Tjon potential has a deuteron bound state. Taking
the isospin breaking into account in this manner, we cannot expect the (N∗)0pp
and (N∗)+np to be equally bound.

Finally, in order to note the implications of theN∗ momentum distribution being
narrower than that of the nucleon, simulations are performed in a similar manner
as in Ref. 12 but for the pd reactions. In case of the (3He-η)bound production in
proton–deuteron collision, simulations of the pd→ (3He-η)bound → N∗ − d→ dpπ0

reaction performed with the N∗ momentum distributions presented in Fig. 3 result
in a significantly lower geometrical acceptance of the simultaneous registration of all
outgoing particles in the WASA detector in comparison to those using the proton
momentum distribution inside 3He. To be specific, the acceptance is 0.267 and 0.261
for the (N∗)+ in (N∗)+ − n− p and (N∗)+ − d, respectively as compared to 0.635
found using the momentum distribution of a proton in 3He.27

3. Summary

The possibility for the existence of the N∗NN bound states is explored with the
objective of calculating the momentum distribution of the N∗ inside such nuclei.
The motivation for this work comes from the need for such a distribution in the
analysis of the experimental data searching for η-mesic 3He nuclei. The data on the
pd → pdπ0, pd → pppπ− and pd → pnnπ+ reactions is analyzed within a model
which assumes the formation, propagation and decay of an N∗ resonance as an
intermediate step. For example, if an η-mesic 3He is formed, the reaction pd→ pdπ0

is considered to proceed as pd→ (η-3He)bound → (N∗)+ − d→ pdπ0. A knowledge
of the motion of the N∗ is necessary for simulations performed to calculate the
kinematics and the geometrical acceptance of the detectors. The analysis of data28

is usually carried out by approximating the momentum distribution of an N∗ by
that of a nucleon inside the nucleus. This work aims at improving this situation by
providing the N∗ distributions for data analysis.
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23. R. V. Reid, Jr., Ann. Phys. 50 (1968) 411.
24. J. Golak et al., Few-Body Syst. 54 (2013) 2427.
25. C. S. An and B. Saghai, Phys. Rev. C 84 (2011) 045204.
26. E. J. Garzon and E. Oset, Phys. Rev. C 91 (2015) 025201.
27. A. Nogga, Nuclear and hypernuclear 3 and 4 body bound states, Ph.D.

thesis, Ruhr Universität, Bochum (2001), available at http://www-brs.ub.ruhr-uni-
bochum.de/netahtml/HSS/Diss/NoggaAndreas/.

28. O. Rundel, EPJ Web Conf. 199 (2019) 02029.

1950066-9


	Search for Exotic States
	Three-Body Calculations for the Motion of N* in N*NN States
	Elementary potentials
	Faddeev equations and momentum distributions

	Summary

