

CASToR for image reconstruction with J-PET: diagnostic and proton therapy applications

CASToR User's Meeting IEEE NSS/MIC 2019

J. Baran¹, J. Gajewski¹, M. Garbacz¹, M. Pawlik-Niedźwiecka^{1,2}, P. Moskal², A. Ruciński¹ On behalf of the J-PET collaboration

¹Institute of Nuclear Physics PAN, Krakow, Poland ²Jagiellonian University, Faculty of Physics, Astronomy and Applied Computer Science, Krakow, Poland

Manchester, 30 X 2019

PRESENTATION PLAN

- 1. J-PET technology
- 2. Proton range monitoring
- 3. CASToR for the J-PET based proton range monitoring
 - GATE Monte Carlo simulations
 - Sensitivity and attenuation correction
 - Homogenous phantom reconstructions
 - Proton beam range monitoring
- 4. Conclusions

J-PET TECHNOLOGY

CASToR User's Meeting IEEE NSS/MIC 2019

jakub.baran@ifj.edu.pl

GATE MONTE CARLO SIMULATIONS

Simulated setups are as follows:

- A. single layer barrel 24 modules
- B. double layer barrel 48 modules
- C. triple layer barrel 72 modules
- D. single layer dual-head 12 modules
- E. double layer dual-head 24 modules
- F. triple layer dual-head 24 modules

Simulated J-PET configurations: single layer barrel (A), double layer barrel (B), triple layer barrel (C), single layer dual-head (D), double layer dual-head (E), triple layer dual-head (F)

- TOF resolution: 500 ps
- Time window: 3 ns, energy window: 200 keV
- Applied corrections: sensitivity, scatter, random, attenuation, post-smoothing

(Very) Basic CASTOR ver. 2.0.3 reconstruction workflow

CASTOR User's Meeting IEEE NSS/MIC 2019

jakub.baran@ifj.edu.pl

SENSITIVITY MAP

- Uniformly distributed 10¹¹ back-to-back 511 keV gammas within air phantom
- Air filled phantom 20x20x25 cm³ (1/8 FOV)
- emlivermore physics list
- 8 PET symmetries were used to obtain list-mode covered full FOV
- High statistics is needed due to low plastics' efficiency

Example sensitivity map simulation setup for the single layer barrel configuration

> Example sensitivity map for the single layer barrel configuration for the saggital (left), coronal (center) and axial (right) view.

CASTOR User's Meeting IEEE NSS/MIC 2019

jakub.baran@ifj.edu.pl

CASTOR User's Meeting IEEE NSS/MIC 2019

jakub.baran@ifj.edu.pl

PHANTOM RECONSTRUCTION

- Uniformly distributed 10⁹ back-to-back 511 keV gammas within water phantom
- Water phantom 25x25x30 cm³

SETUP	REGISTERED COINCIDENCES			
	ALL [×E05]	TRUE [%]	SCATTERED [%]	
Single layer barrel	6.6	48.5	51.5	
Double layer barrel	19.2	49.0	51.0	
Triple layer barrel	32.2	50.0	50.0	
Single layer dual-head	2.6	53.8	46.2	
Double layer dual-head	7.7	51.9	48.1	
Triple layer dual-head	7.2	51.4	48.6	

PHANTOM RECONSTRUCTION

0.5

Normalized activity

0.0

AXIAL CORONAL SAGITTAL

SINGLE LAYER BARREL

DOUBLE LAYER BARREL

TRIPLE LAYER BARREL

CASToR User's Meeting IEEE NSS/MIC 2019

jakub.baran@ifj.edu.pl

PHANTOM RECONSTRUCTION

0.5

Normalized activity

0.0

AXIAL CORONAL SAGITTAL

SINGLE LAYER DUAL-HEAD

DOUBLE LAYER DUAL-HEAD

TRIPLE LAYER DUAL-HEAD

jakub.baran@ifj.edu.pl

- 2.10⁹ primary protons with the therapeutic beam model of the CCB (150 MeV)
- PMMA phantom 5x5x20 cm3 ٠
- Number of registered coincidences: ~12k (75% true, 18% scattered, 7% randoms) •

0.0

SINGLE LAYER BARREL

- 10⁸ primary protons with the therapeutic beam model of the CCB (150 MeV)
- PMMA phantom 5x5x20 cm3

SETUP	REGISTERED COINCIDENCES				
	ALL	TRUE [%]	SCATTERED [%]	RANDOM [%]	
Single layer barrel	590	77.1	15.9	7.0	
Double layer barrel	1202	78.5	18.1	3.4	
Triple layer barrel	1657	79.5	17.2	3.3	
Single layer dual-head	280	82.5	14.6	2.9	
Double layer dual-head	948	80.6	17.0	2.4	
Triple layer dual-head	1043	83.5	14.6	1.9	

AXIAL

CORONAL SAGITTAL 0.3 Same a superior Station in the 0.0

Normalized activity

SINGLE LAYER BARREL

DOUBLE LAYER BARREL

TRIPLE LAYER BARREL

jakub.baran@ifj.edu.pl

0.3

Normalized activity

0.0

CORONAL AXIAL SAGITTAL

SINGLE LAYER DUAL-HEAD

DOUBLE LAYER DUAL-HEAD

TRIPLE LAYER DUAL-HEAD

jakub.baran@ifj.edu.pl

InterDokMe

CASTOR User's Meeting IEEE NSS/MIC 2019

jakub.baran@ifj.edu.pl

CONCLUSIONS

- J-PET detector is feasible to acquire the β⁺ activity produced during proton therapy treatment and the offline 3D reconstruction of PET activity images is possible using CASToR toolkit.
- 2. Full patient irradiation simulation is currently under investigation. (GATE Workshop || TOMORROW || Exchange 2&3 || 12:15)
- 3. Experimental validation of the single beam irradiation results is planned.
- 4. Further development is needed to fully exploit the whole body J-PET technology:
 - TOF-based continuous signal modeling along the strip.
 - Attenuation and sensitivity corrections in the image domain to speed up the reconstruction preparation.
 - Reconstruction of β^+ decays to 3γ (i.e. Na-22).
 - Total-body reconstruction.
 - Various TOF resolution for specific layers pair, between which the coincidence was registered.

A BIT OF ADVERTISEMENT...

POSTER ID: 376

CASToR User's Meeting IEEE NSS/MIC 2019

jakub.baran@ifj.edu.pl

A BIT OF ADVERTISEMENT...

POSTER ID: 376 TODAY !!!

GATE Workshop TOMORROW Exchange 2&3 || 12:15

CASTOR User's Meeting IEEE NSS/MIC 2019

jakub.baran@ifj.edu.pl

ACKNOWLEDGMENTS

J. Baran and M. Garbacz acknowledge the support of InterDokMed project no. POWR.03.02.00-00-I013/16

THE HENRYK NIEWODNICZAŃSKI **INSTITUTE OF NUCLEAR PHYSICS** POLISH ACADEMY OF SCIENCES

Prof. Paweł Olko Jan Swakoń, PhD Leszek Grzanka, PhD

The National Centre for Research and Development

Research was supported by: the National Centre for Research and Development (NCBiR), grant no. LIDER/26/0157/L-8/16/NCBR/2017

CASTOR developpers:

Thibault Merlin, PhD Simon Stute, PhD

This research was supported in part by **PL-Grid Infrastructure**.

Prof. Paweł Moskal Wojciech Krzemień, PhD Szymon Niedźwiecki, PhD

FNP

Foundation for Polish Science

Research was supported by the Foundation for Polish Science (FNP) co-financed by the EU under the European Regional Development Fund. TEAM POIR.04.04.00-00-4204/17 and POIR.04.04.00-00-2475/16-00

BACKUP SLIDE

CASTOR User's Meeting IEEE NSS/MIC 2019 ja

jakub.baran@ifj.edu.pl

CASTOR for J-PET

Manchester, 30 X 2019

SENSITIVITY MAP

- Uniformly distributed 10¹¹ back-to-back 511 keV gammas within air phantom
- Air filled phantom 20x20x25 cm³ (1/8 FOV)

SETUP	REGISTERED COINCIDENCES [·10 ⁹]		
Single layer barrel	1.9		
Double layer barrel	4.9		
Triple layer barrel	8.1		
Single layer dual-head	1.4		
Double layer dual-head	3.4		
Triple layer dual-head	4.0		