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The AMADEUS collaboration aims to provide new experimental constraints to the K−N strong inter-
action in the regime of non-perturbative QCD, exploiting low-energy K− hadronic interactions with
light nuclei (e.g. H, 4He, 9Be and 12C). The low-momentum kaons (pK ∼ 127 MeV/c) produced at
the DAΦNE collider are ideal to explore both stopped and in-flight K− nuclear captures. The KLOE
detector is used as an active target, allowing to achieve excellent acceptance and resolutions for the
data. In this work the results obtained from the study of Λπ− and Λp correlated production in the
final state are presented.
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1. Introduction

The theoretical investigation of the low-energy K−N interaction predicts, in the energy region
below the K−N threshold, a sufficiently attractive interaction to form a bound state in the isospin I=0
channel [1, 2]. In [3–7] the I=0 Λ(1405) is interpreted as a pure K̄N bound state, this leads to the
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prediction of deeply bound kaonic nuclear states. According to Chiral models [8–12] the Λ(1405)
emerges as a superposition of two states, as a consequence of the K−N interaction is much less
attractive, which implies the prediction of only slightly bound kaonic nuclear states.

The experimental investigation of the K−pp bound state properties in K− induced reactions is
strongly biased by the competing K− - multi-nucleon absorption processes leading to the same final
states (see e. g. [13,14]). In Ref. [15,16] a complete characterization of the K− two-, three- and four-
nucleon absorptions (2NA, 3NA and 4NA) was performed for the first time in the Λp and Σ0p final
states exploiting low-energy K− captures on a 12C target. In particular, in Ref. [15] the corresponding
low-energy cross sections are measured, these represent a crucial ingredient for the determination
of the in-medium K− optical potential [17, 18]. In Section 2 a brief summary of the analysis [15] is
given.

The experimental investigation of the Λ(1405) properties is also challenging. The resonance line-
shape is found to depend on both the production mechanism and the observed decay channel. More-
over in K− induced reactions the non-resonant contribution to the final state Σπ production has to be
also taken into account. In Section 3 a brief summary of the results obtained in [19] is given, which
could give important information on the underlying K̄N interaction models.

The described analyses refer to a sample of 1.74 fb−1 integrated luminosity collected by the
KLOE collaboration [20] during the 2004/2005 data campaign. Low-energy K−s are produced at the
DAΦNE collider [21], from theΦ-meson decay nearly at-rest, with a momentum of about 127 MeV/c.
The K− captures, at-rest and in-flight, on the materials of the KLOE detector, used as an active target,
are investigated.

In summer 2012 a high purity carbon target (graphite) was realized and installed inside the KLOE
detector, between the beam pipe and the DC inner wall.

2. K− multi-nucleon absorption cross sections and branching ratios in Λp and Σ0p
final states

The possible existence of the K−pp bound state can be investigated in low-energy K− induced
reactions by reconstructing the decays to Λ(Σ0)p.

Recently, Λ(Σ0)p decay modes were investigated by the AMADEUS collaboration in K−12C
absorption [15]. These studies allowed to perform the first comprehensive measurements of two, three
and four nucleon absorption branching ratios (BRs) and cross sections for low-momentum kaons in
Λp and Σ0p channels. The BR of the Σ0p direct production in K− 2NA quasi free interaction is found
to be greater than the corresponding Λp production, contrary to what is expected by comparing the
pure phase spaces. This gives important indications on the underlying three-body interaction. The
Λp spectra are entirely interpreted in terms of K− multi-nucleon absorption processes, an eventual
contribution due to the intermediate formation of a K−pp bound state completely overlaps with the
K− 2NA in this channel, hence the corresponding yield is not extracted.

3. Resonant and non-resonant Yπ transition amplitudes below the K̄N threshold

In the investigation of the Λ(1405) properties, produced through the K−p mechanism in light
nuclear targets, two biases have to be taken into account. The first bias is the energy threshold im-
posed by the absorbing nucleon binding energy (for K− capture at rest on 4He the Σπ invariant mass
threshold is about 1412 MeV, while for 12C it is about 1416 MeV). In order to access the K̄N sub-
threshold region corresponding to the Λ(1405) high-mass predicted pole (about 1420 MeV), K−N
absorption in-flight has to be exploited. For a mean kaon momentum of 100 MeV/c, the Σπ invariant
mass threshold is shifted upwards by about 10 MeV.

Among the three (Σπ)0 charge combinations Σ0π0 represents the best signature for the Λ(1405)
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resonance, since it is free from the isospin I=0 background. In Fig. 1 the Σ0π0 invariant mass spec-
trum from K− captures in 12C nuclei for two data samples is shown [22]. The black distribution
corresponds to the 2004/2005 data campaign, which include both K− captures at-rest and in flight.
The blue distribution is obtained from 2012 data which include K− captures at-rest. The blue and the
black distributions are normalized to unity. A red line indicates the energy threshold corresponding
to K− absorption in 12C at-rest. A rich sample of in-flight K−12C captures can be easily identified
above the red line. The Λ(1405) shape can be now extracted after subtracting the Σ0π0 non-resonant
contribution.

Fig. 1. The mΣ0π0 invariant mass distribution from K− captures in the KLOE DC wall (black curve) and pure
carbon graphite target (blue curve).

The second bias is related to the non-resonant K−N → Σπ contribution that has to be subtracted
in order to extract the Λ(1405) shape. The K−n → Λπ− non-resonant transition amplitude modulus
below the K̄N threshold was obtained for the first time in [19] exploiting K− absorptions on 4He
target nuclei.

In this work the measured Λπ− invariant mass, momentum and angular distributions were si-
multaneously fitted by means of dedicated Monte Carlo simulations based on the phenomenological
K−-nucleus absorption model described in Ref. [23] (the fit is shown in Fig. 2). All the resonant and
non-resonant contributing reactions were taken into account together with the background process
due to ΣN → ΛN′ conversion reactions, and the contamination of K−12C. The non-resonant transi-
tion amplitude modulus is found to be |AK−n→Λπ− | = (0.334±0.018 stat +0.034

−0.058 syst) fm at (33±6) MeV
below the K̄N threshold. This result can serve as a reference for the corresponding chiral predictions
(See. Ref. [18, 24–28]). Moreover it can be used to get information on the isospin I=0 non-resonant
counterpoint contributing to the Σ0π0 invariant mass shape shown in Fig. 1.
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Fig. 2. Panels a-f: pΛπ (Λπ momentum), cos(θΛπ) (cosine of angle between Λ and π), mΛπ (Λπ invariant
mass), TΛπ, pΛ (Λ momentum) and pπ (π momentum) distributions [19]. The experimental data and the corre-
sponding statistical errors are represented by the black crosses, the systematic errors are light blue boxes. The
different contributions included in the fit are shown by the colored histograms: non-resonant at-rest (red), res-
onant at-rest (blue), non-resonant in-flight (brown), resonant in-flight (cyan), ΣN → ΛN’ internal conversion
(magenta), K− absorptions in Carbon (green). The light and dark bands correspond to systematic and statistical
errors, respectively. The gray band shows the total fit with the corresponding statistical error.
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