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a b s t r a c t

Currently inorganic scintillator detectors are used in all commercial Time of Flight Positron Emission
Tomograph (TOF-PET) devices. The J-PET collaboration investigates a possibility of construction of a PET
scanner from plastic scintillators which would allow for single bed imaging of the whole human body.
This paper describes a novel method of hit-position reconstruction based on sampled signals and an
example of an application of the method for a single module with a 30 cm long plastic strip, read out on
both ends by Hamamatsu R4998 photomultipliers. The sampling scheme to generate a vector with
samples of a PET event waveform with respect to four user-defined amplitudes is introduced. The
experimental setup provides irradiation of a chosen position in the plastic scintillator strip with an
annihilation gamma quanta of energy 511 keV. The statistical test for a multivariate normal (MVN)
distribution of measured vectors at a given position is developed, and it is shown that signals sampled
at four thresholds in a voltage domain are approximately normally distributed variables. With the
presented method of a vector analysis made out of waveform samples acquired with four thresholds, we
obtain a spatial resolution of about 1 cm and a timing resolution of about 80 ps (σ).

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Positron Emission Tomography (PET) [1,2] represents one of the
most prominent perspective techniques of non-invasive imaging
in medicine. The first demonstration of recording data in positron
detection was taken in early 1950s [3], only 2 years after the first
medical application of the positron was reported [4]. In 1973
Robertson and his co-workers built the first ring PET tomograph,
which consisted of 32 detectors [5]. This scanner has become the
prototype of the current shape of PET.

Since the early detection of small lesions and monitoring of the
functionality of organs are critical for prophylaxis and efficient
treatments, notable efforts are nowadays devoted to improve

the resolution of reconstructed images. It was realized that the
measurement of the difference of arrival times, or times of flight
(TOF), of two gamma rays provides substantial progress in this
domain [6–10]. The new class of instruments, called TOF-PET,
better localize the emission source along a straight line of gamma
coincidence, called the Line of Response (LOR). The LORs are basic
components of image reconstruction algorithms.

Currently all commercial PET devices use inorganic scintillator
materials, usually LSO or LYSO crystals, as radiation detectors. These
are characterized by relatively long rise- and decay times, of the
order of tens of nanoseconds. Time resolution in PET examinations is
crucial and one observes persistent strive for improvement [11–16].

In recent articles [17–20], an utterly new concept of TOF-PET
scanner was introduced. It incorporates plastic scintillators with
the good resolving time and the TOF method. Disadvantages due
to the low detection efficiency and negligible photoelectric effect
in organic scintillators can be compensated by large acceptance
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and good time resolution [19]. In addition, the method allows for
drastic reduction of the production cost of PET scanners and is
promising for the construction of the single bed whole body PET
scanner. A single detection unit of the newly proposed TOF-PET
detector [18] is built out of a long strip of scintillator, read out
on both sides by photomultipliers. Such a solution enables the
reconstruction of coordinates of the gamma quantum interaction
along the scintillator strip by measuring signals at its two ends. A
similar solution for crystal scintillators has been recently devel-
oped by the AX-PET collaboration [16]. The 10 cm long LYSO
crystals were coupled to digital Silicon Photomultipliers (dSiPM),
and a very good coincidence time resolution of about 200 ps
(FWHM) was achieved. In plastic scintillators, the 511 keV quanta
from electron–positron annihilation produces signals burdened
with large fluctuations of the number of photoelectrons. Therefore
a usage of the typical techniques for time measurement, based on
the application of a single-level leading-edge or constant-fraction
discriminators, is not sufficient. Therefore a multithreshold sam-
pling method to generate samples of a PET event waveform with
respect to four user-defined amplitudes was proposed. A similar
idea may be found in Ref. [15], where a coincidence timing
resolution of about 340 ps was obtained for LSO crystals. In Ref.
[15] the four sample points that comprise the rising edge were fit
to a line, and the intersection of the fitted line with the zero
voltage level defined the event time of the pulse.

In this paper we propose a newmethod for reconstruction of the
gamma quantum hit position. The method is based on the statistical
model of signals probed in the voltage domain. An electronic
system for probing these signals is under development [21]. In
the following we describe a new concept of reconstruction of the
gamma quantum hit position. The description includes an explana-
tion of the methods used for the test of the normality of data,
determination of the effective number of degrees of freedom, as
well as explanation of the selection criteria applied to the experi-
mental sample. Then we describe an experimental setup used for
signal registration and present results of reconstruction of the hit
positions of gamma quanta in the 30 cm long plastic scintillator
strip, read out on both sides by the Hamamtsu photomultipliers
R4998. Signals from the photomultipliers were sampled in 50 ps
steps using the Lecroy Signal Data Analyzer 6000A.

2. Description of the reconstruction method

Light pulses produced in the strip propagate to its edges where
they are converted into electric signals. These are sampled in the
amplitude domain using a predefined number of voltage levels.
The measurement gives a vector of N values of times at which the
signal crosses the reference voltages. This vector carries informa-
tion about the shape of the signals and their times of arrivals to the
edges of the scintillator. These shapes depend on the hit position
and can be used for its reconstruction.

The method of hit-position reconstruction consists of two
steps. First, the scintillator's volume is discretized and for each
bin a high statistics set of reference signals is created. In the
example discussed later, each set contains approximately 5000
signals generated by irradiation with gamma quanta at a fixed
scintillator position. The objective of the second part of the
procedure is to qualify the new measurement to one of the given
sets of signals and hence determine the hit position.

Consider L data sets Si (i¼ 1;…; L). Each Si is an MixNi matrix of
vectors representing signals gathered for the ith position; Mi is the
number of the collected signals and Ni stands for vector's dimen-
sion equal to the number of samples per signal. In practice all
signals have the same dimension and Ni ¼N for all i. The jth signal
in the ith data set corresponds to the jth row of the matrix Si and is

denoted by the vector sðiÞj . If the measured coordinates of vectors in
all L data sets are normally distributed then the mean value mi and
covariance matrix Ci of the data set Si describe it completely.

Assuming their normality, the proposed reconstruction proce-
dure qualifies a new measurement, represented by vector u, to one
of the data sets Si by using only information about mi and Ci. In the
first step of the reconstruction, the Mahalanobis distances dðiÞ

between u and mi are calculated:

dðiÞ ¼ ðu�miÞ � C�1
i � ðu�miÞT; i¼ 1;2;…; L: ð1Þ

Next, the measured signal u is qualified to the data set in with the
smallest distance dðiÞ:

in ¼ argðminðdðiÞÞÞ: ð2Þ

2.1. Test of the normality of data

There are number of existing procedures for testing whether
multivariate vectors from a given data set have a multivariate
normal (MVN) distribution. For example Mardia [22] proposes
multivariate measures of skewness and kurtosis, which are special
cases of MVN moment restrictions. In addition, multivariate
generalization of the well known Kolmogorov–Smirnov [23] and
Shapiro–Wilks [24,25] tests has been established. There are also
available tests based on a χ2 quantile–quantile (q–q) plot of the
observations squared Mahalanobis distances.

In this work, we propose an alternative procedure for testing a
MVN distribution as an extension of statistical test based on the q–
q approach [26]. In order to verify normality of the data set in Si,
the observations squared Mahalanobis distances for Mi vectors
from Si data set are calculated:

dðiÞj ¼ ðsðiÞj �miÞ � C�1
i � ðsðiÞj �miÞT; j¼ 1;2;…;Mi ð3Þ

where mi and Ci are estimated based on the data set Si. In Ref. [27]
authors assumed that the evaluated distances in Eq. (3) have a χ2

distribution with N degrees of freedom. In the following we will
show that this is not necessarily the case, and the number of
effective degrees of freedom may be smaller due to signal
correlation. The discussion about the effective number of degrees
of freedom (denoted hereafter as V) will be given in next section.

We provide a statistical test for data set Si by comparing the
distribution of dðiÞj defined in Eq. (3) with the theoretical χ2

distribution with V degrees of freedom. The normalization of
theoretical histogram is provided to ensure that sum of counts in
both histograms is the same and equal toMi (see Eq. (3)). We apply
uneven bin size, in order to store in each bin of the theoretical χ2

histogram a constant number of counts FT. This simplifies a control
of the assumption about the normal distribution of number of
counts in each bin. In the calculations, we have selected FT¼30,
and therefore the Poisson distribution may be approximated
accurately by the normal distribution. Hence, we compare the
two histograms via statistical test R defined as follows:

RiðVÞ ¼ ∑
Ki

k ¼ 1

F ðiÞk �FT
FT

ð4Þ

where F ðiÞk value is the number of counts in the kth bin in the
experimental histogram from the ith data set, and Ki ¼Mi=FT (the
number of bins in the histograms from the ith data set). The
bin sizes were calculated from the theoretical χ2 with V degrees
of freedom. The test statistic Ri is a chi-squared random variable
with mean Ki and standard deviation

ffiffiffiffiffiffiffiffi
2Ki

p
; owing to well known

concentration inequalities, the probability that Ri exceeds its mean
plus three standard deviations is small. In the following we will
find the parameter λ that fulfills the equation:

RiðVÞ ¼ Kiþλ
ffiffiffiffiffiffiffiffi
2Ki

p
ð5Þ
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and we state that the null hypothesis that the experimental
histogram has a χ2 distribution with V degrees of freedom is true
if λo3.

We wish to make one comment about the practical application
of the test proposed in this section. The number of collected signals
(Mi) and hence the number of bins (Ki) in Eq. (4) should be large
enough to describe properly the smooth function χ2 with V degrees
of freedom. We will not provide an evaluation of a minimal number
of bins, for arbitrary chosen FT¼30, but we suggest to use the test in
the case of large data sets with Mi41000.

2.2. Number of effective degrees of freedom

Components of the signal vector are mutually correlated in a
complicated manner so the effective V has to be determined
empirically. Its upper bound Vmax is equal to the number of
independent variables N. In order to determine the minimal
Vmin, the Principal Component Analysis (PCA) [28] of data set Si
is performed. Before full PCA examinations, the column means of
the data set Si are subtracted, in order to standardize distributions
of the vectors' components. The data set with 0 mean value will be
depicted with Si

0. We define the orthonormal matrix WiARNxN that
maps the vectors from data set Si0 into a new space,

Ŝ i ¼ S0i �Wi ð6Þ

in such a way that the projection with successive basis vectors
inherits the greatest possible variance in data set Si

0. The covar-

iance matrix of data set Ŝ i will be denoted with Ĉ i and is given as

Ĉ i ¼ EðŜTi � Ŝ iÞ. It is diagonal, with values sorted in non-increasing
order. We define the Total Variance (TV) parameter as a normal-

ized sum of k variances on the diagonal of Ĉ i,

TVk ¼Ok � Ĉ i � OT
k � ðON � Ĉ i � OT

NÞ�1 ð7Þ

where Ok is the N-dimensional row vector with ones at positions
from 1 to k, and zeros from kþ1 to N. According to this definition,
ON is a vector with all N values equal to one. The TV is a non-
decreasing function. We assume that at least TV40:95 is neces-
sary to describe data set Si properly. The minimal number of
variables Vmin is equal to the smallest k for which TVk40:95.

After the determination of Vmin, calculations of statistics R
are repeated for different V in the range from Vmin to Vmax.
The theoretical χ2 distribution with V degrees of freedom for
which the smallest statistics R (Eq. (4)) and hence smaller para-
meter λ (from Eq. (5)) was calculated, is selected. The experi-
mental distribution is said to be a MVN distribution with V degrees
of freedom, if λ is smaller than 3.

2.3. Method for data cleaning

If the data are normally distributed, the statistical significance
of assignment of the measurement u to data set Si can be provided.
The Mahalanobis distance d in Eq. (3), from the χ2 distribution
with V of degrees of freedom, can be interpreted using p-values
[29]. The hypothesis that u may be assigned to Si is rejected when
the p-value is below the predetermined significance level (e.g.
0.01), indicating that the signal u is very unlikely under this
hypothesis. Equivalently, a threshold on the Mahalanobis distance
d, depicted with dmax, ensuring a minimal expected p-value, can be
provided. Finally, the measurement u is qualified to the data set i
if, and only if, the distance d to Si is smaller than the predefined
threshold dmax. In practice, the d- or p-value criterion may be used
for the rejection of background events due to e.g. signal distortion
by gamma quantum rescattering [30].

3. Experimental setup

The method described in the previous sections was tested on
the example of reconstruction of hit-position in a single module of
the J-PET detector [18]. The measurement was performed with a
single module consisting of the 30 cm plastic scintillator strip
EJ-230 [31] with the rectangular profile 1.9 cm�0.5 cm. The strip
was connected on two sides, via optical gel, to the Hamamatsu
photomultipliers R4998, denoted as PM1(2) in Fig. 1. A series of
measurements was performed using collimated gamma quanta
from the 22Na source placed between the scintillator strip and
the reference detector. A collimator was located on a dedicated
mechanical platform allowing one to shift it along the line parallel
to the scintillator strip with a submillimeter precision. The 22Na
source was moved from the first to the second end in steps of
6 mm. At each position, about 5000 pairs of signals from PM1 and
PM2 were registered in coincidence. These signals were sampled
using the Signal Data Analyzer 6000A with a probing interval of
50 ps. As a trigger, a coincidence between signals from PM1 and a
reference detector was required. Such trigger conditions, together
with the 1.5 mm slit in a 20 cm long lead collimator, enabled us to
select annihilation quanta. The background of gamma quanta from
deexcitation of 22Ne is less than 0.1%. The size of the spatial profile
of such triggered annihilation quanta was determined to be about
2 mm (FWHM). Examples of two signals registered at PM1 and
PM2 are shown in Fig. 2. The upper (lower) panel of Fig. 2 shows a
signal registered in PM1(2) for the case when the scintillator was
irradiated at 7 and 23 cm to PM1 and PM2, respectively.

In the first step of the analysis the distributions of signal
amplitudes were investigated. Experimental results based on the

Fig. 2. Example of signals registered at two photomultipliers. Squares and circles
denote points at the signal for the voltage values of 60, 120, 180 and 240 mV. The
meaning of variables x, w, y, z is described in the text. (For interpretation of the
references to color in this figure caption, the reader is referred to the web version of
this paper.)

Fig. 1. Scheme of the experimental setup.
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signals registered at the center and end positions of the scintillator
strip are presented in Fig. 3 on the left and right panels,
respectively, where signals from PM1(2) are shown in blue (red).
They reflect the energy distribution of electrons scattered by
gamma quanta via the Compton effect. Due to the low atomic
number of the elements in plastic (carbon and hydrogen), the
maximum from the photoelectric effect is not seen. As expected,
the amplitude distributions for two PMs are very similar for
central irradiation, and differ significantly for exposition closer to
one of the PMs.

4. Application of the hit-position reconstruction method to
the experimental data

Though in principle all points from the sampled signal could be
used for the reconstruction, in practice, in the case of hundreds of
detection modules, the front-end electronics are able to perform
at only a few samples per signal. Therefore in the following, the
signals are probed at four fixed-voltage levels, providing eight
time values for each signal from PM1 or PM2 – enough to estimate
the resolution of hit positions.

4.1. Choice of variables

Based on the measurements of fully sampled signals, we
simulate a four-level measurement with sampling in the voltage
domain at 60, 120, 180 and 240 mV (see Fig. 2). Sampling times
from PM1(2) at a given level are denoted with x (y) and w (z), for
the rising and falling slope, respectively (Fig. 2) in total 16 values
for two signals, where only differences of times are physically
meaningful. The effective number of registered variables is thus
smaller by one and equal to N¼15. Hence, each data set contains
signals registered at a specified position, where single measure-
ment is represented by a 15-dimensional real number vector.

From the point of view of further reconstruction procedure, all
linear combinations of time values are equivalent to each other.
We use the following ones:

xi�yi; i¼ 1;…;4 ð8Þ

xi�xiþ1; i¼ 1;…;3 ð9Þ

xi�wi; i¼ 1;…;4 ð10Þ

yi�zi; i¼ 1;…;4: ð11Þ

They correspond to time difference of signals from two PMTs at a
given voltage levels (Eq. (8)), time differences of a signal from PM1 at
adjacent levels (Eq. (9)), and width of the signal on PM1 and PM2 at
given levels (Eqs. (10) and (11), respectively). According to this choice,
the jth measurement in the ith data set may be represented as
sðiÞj ¼ ½x1�y1; x2�y2; x3�y3; x4� y4; x1�x2; x2�x3; x3�x4; x1�w1;

x2�w2; x3�w3; x4�w4; y1�z1; y2�z2; y3�z3; y4�z4�.
The signals were registered in 50 ps steps (blue curves in

Fig. 2). In order to evaluate the time value at given thresholds,
interpolation must be applied. Due to the very high sampling rate,
results obtained with different interpolation methods (linear,
spline [32]) were found to be very close to each other. We used
the linear interpolation in order to minimize computational cost.

4.2. Number of effective degrees of freedom

According to the procedure described in Section 2, the PCA is
performed and subsequently the TV is determined as a function of
the number of variables. The result is shown in Fig. 4.

Two curves representing signals registered in two most per-
ipheral places are very similar. The minimal V of the χ2 statistics

Fig. 3. Distributions of the amplitude signals gathered at central (left panel) and left end (right panel) position of the strip. A sharp edge of the spectrum for the PM1 is due
to the triggering conditions, as described in the text. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this
paper.)

Fig. 4. Examples of the Total Variance determined as a function of the assumed
number of independent variables. Green points indicate the result for central
irradiation and black stand for the marginal one. The horizontal line indicates the
criterion for the determination of the minimum V and curves are to guide one's eye.
(For interpretation of the references to color in this figure caption, the reader is
referred to the web version of this paper.)
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(Vmin) is the argument of the TV function crossing the threshold
line, marked in red in Fig. 4. From Fig. 4, the Vmin value of 6 and
8 may be read for the data samples from the end and center
positions, respectively. To make sure that the condition TV40:95
is fulfilled in all cases, the Vmin value equal to 8 is selected for
further studies.

4.3. Validation of the normality of the collected data sample

The hypothesis of normality was tested for numbers of degrees
of freedom ranging from Vmin ¼ 8 to 15. The comparison of the
experimental distribution with the theoretical one was performed
based on the statistical test R defined in Eq. (4).

Fig. 5 presents results for the data collected by the irradiation of
the edge of the scintillator strip. The λ parameter is shown as a
function of V degrees of freedom of the theoretical χ2. The
minimum value of λ is obtained for 13 degrees of freedom and is
ca. 8. Large values of λð43Þ indicate that the data are not exactly
normally distributed. The λ parameter was evaluated for the
theoretical χ2 with 13 degrees of freedom for all positions. The λ
values vary between 7 and 12. From this analysis one infers that
the data in each set may be approximated with 13 independent
and normally distributed variables. We will follow this assumption
and investigate a simple hit-position reconstruction method based
on a MVN distribution of signals. However, in the future different
methods not necessarily fulfilling the normality assumption
should be considered, and compared with the presented one. In
the following the information about the means and covariance
matrices, for all data sets, and the estimated V of χ2 statistics will
be used to calculate the significance of assignments (p-values).

4.4. An example of the hit-position reconstruction

In the previous sub-sections it was shown that the collected
data samples approximately fulfill the assumption of normality
so it is worth trying to apply the method for the hit-position
reconstruction introduced in Section 2. Reconstruction is equiva-
lent to the qualification of the signal to one of the predefined data
sets established for the various positions along the scintillator.
Fig. 6 shows an example of the position reconstruction for the
signal created by the gamma hitting at known position, referred to
as true.

The distances d to all data sets were calculated according to
Eq. (1), and are marked in Fig. 6 as circles. The hit-position is
defined as the one for which distance d acquires a minimum

(full blue circle). In this example the reconstruction procedure
yielded a hit-position different by 1.8 cm from the true position
marked with red square. Knowing that the distance d is derived
from χ2 distribution with 13 degrees of freedom, the p-value of the
assignment of the signal to the best-matching data set may be
evaluated. The red dotted line in Fig. 6 indicates the maximum
acceptable value of dmax ¼ 27:7 corresponding to the p-value
threshold of 0.01. The statistical significance of the assignment of
a given measurement to the best-matching data set allows for the
filtering of the data sample. Because of the multiple interactions of
gamma quanta, the analyzed signal may be produced as a random
coincidence of two signals in different positions. Hence, the
p-value, or equivalently distance d, analysis helps to reject such
distorted signals and improve the reconstruction process.

4.5. Spatial resolution of the hit-position reconstruction

The reconstruction method was verified using signals from
all data sets from all the irradiation positions. Due to the fact
that each data set Si consists of about 5000 measurements, the
influence of the single measurement on parameters (mi, Ci) of set Si
is negligible. Hence, all signals in each data set Si were used to
evaluate the parameters of a MVN distribution defined by (mi, Ci).
The hit position was reconstructed for each signal using the
method presented in Section 2. Knowing the true hit-position
for each measurement, differences between the true and the
reconstructed positions (r) were evaluated (cf. Fig. 7).

In our method only the index of the best-matching data set is
found, hence the r acquires discrete values. The standard deviation
(σ) of r is equal to 1.05 cm. Results presented in Fig. 7 were
obtained after filtering data provided the p-value is larger than
0.01 and the amplitude of the signal is larger than 0.6 Amax, where
Amax corresponds to the amplitude at the Compton edge observed
at given position of irradiation (see Fig. 3). The last criterion is used
in order to reject signals with the small number of photoelectrons
which spoils the resolution and anyhow is discarded in the image
reconstruction in order to filter out the scattering of annihilation
quanta inside the diagnosed patient [18,19]. In comparison, the
proposed method using the lowest threshold (60 mV) alone, under
the same filtering conditions, gives 1.08 cm (σ) spatial resolution.
In the case of using the highest threshold level (240 mV) alone the
spatial resolution of 1.25 cm (σ) is obtained.Fig. 5. Parameter λ calculated for tested numbers of degrees of freedom.

Fig. 6. Example of position reconstruction for a gamma quantum hitting in the
center of the scintillator. (For interpretation of the references to color in this figure
caption, the reader is referred to the web version of this paper.)
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4.6. Time resolution of the event time reconstruction

The resolution of the time difference (Δt) between the signal
arrivals to the scintillator ends may be derived directly from the
previously calculated value of the spatial resolution,

σðΔtÞ ¼ σðrÞ 2
veff

ð12Þ

where veff denotes the effective speed of light signal in the used
scintillator strip. In the recent work [33], the speed of the light in
the scintillator was estimated to 12.6 cm/ns. Hence, the resolution
of (Δt) may be estimated to be about 167 ps (σ). This corresponds
to a twice better resolution of about 83 ps (σ) for the determina-
tion of the interaction moment of the gamma quanta hit the
scintillator (thit). The interaction moment is given by

thit ¼
tLþtR

2
� D
veff

; ð13Þ

where tL and tR are the arrival times to the left and right
photomultipliers and D is the length of whole strip. We assume
for the sake of simplicity that veff in Eq. (13) is known exactly.
Since the time difference Δt ¼ tR�tL, we have

σ2ðΔtÞ ¼ σ2ðtRÞþσ2ðtLÞ ð14Þ
and the resolution of thit based on Eq. (13) may be expressed as

σ2ðthitÞ ¼
σ2ðtRÞþσ2ðtLÞ

4
¼ σ2ðΔtÞ

4
ð15Þ

which implies that σðthitÞ ¼ σðΔtÞ=2.

5. Conclusions

In this paper a novel method for hit-position reconstruction in
plastic scintillator detectors was introduced. It was validated for
the application in a new Positron Emission Tomography based on
plastic scintillator strips [17–20]. The method can be applied to
detectors enabling sampling of signals in the voltage domain. The
distinctive feature of the proposed reconstruction technique is the
determination of the Mahalanobis distances of the multivariate
vector, representing the measured signal, from the vectors corre-
sponding to the mean of the signals in data sets determined for
known positions. The covariance matrix and the mean vector are
calculated separately for each position. The reconstruction algo-
rithm identifies the data set for which the Mahalanobis distance

acquires a minimum and reconstructs the hit position as that
where the identified data set was generated.

The procedure was tested using a large statistics sample of data
registered by a dedicated setup in 50 ps intervals. Experimental
setup provided irradiation of a chosen position in a plastic
scintillator strip with 511 keV gamma quanta. Sampling in the
voltage domain at four thresholds was simulated and each mea-
surement was represented by a 15-dimensional vector holding
information about the relative time values of signal's arrival to
both scintillator ends.

Using the introduced reconstruction procedure, the spatial and
time resolutions of the hit-position and event time for annihila-
tion quanta measured with a 30 cm plastic scintillator strip with
sampling of signals at two edges were determined to be about
1 cm and 80 ps (σ), respectively. It should be noted that these
resolutions can be slightly improved by decreasing smearing due
to the finite size of the beam (0.2 cm) and due to the 0.6 cm step
used for the determination of data sets.

The performance of the method has been validated on a single
scintillator strip. However, an independent test for about 20 strip
has been made and the results were stable in the sense of obtained
resolution (σ). Anyhow, in order to avoid inhomogeneity of
response in a full scale detector, separate calibrations of each
module (scintillator, photomultipliers and electronics channels)
will be provided. Moreover, the worsening of electronic perfor-
mance for a full scale detector will be limited since the readout
system is based on well recognized and tested components used in
the particle physics experiments e.g. HADES [34].

It was shown that the measured signals may be approximated
with a MVN distribution with 13 degrees of freedom. It is worth
noting that the developed statistical test is general and may be
incorporated in any other investigation where confirmation of
multidimensional normality is needed. Since the λ parameter (see
Eq. (5)) is greater than 3, the further improvements in spatial and
time resolutions can be achieved by applying different reconstruc-
tion methods where the assumption about normality is not
obligatory, e.g. artificial neural networks. Furthermore, the resolu-
tion can be still improved by the optimization of threshold levels,
an increase of their number, and enhancing light collection
efficiency by optimizing the shape of scintillators and usage of
silicon photomultipliers.
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