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Abstract

The Kraków-Katowice-KVI Few-Body Collaboration has provided large database
of the cross sections and analyzing powers in the sector of three-nucleon (3N) systems.
In this work, taking a step forward into the system composed of four nucleons (4N), the
experiment was performed with the BINA detector at KVI Groningen. The data were
obtained in deuteron-deuteron collisions at 160 MeV energy. The data were firstly pre-
analyzed, then the energy calibration, particle identification and track reconstructions
procedures were performed. Various two- and three-body channels were identified. For
the first time a detailed analysis of the data collected in the ball — the backward
part of the BINA — was performed with respect to energy and angular resolution and
detection efficiency. The three body dd→dpn breakup reaction was extensively studied
in the forward part of BINA. The differential cross section of the breakup reactions
were obtained within the quasi-free scattering (QFS) region for about 150 angular
configurations. The results have been compared to the very first calculations based
on the CDBonn+∆ potential in a single-scattering approximation (SSA). Shape of the
cross-section distributions for φdp=160◦ and φdp=180◦ is quite well reproduced by the
theoretical predictions. The results , significantly enriching the 4N database, are very
important for the development of theoretical description of the 4N systems dynamics.

Streszczenie
Pomiary grupy Kraków-Katowice-KVI dostarczyły obszernej bazy danych przekro-

jów czynnych i zdolności analizujących w sektorze układów trójnukleonowych (3N).
Niniejsza praca stanowi rozszerzenie tych badań na system złożony z czterech nuk-
leonów (4N), opisując eksperyment przeprowadzony w laboratorium KVI Groningen
z użyciem układu detekcyjnego BINA. Dane zostały zebrane dla zderzeń deuteron-
deuteron przy energii 160 MeV. Po wstępnej preselekcji zdarzeń, wykonane zostały
kalibracja energetyczna, identyfikacja cząstek oraz przygotowane zostały procedury
służące rekonstrukcji trajektorii cząstek naładowanych w kanale wyjściowym. Zident-
fikowane zostały różne 3- i 4-ciałowe kanały reakcji w zderzeniach deuteron-deuteron.
W tym eksperymencie po raz pierwszy wykonana została kompleksowa analiza danych
zarejestrowanych w detektorze Ball (rejestrującym cząstki rozproszone pod dużymi
kątami) z uwzględnieniem wydajności detektora oraz jego energetycznej i kątowej zdol-
ności rozdzielczej. Wyniki ilościowe otrzymano dla trzyciałowej reakcji rozszczepienia
deuteronu dd→dpn, której produkty były rejestrowane w przedniej części detektora
BINA. Przekroje czynne na tę reakcję zostały uzyskane dla obszaru quasi-swobodnego
rozpraszania, dla około 150 konfiguracji kinematycznych. Wyniki eksperymentalne
zostały porównane z pionierskimi obliczeniami teoretycznymi bazującymi na potencjale
CDBonn+∆, w przybliżeniu jednokrotnego rozpraszania (Single Scattering Approxi-
mation, SSA). Kształt uzyskanych rozkładów przekroju czynnego dla φdp=160◦ oraz
φdp=180◦ jest dobrze odtwarzany przez obliczenia teoretyczne. Wyniki te w znaczący
sposób wzbogaciły bazę danych dla układów 4N, co jest niezwykle ważne dla rozwoju
modeli teoretycznych opisujących dynamikę oddziaływania w układach 4N.
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Chapter 1

Introduction

The work presented in this thesis addresses one of the fundamental questions of physics,
the nuclear forces that hold the protons and neutrons together in atomic nuclei. It has
been a long-standing problem to understand the exact nature of nuclear forces. Yukawa,
in 1934, gave an idea of how the force between two nucleons could look like [1]. He
used the analogy of the Coulomb interactions where a quantum of electromagnetic ra-
diation (photon) is exchanged between two charged particles, mediating the interaction
between them. In case of the nuclear forces, there should also be a particle (boson)
governing the short range nuclear interactions. Taking the internuclear distance r ≈ 2
fm he predicted the mass of such a particle about 200 times the mass of an electron.
Having mass greater than electron but smaller than mass of a nucleon, Yukawa called
it a "heavy quanta" or a "U-quanta". And the term "meson" was first used by an
Indian physicist Bhabha [2]. After more than a decade, in 1947, Powell and his team
discovered experimentally the heavy type of particles, predicted by Yukawa. These
were called the pions [3].

After Yukawa’s meson-exchange theory and discovery of pions, tremendous amount
of efforts have been made to understand the force between two nucleon (2NF). The
most basic properties of the nuclear forces have been explored via nucleon-nucleon
(NN) and nucleon-deuteron (Nd) scattering experiments; these can be listed as (1)
the nuclear force acts within a finite short range, (2) within this finite range it has
an attractive and a repulsive part, (3) it is spin dependent, (4) contains non-central
part (tensor forces), (5) almost independent of the electric charge, i.e. the nuclear
force is of the comparable magnitude between neutron-neutron, neutron-proton and
proton-proton pairs.

Later on it was realized that the nuclear force can include not only a pion but also
heavier mesons and multiple pions. Work of Taketani et al. [4] showed that depending
on the internuclear distance, the type of mesons involved in reaction can be different.
At the range of about 2 fm, mainly the pions are involved. The intermediate range,
between 0.7 - 2 fm, is governed by two-pions exchange and heavier mesons such as ρ.
The smallest range below 0.7 fm can be due to even more heavier mesons such as ω
and multi-meson exchange. Modern potential are, however, based on phenomenological
description of the short-range part.

Various theoretical approaches have been developed to describe the exact form of
NN interaction. Today there exist the so-called realistic potentials based on "meson
exchange" theory, few of the most commonly used potentials are Nijmegen-I, Nijmegen-
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II [5], Argonne-V18 (AV18) [6], and CDBonn [7]. However, it is important to note that
the pion-nucleon coupling constant can not be predicted by these theories. The constant
is extracted from the experimental NN scattering database, using phase-shift analysis.
The coupling constants of the other mesons with nucleon are left as free parameters.
Each of the above mentioned potentials have about 40 or so free parameters and in
general the NN scattering observables obtained using different potential agree well with
each other. The quality of obtained potentials is usually found with χ2/d.o.f. ≈ 1.
when fitted to the NN scattering data.

Today, according to the standard model of the particle physics, the nuclear forces
are understood as the residual of the strong interactions between the constituent quarks
of a nucleon. In order to describe the strong interaction between quarks, the theoretical
framework of quantum chromodynamics (QCD) is utilized, yet not directly applicable,
at low energies, such as in this work, since the quarks are confined within hadrons.
Therefore a new theoretical approach, called chiral perturbation theory (ChPT), has
been introduced: the effective field theory, consistent with the symmetries of QCD,
relevant for the low-energy NN interaction. The NN scattering observables calculated
within ChPT are also of good quality and are comparable to those obtained using
earlier mentioned meson-exchange potentials [10,11].

All the above mentioned NN potentials are able to describe the interaction between
two nucleons exactly, including the binding energy of a deuteron. The ultimate goal is
to have theoretical description of the systems composed of a large number of nucleons
- at the heart of which lies the basic NN potentials.

However all the NN potentials fail even to describe the simplest three-nucleon sys-
tems, e.g. nucleon-deuteron (Nd) scattering observables or the binding energy of triton

lab

Figure 1.1: The Nd elastic cross section is presented in comparison with theoretical pre-
dictions. The long-dashed curve presents the calculation based on NN potential whereas the
solid curve is the predictions based on NN potential combined with the 3NF effect. The
short-dashed line presents the contribution of 3NF effect. Figure adapted from [8].
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Figure 1.2: Experimental binding energies of light nuclei are compared using Green’s func-
tion Monte Carlo calculations obtained with only a two-nucleon potential (AV18, blue/dark
gray) and with the addition of a three-nucleon potential (IL7, yellow/light gray). Figure
adapted from [9].

or 3He. It was soon realized that there are still some dynamical ingredients missing in
the theory - one of them is the so-called three-nucleon force (3NF) [12]. Adding 3NF
brings the theoretical predictions closer to the experimentally determined Nd elastic
cross section [8] (see Fig.1.1) as well as binding energies of light nuclei (see Fig.1.2).
The 3NF comes into action when there are three or more nucleons but not when there
are only two nucleons interacting. Existence of 3NF is due to the fact that the nucleons
themselves are not point-like objects but having an internal structure, as they are made
of the up and down quarks.

In fact the first 3NF, based on two-pion exchange, was already described by Fujita-
Miyazawa in 1957 [12], see Fig. 1.3. However the 3NF became a hot-topic in the
nuclear physics in last two decades. Various approaches (theoretical models) have been
developed to account for the 3NF effects (see Section 2.1.1), which are used together
with their compatible NN potentials. There are also other approaches to treat the 3NF
in a consistent way with the 2NF; one is the ChPT which accounts for the 3NF via
including higher order expansion terms in the calculations, and the other is so-called
the explicit ∆-isobar excitation 3NF which is combined with CDBonn NN-potential.

The 3NF effect can be very subtle depending on the studied phase-space of the
scattering kinematics. Therefore one needs a high precision data to trace it. The
importance of 3NF effects in nucleon-deuteron elastic scattering was studied in detail
in many experiments [13–28]. It turned out, that the complementary (to the elastic
scattering) study of the deuteron breakup (N+d→N+n+p) in collision with a nucleon
allows to investigate the reaction dynamics with a great detail. The Kraków-Katowice-
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Figure 1.3: An illustration of two-pion exchange mechanism involving a virtual N→ ∆→N
transition. Left: for two-nucleon, and Right: three-nucleon interaction. Figure adapted
from [32]

KVI collaboration have provided a large sets of Nd scattering experimental data with
a very high precision using the dedicated detection systems — namely SALAD and
BINA detectors [29–31].

Adding 3NF improves the overall description of the data by the theoretical calcu-
lations, however, certain discrepancies remain, even in description of the differential
cross section [33, 34]. In recent years, there have been attempts to resolve part of the
discrepancies, mainly the relativistic [35–37] and the Coulomb effects [28,38]. However
these two effects are encountered in a limited regions of the phase-space, the ques-
tions still remain whether we really understand the role of 3NF ? or are there other
dynamical effects ?

This work is a continuation of the previous systematic studies of few-nucleon scatter-
ing by the Kraków-Katowice-KVI collaboration, with a step forward into larger system
of four nucleons (4N). The present status of 4N studies is poor, theoretically as well
as experimentally. All 4N data that exist are mostly at low energy (see Fig.1.4) in the
dd elastic scattering domain [42,43] and the database in breakup sector is scarce [44].
It is expected to have larger contribution of 3NF effect in 4N system than in the 3N
systems. On the other hand, theoretically the 4N system is extremely difficult and
challenging, both technically as well as computationally. Before the rigorous calcula-
tions available for the 4N system, one may compare the quasi-free scattering (QFS)
data within dd→dpn breakup (neutron acting as a spectator) with the predictions for
the dp elastic scattering [41].

The outline of the thesis is as following. In the Chapter 2, theoretical aspects of
studies of a few-nucleon systems are presented briefly: approaches to describe NN and
3N interactions, the theoretical formalism including so-called Faddeev-Yakubowsky
equation; current status of calculations for 4N systems and, finally kinematic relations
for various reactions involved in the experiment. In the chapter 3, BINA experimental
setup is described . The chapter 4 covers details of the data analysis of dd→dpn
breakup reaction, starting from the preliminary analysis through various steps such
as energy calibration, particle identification, cross section normalization to the final
breakup cross section. The last chapter will be devoted to discussion of the obtained
results and their comparison with the "QFS calculations".
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Chapter 2

Theoretical background

This chapter gives a very short overview of the tools to describe the quantum mechani-
cal few-body (more precisely two, three and four nucleon) systems. Since the objective
of the presented work is an experimental investigation, a comprehensive coverage of all
the theoretical grounds is beyond the scope.

First, the theoretical tools to study the nucleon-nucleon (NN) and three-nucleon
(3N) systems will be presented. This includes the Lippmann-Schwinger equation for the
scattering problem and the Faddeev-formalism for exact treatment of the three-nucleon
problems. It is followed by discussion of the existing realistic models of NN potential
and three-nucleon force (3NF). Next, the recent progress towards the description of
the four nucleon (4N) system is presented. The last section will be devoted to discuss
kinematics of various outgoing channels in the dd collision in order to have an idea of
what part of the phase space (and detector acceptance) is of interest for a particular
final channel.

2.1 NN and 3N interactions
Interactions between subatomic particles, such as nucleons, are studied via the quan-
tum mechanical scattering problem, with the aim to describe the cross-section of the
scattering process, which is related directly to the transition operator (t). The t pro-
vides a link between a free asymptotic 2N state (i.e. free plane wave states in a wave
packet at a large distance from the interaction point) and the 2N scattering state. The
starting point is to look at the problem of a free particle, with initial quantum state |φ〉
coming from an infinite distance in space to the vicinity of a potential V. The particle
scatters due to the potential and continues to move away from V with a full scattering
state |ψ〉. At large distances |ψ〉 has asymptotics of free incoming wave |φ〉 + outgoing
(scattered) spherical wave. The Lippmann-Schwinger (LS) equation is most extensively
used tool to study such a problem, and it is given as follows [45]:

|ψ〉 = |φ〉+
1

E −H0 + iε
V |ψ〉 (2.1)

where E is the energy and H0 Hamiltonian of the incoming particle, and one takes
limit ε→ +0. One may formulate the LS equation in the form of transition operator,
t, satisfying:

t = V + V G0t (2.2)

11



12 2. Theoretical background

Figure 2.1: Visualization of the multiple scattering series presented in Eq. 2.4. The dashed
lines shows the potential V and two horizontal solid lines are for the free propagator G0

between two interaction. Figure adapted from [48].

where G0 is the free propagator (or the Green’s operator for the non-interacting system)
and is given as follows:

G0 =
1

E −H0 + iε
(2.3)

Note that t is a fundamental object for calculating scattering observables [45]. The
above presented LS equations are formulated for NN scattering. However, for the case of
three nucleons (3N), a different set of equations known as the Alt-Grassberger-Sandhas
(AGS) equations are used — these are generalized form of the Faddeev equations [46,
47].

In Eq. 2.2 t is on both sides of the equation and can be self-substituted, the iteration
will result in a so-called Born-series expansion as follows:

t = V + V G0(V + V G0t)

= V + V G0V + V G0V G0V + V G0V G0V G0V + . . .
(2.4)

Each term in Eq. 2.4 consist of a sequence of V and G0, what is a general structure
of interaction valid for any number of particles as presented in the Fig. 2.1. A further
and detailed description of the theoretical tools can be found in references [45, 49,50].

With the technical advancement in solving NN and 3N scattering problems and in
availability of the computational power, it has became possible to exactly calculate
the scattering observables in few-nucleon systems. The NN potential, input to the
scattering theory of NN and 3N systems, is derived in three different approaches: (1)
"the realistic potentials" — they are semi-phenomenological and are based on meson-
exchange mechanism, (2) models which origin in Chiral perturbation theory (ChPT)
— an equivalence of QCD for the low energy interaction, and (3) the coupled channel
approach — where one induces ∆ isobar excitation of the nucleons.

2.1.1 Realistic NN potentials

There exists many models of NN potential that can accurately describe the interaction
between two nucleons — some of the most commonly used are the Nijm-I and Nijm-
II [5], Charge-Dependent (CD) Bonn [7], Argonne-18 (AV18) [6]. The main difference
between all these potentials lies in the method how they incorporate the off-shell be-
havior of the NN interactions. Note that all the NN potential models have about 45
free parameters that are fitted to high precision NN scattering data with reduced χ2

close to 1, at the energy scale below pion production. In order to treat a 3N system,
one needs to combine these NN potentials with the three-nucleon force (3NF) models,
for example a 2π-exchange based 3NF, Tucson Melbourne-99 (TM99) model. It has a
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cutoff parameter ΛTM (in the units of pion mass mπ) which can be adjusted, for the
NN potential, to reproduce the triton binding energy. There are also other models of
3NF, for example Urbana-IX [51] and Illinois [9] which are used in combination with
the AV18 NN potential. An overview with a brief history of various models NN po-
tential can be found in [52]. NN potentials in combination with the 3NF models, have
also been used to perform an ab initio calculations to describe the properties of light
nuclei [51,53].

2.1.2 Chiral perturbation theory (ChPT)

The nuclear forces, according to the Standard Model, are understood as the residual
of the strong interaction between quarks inside nucleons, and the associated dynamics
is governed by quantum chromodynamics (QCD). However at low energy, the QCD
becomes non-perturbative. In other words, due to confinement, the quarks and gluons
are no longer the relevant degrees of freedom. In 1990, Weinberg suggested that an
effective field theory (EFT), with nucleons and pions as the effective degrees of freedom,
can be derived in such a way that terms in Lagrangian are consistent with the (broken)
chiral symmetry (and in fact all the other symmetries) of QCD. This approach is
known as ChPT. Applying the ChPT Lagrangian to NN scattering results in an infinite
number of Feynmann diagrams. However, taking a systematic expansion in terms of
(Q/Λχ)ν , — where Q is the typical momentum of the nucleons, Λχ ≈ 1 GeV is the
chiral symmetry breaking scale, and ν ≥ 0 is the order of expansion — allows to point a
finite number of diagrams at given order. One can describe the underlying interaction
mechanism, schematically for each expansion order, via diagrams presented in Fig. 2.2.
The detail description of ChPT can be found in references [54–57].

�
����

����
�

���

��

���	
�� ���	
�����	
��

Figure 2.2: Hierarchy of nuclear forces in ChPT. Solid and dashed lines denote nucleons
and pions, respectively. Solid dots, filled circles and filled squares refer, respectively, to the
leading, subleading and sub-subleading vertexes in the effective Lagrangian. The crossed
square denotes 2N contact interactions with 4 derivatives. Figure adapted from [29].
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Figure 2.3: Two-baryon coupled-channel potential. A thin vertical line denotes a nucleon,
a thick vertical line a ∆ isobar, and a dashed horizontal line the meson exchange. Figure
adapted from [58].

The Leading Order (LO) and Next-to-Leading Order (NLO) covers only the two
nucleon (2N) force. As the order of expansion increases, the 3NF and 4NF emerge.
Advantages of the ChPT are: (1) the 3NFs are derived and taken into account in a
consistent way, i.e. they emerge naturally in higher order expansion and, (2) it allows
a good control over systematic uncertainties of the predictions. Similar to the case
of NN potentials, in ChPT also there are certain free parameters, known as the low
energy constants (LECs) which values are taken from the π-N and NN scattering data.
So far the ChPT allows to study 3N dynamics up to N2LO.

2.1.3 Coupled-channel potentials (CCP)

The Lisbon-Hannover theory group have developed a coupled-channel potential by
including a virtual ∆ isobar excitation of a single nucleon in the CD Bonn NN poten-
tial [58], see Fig. 2.3. The ∆ is considered as a stable baryon. This approach of NN
interaction is valid for energy scale well below the pion production and it is based on
exchange of all types of mesons, i.e. π, ρ, σ and ω. Similar to the ChPT approach,
the advantage of CCP is that it treats the 3NF in consistent way along with the NN
interaction via including the short-range (heavier mesons and multi-pion exchange).
Within CCP approach, the Lisbon-Hannover group managed to include, for the first
time, the (shielded) Coulomb interaction into the calculations of 3N systems [59]. The
predictions obtained for the dp quasi-free scattering (QFS) withing the three-body
dd→dpn breakup process are based on the CCP approach, see Chapter 5.

2.2 4N interactions - a step forward

As compared to the 3N systems, the 4N systems have richer structure. Study of 4N
system opens possibility to study new dynamical effects such as four nucleon force
(4NF), though the ChPT theory predicts a hierarchy as 2NF � 3NF � 4NF. On the
other side, the effect of 3NF are predicted to be enhanced in 4N systems in comparison
with the 3N system.
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Figure 2.4: The dd→dpn breakup diagram under the Nd single-scattering approximation.
The operator U1 stands for the full Nd transition operator. Figure made from private com-
munication with A. Deltuva.

Technically, the 4N system can be divided into two types of cluster, 2+2 and 3+1.
The cluster of 3+1 can be further divided as (2+1)+1, thus in total it sums up with all
possible permutations of the involved nucleons into 18 structures. This indicates that
the problem of describing the 4N system interaction is even more difficult than the 3N
system interactions, both technically as well as computationally. The mathematical
tools to study the 4N interaction is the generalized form of the Faddeev formalism to
the A≥4 number of particles, known as the Faddeev-Yakubowsky equations [60]. The
exact treatment of the interaction in 4N system was not possible until now when the
calculations at low energies became feasible [61–63]. Recently, the exact calculations
were performed for two-body final channels in dd scattering at low energy, above the
breakup threshold [64]. As one goes towards higher energy, such as the work described
in this thesis, the number of partial waves needed for the convergence increases pre-
cluding so far to perform exact calculations. However, a simplified method can be
applied for dd→dpn reaction near the so-called quasi-free (QFS) dp scattering.

Basing on the expectation that the Nd single-scattering approximation (SSA) may
be reasonable near QFS conditions, a very first SSA calculations were prepared by A.
Deltuva for the experiment described in this thesis [65]. The largest contribution to
the dp QFS process was taken via one-term calculation, that is, the target deuteron
breaks and its proton is undergoing all sorts of interactions (for example exchange of
protons between p and d) with the beam deuteron, while its neutron is acting as a
spectator, see 1st term diagram in Fig. 2.4. Note that the CD Bonn + ∆ potential
was taken into the calculations with enough partial waves (j2N <= 5, j3N <= 27/2),
however, without inclusion of Coulomb effects. The calculations were also performed
by including all four terms (all 4 diagrams in Fig. 2.4), let’s call it four-term calculation
and the comparison of these two version of calculations, with the data, are presented
in Ch. 5.
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2.3 Reaction kinematics
In the deuteron-deuteron (dd) collision at energies below the pion production threshold,
various channels can be identified on the basis of particle identification and kinematic
relations. The possible reactions, with a pure hadronic signature, are as follows:

(1) d+d→d+d . . . elastic scattering

(2) d+d→d+p+n . . . three-body breakup

(3) d+d→d+p+nspectator . . . breakup: quasi-free scattering (QFS) configuration

(4) d+d→3H+p . . . neutron transfer

(5) d+d→3He+n . . . proton transfer

(6) d+d→p+p+n+n . . . four-body breakup

The first three channels are of a special interest for the presented work. In the case of
the transfer channels, only the identification was performed with the purpose of future
interest in a data analysis. The four-body breakup reaction dd→ppnn is out of the
scope of this thesis and therefore will not be discussed. The kinematical relations for
various channels of interest are discussed in the following subsections.

2.3.1 Elastic and quasi-free (QFS) scattering

In an elastic scattering process, the two colliding particles remain intact, but their
momenta are changed. The momentum conservation requires that all the three mo-
menta, one for the projectile (~p1) and the other two for the final state (~p3 and ~p4) are
within a plane — resulting with a co-planarity condition formulated on the basis of
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Figure 2.5: The kinematical relations of dd elastic scattering process; left: a relation between
polar angles of the two outgoing deuterons, and right: kinetic energy of the deuteron versus
it’s polar angle. Part of the curves drawn as dashed line are out of the detector acceptance;
the energy threshold for deuterons registered in wall, Emin
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Figure 2.6: Kinematic relations of the dp elastic scattering at 157.7 MeV, description of
the figures is analogous as in Fig. 2.5 except here both the scattered particles are possible to
detect in the wall. The energy threshold for registering of the proton is also indicated.

the azimuthal (φ34 = φ3 - φ4 ≡ 180◦). The final state is described completely by one
kinematic variable, for example E3, E4, θ3 or θ4: if only one particle is detected at a
given polar angle (θ3), the two-body kinematics determine strictly an angle (θ4) of the
second one as well as their kinetic energies. The calculated relativistic kinematical re-
lations between scattering angles and the energies of the elastically scattered deuterons
are presented in Fig. 2.5.

The quasi-free scattering (QFS) occurs when one of the colliding deuteron is scat-
tered by the proton1 of another deuteron while its’ neutron is acting as a spectator [66].
The deuteron is a simplest bound state of nucleons with a very small binding energy
(2.224 MeV), therefore with a beam energy of 160 MeV, the constituent nucleons of
the colliding deuterons are seen as if they are free. The QFS process can be divided
into two types; (i) the beam deuteron is scattered on proton of the deuteron target,
let’s call it dp-QFS, and (ii) the proton of the beam deuteron is scattered on deuteron
target, let’s call it pd -QFS. For the dp-QFS, the reaction energy will be about 157.7
MeV, while in the energy in the latter case will be about 77.7 MeV (about half the
beam energy). For the present work, only the dp-QFS is considered for the cross sec-
tion studies due to the kinematics and the forward wall acceptance. Fig. 2.6 shows
the kinematical relations for the dp-QFS scattering in a situation when the neutron
spectator is at rest in the laboratory frame.

Before the rigorous calculations of the observables become available for the 4N
systems, the cross section data obtained for QFS can be compared with prediction
based on Nd single scattering approximation (SSA), what makes the reaction very
interesting and worth to study.

1Since the detection system allows to detect coincidences of two charged particles, QFS with proton
acting as a spectator will not be discussed.
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,

Figure 2.7: A schematic view of the breakup reaction with indicated momenta of the in-
coming deuteron (~p ′d) and of the three outgoing particles, the deuteron (~pd), the proton (~pp
) and the neutron (~pn). The polar (θd and θp ) and azimuthal (φd and φp ) angles of the two
detected charged particles are defined in the chosen reference frame, as well as their relative
angle φdp = φd - φp.

2.3.2 Three-body breakup

The dd→dpn breakup kinematics, with three free particles in the final state, offers
opportunity to explore the phase-space more selectively to study and pin-down various
dynamical effects of the underlying nuclear forces. The three particles can be described
completely with 9 variables, namely the polar θi and azimuthal angles φi as well as
their energies Ei, with i being d, p and n. The scattering angles are defined in Fig. 2.7.
To be in consistent, the subscript "d"("p") will be assigned to describe the deuteron’s
(proton’s) angles and energy. The energy and momentum conservation laws for the
breakup reaction are given by the following equations;

E0 = Ed + Ep + En −Q,
~p0 = ~pd + ~pp + ~pn

(2.5)

where, E0 (~p0) denotes the kinetic energy (momentum) of the deuteron projectile,
Ed, Ep and En (~pd, ~pp and ~pn) refers to the kinetic energies (momenta) of the three
outgoing particles, deuteron, proton and neutron respectively, and the Q-value (energy
released) is the binding energy of deuteron, indicated as Q = -2.224 MeV. In the case
of unpolarized particles, the system has, in addition, an axial symmetry. The BINA
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detector allows one to detect scattering angles and energies of charged particles. If one
takes into account the above conservation laws, and additionally a relation φdp = φd
- φp, the variables θn, φn and En of the neutron can be eliminated. The three-body
final state is then described by the kinematical variables of the deuteron and proton.
The number of independent variables reduces to the following five: Ed, Ep, θd, θp and
φdp, while Ed and Ep are not really independent, see below. Relation between these
variables (in the non-relativistic framework) is given as follows [67]:

(md +mn)Ed + (mp +mn)Ep − 2
√
m0mdE0Ed cos θd − 2

√
m0mpE0Ep cos θp

+2
√
mdmpEdEp cos θdp = mnQ+ (mn −m0)E0,

(2.6)

where:
cos θdp = cos θd cos θp + sin θd sin θp cos(φd − φp),
m0, md are the deuteron masses,
mp is the proton mass,
mn is the neutron mass.
If one assumes m0 = md ≡ 2m and mp = mn ≡ m, Eq. 2.6 simplifies to:

3

2
Ed + Ep −

√
E0Ed cos θd −

√
2E0Ep cos θp +

√
2EdEp cos θdp =

Q− E0

2
(2.7)
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The above equation represents a 5 dimensional surface (called phase-space) in the 9-
dimensional momentum space. For a chosen angular configuration — defined by two
polar angles θd, θp and a relative azimuthal φdp angle— the relation between Ed and Ep
describes a so-called "kinematical curve". Examples of a few kinematical relations are
presented in Fig. 2.8. The S -variable indicates the arc-length along the kinematics and
is expressed in the energy units. A point corresponding to S=0 is chosen arbitrarily at
the minima of Ed or Ep, in this work we choose the notation with S=0 at the minima
of Ep. Note that the QFS process, mentioned in the previous section, is in fact a
limiting case of the three-body breakup process, where the energy of the 3rd particle
(here neutron) is set to be minimum [66,68].

2.3.3 Transfer channels

In this process, a nucleon is transferred between the projectile and the target. This
accounts for two different possibilities, the proton transfer channel (d+d→n+3He)
and the neutron transfer channel (d+d→p+3H ). The processes are described by the
two-body kinematics. The kinematical relations for the transfer channels are nearly
the same and therefore only one (for the neutron transfer channel) is presented in the
Fig. 2.9. Having twice the electric charge as compared to the triton (and of course
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Figure 2.9: The kinematical relations for the neutron transfer reaction; left: a relation
between the polar angles of the two outgoing particles, and right: the kinetic energy of the
particles is presented as a function of their polar angles. The proton transfer channel is not
much different and therefore one can refer to this one for both the transfer channels.

almost the same atomic mass), the 3He particles would loose about twice as much
energy as triton while traversing from target to the E-detector. Therefore the energy
threshold in wall is about 35 MeV and 70 MeV for 3H and 3He respectively.



Chapter 3

Experiment

The experiment was carried out in April-2011 at Kernfysisch Versneller Instituut1
(KVI) in Groningen, the Netherelands. The deuteron beam was provided by the super-
conducting cyclotron AGOR (Accelerator Groningen ORsay) at kinetic energy of 160
MeV and was impinging on a liquid Hydrogen (LH2) and liquid Deuteron (LD2) tar-
gets. A low beam current (about 5 pA) was used in order to keep the level of accidental
coincidences possibly low. The reaction products were detected using Big Instrument
for Nuclear Polarization Analysis (BINA) [69] which inherits a lot of features from its
predecessor, the Small-Angle Large-Acceptance Detector (SALAD) [70]. The BINA
detector was designed to study few-body scattering reactions at medium energies.

In this chapter the most important instruments are described which have been used
in the experiment.

3.1 AGOR cyclotron and beam lines

Fig. 3.1 presents a floor plan of the experimental area including the AGOR cyclotron
and the experimental setups. Technical details of the AGOR cyclotron can be found
in the references [68,71].

For the presented work, the beam of 160 MeV deuterons was focused to a 1 mm
spot on a liquid deuterium target (LD2). The beam which passed through the target
without interaction was stopped in a beam dump coupled with the Faraday Cup (FC)
for beam current measurement.

3.2 The BINA detector

The BINA detector was assembled in 2004, as a result of collaboration between KVI and
Vrije Universiteit Amsterdam [69]. During the period of 2005-2011, in collaboration of
KVI with Polish physicists, it provided a large sets of data to study few-body nuclear
physics. In 2012, BINA was transported to the Cyclotron Center Bronowice (CCB) in
Krakow, Poland, and was successfully put into operation. The BINA setup allows to
register coincidences of two-charged particles in nearly 4π solid angle, making possible
to study almost full phase-space of breakup and elastic reactions. The detector is

1Now known as KVI-CART, Center for Advanced Radiation Technology

21



22 3. Experiment

Figure 3.1: Floor plan of the cyclotron vault and the experimental areas. The AGOR
cyclotron, beam line with analyzing magnets, and in the top area the BINA detector and the
Big Bite Spectrometer are presented.



3.2 The BINA detector 23

Figure 3.2: A side view of BINA. The top panel shows a photograph of BINA side-view and
the bottom one presents schematic drawing of the forward wall and the backward ball.
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divided into two main parts, the forward wall and the backward ball, see Fig. 3.2.
Each of the detector parts are briefly described in following subsections.

3.2.1 Forward wall

The forward wall is composed of a three-plane multi-wire proportional chamber (MWPC)
and telescopes formed by two crossed layers of scintillator hodoscopes (vertically placed
thin transmission-∆E strips and horizontally placed thick stopping-E bars). The for-
ward wall allows to detect a charged particle scattered in the forward direction with a
polar angle (θ) in the range of 10◦−32◦ with full azimuthal angle (φ) coverage, and ex-
tending this range up to θ = 37◦ with partial azimuthal angle coverage (due to corners
of square-shape active region of the MWPC). A forward-scattered charged particle,
passes through the MWPC — allowing a precise angular reconstruction, then it passes
through the transmission-∆E detector — where it leaves a small fraction of it’s energy
and, finally, the particle is stopped in the E-detector loosing all it’s remaining energy.
Both, the MWPC and the hodoscopes, have a central hole to allow for the passage of
beam particles to the beam dump. Below the detectors are described in more details.

Multi-Wire Proportional Chamber: The MWPC is used for reconstruction of the
emission angle of a charged particle produced in the target and flying in the forward

285 (target to the first wire-layer of MWPC)

309 (target to the last wire-layer of MWPC)

12 (separation of two layers in MWPC)

379.5 (target to �E)

534 (target to degrader holder)

751.991 (target to inner side of E curvature)

MWPC

target

deltaE

degrader

holder

E

2

note: all the distances are in mm

Figure 3.3: Dimensions and distances between various wall components and their distances
from the geometrical center of target (ideally the reaction point). The picture is not to scale.
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Figure 3.4: A panoramic photograph taken from the target location. The MWPC together
with it’s electronic cards (amplifier and discriminator) mounted on it, are visible in the center.
The ∆E is visible (temporarily shifted out of its nominal position) on the right hand side of
the picture. E-detectors are visible on the left side, behind MWPC cables.

region. It is installed at a distance of 29.5 cm from the target position and has an
active area of 38×38 cm2. The chamber consists of 3 planes, X, Y, and U, which
are parallel arrays of equally-spaced (2 mm distance between any two adjacent wires)
anode wires to readout the positions of the scattered particles. The anode wire planes
are sandwiched between two parallel cathode frames, made of sprayed-graphite coated
mylar foils with thickness of 25 µm, that are connected to a high voltage of -3150 V. The
distance between two adjacent wire planes is about 12 mm. For details, see Fig. 3.3.
With such an arrangement, the reaction is seen as almost point-like from the MWPC
planes, allowing reconstruction of emission angles with a precision as high as 0.5◦.

There are 236 parallel horizontally (vertically) placed wires in Y (X) plane, wheras
the U plane contains total of 296 wires placed diagonally at an angle of 45◦ with respect
to the former ones. The X and Y planes allow one to calculate the spatial co-ordinates
of a detected charged particle whereas the U plane helps to reduce ambiguities in the
reconstructed co-ordinates. An electro-negative gas mixture (80% of CF4 and 20%
of isobutane), with a pressure of about 2-3 mbar, was utilized to operate the wire
chamber. When a charged particle passes through the active area of the chamber, it
ionizes the gas and as a consequence, the wires in the detection region produces a signal
of detection. The engineering details of the MWPC and it’s operational properties can
be found in the reference [72].

The ∆E-E telescopes: The hodoscope is composed of two layers of plastic scin-
tillator arrays, the ∆E and the E. The ∆E array is made of vertically placed thin
plastic strips with the dimension of 0.2×3.17×43.4 cm3 each. The E array is made of
20 horizontally placed thick bars, out of which the central 10 E-bars were used during
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the experiment presented in this work. Each of the central E-bars has trapezoidal
cross-section and the dimension of (9-10)×12×220 cm3. They form together a part
of a cylinder whose center coincides with the geometrical center of the target. The
cylindrical shape reduces the so-called "cross-over events" (particle passing through
two adjacent bars). The rest of the 10 E-bars, placed above and below the central
cylindrical array, form a symmetric flat wing-like array with each bar in rectangle-
cubic shape and a dimension of 12×12×220 cm3. The latter can be used for detecting
the secondary scattered particle for polarization-transfer experiment (not used in the
present work).

Both, the ∆E and the E hodoscopes are made of BICRON-408 plastic scintillator
material. The physical constants of the material are given in Tab. 3.1. The E-detector
is thick enough (12 cm) to stop protons (deuterons) with energy below 140 MeV (180
MeV). On the other hand, due to different energy losses in materials between the target
and the E-detector, the protons (deuterons) with initial energy below 20 MeV (25 MeV)
will not reach the E-detector.

Each scintillator of the BINA setup is supplied with two photo-multiplier tubes
(PMTs) at each ends of it via a light-guide. In case of an E-bar, the signals produced
by two PMTs (when a charged particle is detected) are correlated. This correlation
allows to detect the hit position of a detected particles — including neutrons, however
with a very low efficiency compared to the charged particles. In the case of the ∆E-
strips, no such correlation between PMT-signals was possible, because each ∆E-strip
was cut into two in the middle of it’s length. An exponential correction of the obtained
ADC signal of ∆E was applied to compensate for the light attenuation along it’s length.
This improved the ∆E-E spectrum for the particle identification purpose. The Fig. 3.5
shows the individual segments (or telescopes) of the ∆E-E hodoscope with their polar
angular coverage.

The energy deposited by a particle in ∆E depends on it’s type (charge and mass)
and it’s incident energy. Therefore, when the ∆E and E signals, from a given scattered
particle, are combined, it allows to identify the particle type (i.e. proton, deuteron,
triton etc.) as well as to measure it’s total energy.

BICRON Decay λmax Lt H/C ρ nc

model (ns) (nm) (cm) ratio (g/cm3)

BC-408 2.1 425 380 1.104 1.032 1.58

BC-444 180 428 180 1.109 1.032 1.58

Table 3.1: The physical constants of BICRON plastics. Here, Lt is the light attenuation
length, λmax is the peak wavelength of the generated light, H/C is the hydrogen-to-carbon
ratio in the chemical composition of the plastic, ρ is the density of material and nc is the
refractive index.
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Figure 3.5: The segmented view of a quarter of the hodoscope. The calculated polar angular
range for each telescope are also shown as well. A dashed-line arc presents the beam-pipe
shadow (central hole). The short letters U, D, L and R stand for up, down, left and right,
respectively to indicate location of a telescope on the hodoscop.

3.2.2 Backward ball

The backward ball is made out of 149 phoswich2 elements. It is capable of detecting
charged particles scattered with polar angle θ in the range of 40◦ to 165◦ with a full
coverage in azimuthal angle (φ) (except gaps for the target-holder entrance at θ = 100◦

on top of the ball and vacuum pipe along beam axis at θ = 180◦). The shape and
the construction of the inner surface of ball can be in a common way compared to
the surface of a soccer ball — it is a finite normalized tight frame (FNTF) [73] and
is completed with 20 identical hexagon and 12 identical pentagon structures. These
polygons are further divided into identical triangles, thus reducing the pentagon into
five triangles and the hexagon into six triangles (see Fig. 3.6). Each triangle represents
here a single ball element (phoswich detector).

Shape of one single element is like a triangular prism with it’s geometrical cross-
section increasing along it’s thickness as one moves outward (away) from the ball center

2A phoswich (phosphor sandwich) is a combination of scintillators with dissimilar pulse shape
characteristics optically coupled to each other and to a common PMT.
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Figure 3.6: The left panel shows a soccer ball with it’s surface complete with hexagons and
pentagons (refer text for detail). On the right panel a model of the backward ball including
target-holder entrance, forward exit window and beam-in pipe is shown.

in order to form the structure without gaps between the elements. The ball is acting
simultaneously as a vacuum chamber and as a detector. Due to vacuum and absence of
additional material or structure (except the target frame and the target window foil)
inside the ball, the detected particle didn’t suffer any significant energy losses3. In this
way the ball allowed to detect particles with very low kinetic energies. The dimension
of sides of a triangle face depends on the polygon shape (penta- or hexa-) to which it
belongs. In hexagon, the triangle is equilateral (all sides with same size) while the one
in pentagon is isosceles triangle (only two sides are the same, a = b = 1.17×c), see
Fig. 3.7.

Each ball element is composed of two different types of plastic scintillators glued
together (phoswich detector), a slow part from 1 mm thin BC-444 plastic and a fast part
from BC-408 plastic. The physical parameters of these plastic scintillators are given
in the Tab. 3.1. The thickness of the fast scintillator part is not the same throughout
entire ball region. Below θ < 100◦ the detectors are of 9 cm thickness, while rest of the
elements are of 3 cm thickness. Such a variety of thicknesses is due to energy difference
between particles scattered at different polar angles. All the elements were painted
with white color and glued with each other making the ball sphere (see Fig. 3.8).

The opening front window of the ball was made of thin Kevlar cloth of 250 µm
combined with an Aramica foil of 50 µm [70]. It was glued to a metal ring holding the
beam-pipe and attached to metal frame of the ball (see Fig. 3.8). This thin window
is strong enough to hold the vacuum inside the ball allowing the forward scattered
particles to pass through it with a very small energy-loss.

Taking into account the regions free of detector elements reserved for target holder
entrance and the beam-pipe, the backward ball is left with 149 elements, see Fig. 3.9.
The vacuum inside the ball down to 10−6 to 10−7 mbar was achieved during the mea-
surements.

The granularity of the ball elements is poor compared to the forward wall. One
single element covers an angular range as large as ±20◦, in both φ and θ direction.

3Note that there is also a thin cylindrical aluminum foil used as a thermal shielding around the
target cell.
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(a) (b)

Figure 3.7: A schematic view of the ball elements; (a) shows the two basic building blocks
of the ball — the penta- and hexa- structures, and (b) shows details about a single phoswich
ball element.

Moreover, the white paint appeared to be partially transparent, in consequence the
scintillation light escaped to neighboring elements. Therefore, it was necessary to
consider a cluster as a "basic element" instead of one single scintillator in the track
reconstruction procedure. A signal from the slow phoswich component was difficult
to detect due to a baseline fluctuations. Thus a particle identification was done only
with the use of the wall detector and the kinematical constraints for the dd elastic
scattering.

(a) (b)

Figure 3.8: Photographs of backward ball parts: (a) the ball elements glued together at the
time of it’s construction, and (b) the forward opening window.



30 3. Experiment

Figure 3.9: Details of the engineering design of the backward ball of BINA. All the distances
between components and their sizes are shown in mm.
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3.2.3 Electronics

The deuteron-deuteron collision may lead to several outgoing channels (See Section 2.3),
out of which the elastic and the three-body breakup channels (registered as a single
charged particle or a coincidence of two charged particles) are the most useful for
this work. Due to their different cross-sections, the rates of events of elastic and of
breakup processes can be different. Therefore one has to identify and selectively re-
duce (prescale) their rates. To do so, various trigger conditions, with appropriate
pre-scaling factors, were prepared. These conditions were based on hit multiplicity in
three groups of photo-multiplier tube (PMT) signals; left-hand side PMTs of E-detector
(ML), right-hand side PMTs of E-detector (MR) and all ball PMTs (Mball). Based on
that, the registered three different types of events were as follows:

�E EMWPCball

active splitter

CFD ADC

scalers TDCtrigger

logic

RIO III

controller

memory

buffer

amplifiers

&

discriminator

cards

PCOS III

mass

storage
online analysis

Figure 3.10: Simplified scheme of the electronics readout system of BINA detector setup.
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1. Trigger T1 ≡ ML ≥ 2 OR MR ≥ 2
Coincidence of two charged particles registered in wall (wall-wall coincidence).

2. Trigger T2 ≡ Mball≥ 1 AND (ML ≥ 1 OR MR ≥ 1)
At least one particle registered in wall and at least particle registered in ball (wall-
ball coincidence).

3. Trigger T4 ≡ Mball ≥ 1 OR (ML ≥ 1 OR MR ≥ 1)
A minimum bias trigger, with at least one particle registered in the whole setup
(single).

Each of the triggers was downscaled by a factor 2x, where x=0 for T1, x=3 for T2 and
x=5 for T4. A detailed description of the electronics, read-out and data acquisition
can be found in references [74]. Here, only a simple electronics scheme of the setup
is presented, see Fig. 3.10. First, the PMT signals were split into two; one of them
was sent to Analog-to-Digital Converter (ADC) input for integration of the collected
charge (equivalent to the energy of the detected charged particle) and the second one
to the constant fraction discriminator (CFD). The output of CFD, then, was used for
three purposes; to record rates into scalers, to store "start" time of the individual pulse
in Time-to-Digital Converter (TDC) and for trigger definition.

Rates of single events were relatively larger than coincident events and therefore
both the types of events were downscaled separately such that the total trigger rates
were reduced to a level accepted by the DAQ. After downscale and proper delay, the
logic sum of all triggers was used for defining the common signals for read-out, i.e.
gates for all the ADCs and PCOS III as well as a common "stop" for all the TDCs.
The hits registered in MWPC were read out via PCOS-III system, which was equipped
with amplifiers/discriminators cards mounted directly on the chamber and coupled
with latch modules. The PCOS-III generated a readout request if the signal, due
to the passage of charged particle through any of MWPC planes, exceeded a certain
threshold.

For every accepted trigger, the digitized pulse height from ADCs and the time
information from TDCs were transferred using FERA bus to memory buffer units and
to the front-end computer for readout. The corresponding MWPC hit information for
each events, encoded into FERA format, was also inserted into the data stream for
readout and combined into a single event which was stored on a mass-storage device.

3.3 Target system

Three types of targets were used in the experiment; solid (a polymer) CH2, zinc sulphide
(ZnS), and liquid deuterium (LD2).

The ZnS target together with an empty cell were used to optimize the beam position
and optics whereas CH2 was used to make an online check of the experimental setup
and optimize the settings (gain matching etc.). All the targets were mounted vertically
on a holder in the center of the backward ball. The holder could be moved remotely
by a pneumatic system. The holder moves along an axis which is inclined (about 10◦)
with respect to the vertical axis resulting in asymmetric number of detected particles
between upper and lower half of ball. The target cell was thermally shielded by a thin
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cylindrically-shaped aluminum foil with an opening for forward scattering part. This
shielding caused asymmetric energy losses. More details can be found in Sec. 4.4.2.

Operating the liquid target requires additional equipment such as a cryogenic sys-
tem, a heater, a gas-flow system, temperature sensors, and a temperature controller
unit. The cell used in the experiment (see Fig. 3.11) is made of high purity Aluminium
to optimize the thermal conductivity. The windows were covered by a transparent
Aramid foil of 4 µm thickness. The typical operating temperature was 17 K at a pres-
sure of 256 mbar for deuterium. The nominal thickness of the cell was 6.0 mm. In
addition, the thickness of the target was increased about 0.6 mm due to bulging of the
cell which leads to the thickness, ρh, of 107.2 ± 3.3 mg/cm2, where, ρ is the density
and h is the length of the target [75]. The size of the bulging was first estimated via a
measurement of the target thickness as a function of a pressure at a room temperature.
At the operational pressure the target had a bulging of 1.3 mm. However, the foils
become more rigid as they cool down. So, the actual target thickness was obtained
by comparing the cross section measurements at KVI between solid and liquid targets.
The bulging at the operational temperature is found to be about 50% of the bulging
at room temperature.

The procedure of filling the liquid target cell is a multi-step procedure. First, the
empty cell is placed in the vacuum chamber, and deuterium is transported to the cell
in a gas form at a constant pressure. Then the cell is cooled down near the triple point
of the gas. As soon as the gas-to-liquid phase-transition occurs, an empty volume is
created in the target cell. This volume is again filled with a new portion of gas, and
procedure is repeated until the cell is completely filled with liquid. Usually it took
about 11 cycles to fill the target. It is very important to keep the cell temperature well
below the threshold of liquid-to-gas transition.

Figure 3.11: The target cell: (left panel) stand-alone; (right panel) mounted inside the
BINA, backward ball. The cell is half filled with liquid deuterium. The thin Aluminum
cylinder around the target cell isolates the cold head from the surrounding environment.
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3.4 Beam intensity monitor
A Faraday cup was mounted at the end of the beam-line, to stop the beam and to
measure it’s intensity. The Faraday cup was made of a copper block containing a
heavy alloy metal as the actual beam stopper. The current meter, connected to the
Faraday cup, was calibrated using a precision current source (KEITHLEY 263 cali-
brator/source) with an uncertainty of 2%. The output signal (voltage) of the current-
meter is converted into frequency via voltage-to-frequency converter and registered in
a scaler readout by the DAQ. The beam current was typically of few pA (1-4 pA). For
the present experiment, the Faraday cup didn’t work correctly (see Fig.4.2). Therefore,
for the normalization purpose, already measured elastic scattering cross-sections were
used (see Section 4.6).



Chapter 4

Data Analysis

4.1 Framework

This chapter gives a detailed description of the steps undertaken to extract the dif-
ferential cross-section for the dd→dpn breakup process measured at the beam energy
of 160 MeV. The data analysis was performed with the use of the dedicated software
based originally on FORTRAN and C programming languages. For the current analysis
the main sorting program (FBRun) was updated, utilizing the ROOT package (C++
based data analysis framework of CERN).

First, the data were presorted on a raw level, then tracks belonging to charged
particles were reconstructed. On this physical level, the FBRun software provided
all the necessary information about the particles such as the deposited energy and
emission angles. The data at this stage were stored in the root-trees and then used in
further steps of the analysis. The parts of the runs characterized with unstable beam
current or problems in functioning of any system elements were carefully removed.
A geometry cross-check of the wall detector as well as a correction of a beam-shift from
the target center were performed within analysis of the preceding experiment with the
same experimental conditions [76], resulting in precise momentum reconstruction of
the detected charged particles. With the hodoscope-like geometry of forward wall it
was possible to perform a particle identification via a conventional ∆E-E technique.
Moreover, for the first time the thorough analysis of the data registered in the backward
wall was performed. Due to not high enough efficiency of ball, those data were used
for checks of systematic effects only.

To normalize the breakup cross-section, it is necessary to have the elastic cross-
section of the simultaneously measured dd elastic scattering or to know precisely the
luminosity. Due to malfunction of the Faraday-cup the beam-current measurement was
not reliable and therefore extrapolation of the dd elastic scattering cross-section was
performed based on nearest available energies, i.e. 130 MeV and 180 MeV [40].

4.2 Pre-analysis of raw data and event selection

An overview of the preliminary data presorting and track reconstruction as well as a
first step of physics analysis are presented. The raw experimental data were presorted
with respect to elementary constraints imposing on TDC and ADC signals. On this

35
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Figure 4.1: A sample spectrum of the TDC distribution for 6th E-scintillator is shown. The
gate for events to be accepted as "true+random" coincidences is marked with vertical lines.

level one is able to control the detector performance and select reliable data for further
analysis. The next level physical sorter delivers useful quantities, such as the particle’s
momenta and energies (after calibration), which are then directly used for evaluation
of the observables.

The main steps of a pre-analysis; the time information, the track reconstruction, the
particle identification and selection of the reaction channels of interest are described in
the following subsections.

4.2.1 Time information

In general the events of interest are coincidences of two charged particles. To select
ones in a proper way, gates were applied to the TDC (time-to-digital converter) spectra
of all scintillators in the forward wall. Fig 4.1 shows an example of such spectrum for a
chosen wall scintillator1. The time was measured with respect to the trigger. The plot
presents a number of equidistant peaks, each representing the particles coming from a
single beam burst. The highest peak corresponds to the beam pulse which triggered the
DAQ, it contains both "true" and "random" coincidences. The other peaks represent
the particles accidentally coincident with the trigger. To minimize the contribution
from the "accidental" coincidences in the measurement, the beam current was set on
the lowest possible value, usually a few pA.

Applying the gate on the TDC spectra (enclosing the time period of highest peak),
assures suppression of the accidental events contributing to the background [77, 78].
In order not to loose any "true" coincidences, the gate was chosen slightly wider to
cover some part of the events from the neighbor beam burst. The remaining random
coincident particles were removed in the subsequent data analysis steps by applying
various cuts on the kinematical spectra.

In order to remove parts of the data collected with not good detector performance,
histograms of a time evolution of various quantities, measured during the experiment,
were prepared for the whole data sets, see Fig. 4.2 for details. Based on the plots,
unreliable parts of the data were identified and then carefully removed, improving the

1No TDC was available form the backward ball, therefore all the registered hits were accepted.
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Figure 4.2: Time evolution of various counters is presented for a chosen part of the experi-
ment. Panels, in top to bottom order, represent measured quantities: beam current, MWPC
Tracks, ∆E counter and E counter.

overall data quality. The beam current measured and information from various detector
counters (E, ∆E, MWPC) were following nearly the same structure, however at some
range (as it can be seen in Fig. 4.2)they malfunctioned and therefore the region was
excluded from the analysis. The beam rates from Faraday cup were found unreliable
for most of the data set and therefore they were not used.

4.2.2 Track reconstruction

An "event" was reconstructed from the "hit" information of detected charged particles
in the various detector elements. First the "tracks" were built for each event, starting
from hits in MWPC wire-planes. Then the hit was accepted if correspondence with
the ∆E and E detectors was confirmed. Such events were labeled as "good" ones.
In a situation when a particle was not detected in MWPC or in ∆E detectors, but
was registered in E, it was accounted for a so-called "bad" event. Such events (tracks
with holes) were also used in the analysis for the purpose of the detector efficiencies
calculations.
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Figure 4.3: Impact of the angular acceptance of the wall detector on the number of detected
particles. The angular ranges covered in a polar angle (left panel) θ is from 10◦ to 40◦ and
full in an azimuthal angle (right panel) φ.

Knowing the crossing point between the corresponding MWPC wire-planes and
distances between the target and the wire-planes and assuming particle emission from
the target center, it was possible to obtain its polar (θ) and azimuthal (φ) scattering
angles in the laboratory frame, see Fig. 4.3.

The MWPC detector can was also used to test the wall setup geometry. Such a
cross-check is illustrated in Fig. 4.4, where selected numbers (even or odd) of the E-
bars and ∆E strips are seen in the MWPC x-, y- planes. For this, single track events
registered in the selected (E or ∆E) scintillator were projected onto the corresponding
planes.

In the case of the ball detector the track reconstruction procedure relied on clus-
terization. For particles registered in a specific ball element, the polar (θball) and the
azimuthal (φball) angles were calculated from the centroid of that ball element, see
Appendix A. Angular coverage of a ball element, is up to ±10◦, therefore the angular
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Figure 4.4: Response of the MWPC detector, when a selected (odd or even numbered)
scintillator of ∆E (left) and E (right) responding, is presented. Not working wires are also
visible.
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resolution is much poorer than the one in the wall. However, a clusterization method
was implemented to improve the angular resolution in the ball, as described in the
section 4.4.2.

The data were collected with different trigger patterns (as it was mentioned in Sec-
tion 3.2.3) to selectively enhance the studied reaction channels. Regarding the number
of reconstructed tracks (one or two) within an event and by imposing TDC/ADC
constraints, the events were classified as "single-track" or "double-track". To investi-
gate the dd elastic scattering, one needs to analyze the wall-ball coincidences mainly
collected with T2 trigger or using the single track events.

4.3 Particle identification

The particle identification (PID) was performed using the ∆E-E technique. For each
∆E-E telescope, a two dimensional "∆E-energy loss vs. E-energy deposited" spectra
were prepared. Particles energies for different channels are restricted by the kinematical
rules, therefore their presence or place on a ∆E-E spectrum changes from one telescope
to another. Sample ∆E-E spectra are presented in Fig. 4.5. The long branches of
protons and deuterons are indicated as originating from the breakup reactions, while
the two-body final states (elastic scattering and the transfer reactions) are seen as
forming distinct spots on the plot. Separation between the two breakup loci was found
quite well over the entire wall region.

To distinguish and select the different particle types, graphical cuts ("gates") were
defined for each individual ∆E-E telescope. The protons or deuterons were selected by
lines which define an arbitrary area ("banana" shape), wide enough to avoid significant
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Figure 4.5: Particle identification based on ∆E-E spectra is presented for two different
telescopes. On the left panel (∆E=1 and E =1) particles originating from the different
reaction channels were indicated. On the right panel (∆E=3 and E =1) the sample of applied
graphical cuts is presented. The particles originating from the transfer channels are also
visible. The cut on peak of the elastically scattered deuteron, within d-gate, is shown with a
dashed vertical line.
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losses of the particles, see Fig. 4.5, right panel. After introducing the PID method into
the analysis, a calibration was performed for each type of particles and various reaction
channels were identified.

4.4 Energy calibration

The differential cross section of the break-up reaction for a chosen angular configuration
— defined by polar angles θd,θp and a relative azimuthal angle φdp of the deuteron
and proton — is given as a function of their energies, Ed and Ep. Alternatively the
observable is presented as a function of the arc-length, S, along the breakup kinematical
curve (see Ch.2). Therefore, it is highly demanded to have a reliable and an accurate
energy calibration of the detectors. The calibration was performed for the wall E-
detector and the ball scintillators based on a specific data sample and the procedure is
described in the following subsections.

4.4.1 Wall scintillators

When a charged particle enters the scintillator volume, it loses its kinetic energy by
excitation of atomic electrons along its trajectory. These excited electrons then de-
excites via emission of light (known as fluorescence effect). The light signal is converted
into an electronic signal (ADC channel) with the use of the photomultiplier tubes
(PMTs) coupled with the scintillator via a light-guide. To assure light tightness and
good reflectivity of the surface, a layer of an aluminised thin Mylar foil was wrapped
on the scintillators.
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Figure 4.6: The array of 10 E-scintillators in the forward wall is shown schematically. The
polar angles θ (red circles) and the selected azimuthal angles φ = 0◦, 90◦,−90◦ and ±180◦

are marked. Each E-scintillator can intersect twice with a circle of given θ angle, in the left-
and in the right- hand region.
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Figure 4.7: The relation between ADC channel and the simulated energy deposit of elasti-
cally scattered protons (MeV) is shown with a linear and a non-linear fits. The error bars for
data points (dots), in most cases, are smaller than the dot size. The non-linear function was
fitted to account for the small quenching effect in such a way that it passed through origin
(0,0) of the presented graph.

Purpose of the calibration procedure is to convert the obtained ADC channel into
the particle’s initial energy at the reaction point. This is done mainly in two steps.
Firstly, the ADC channels are translated into energy deposited by a particle (Edep) and,
secondly, corrections on the energy loss along the particle path between the target and
the E-detector are applied. The first step was based on the energy deposited by the
protons originating from the dp elastic process (measured in the preceding experiment
with the same experimental conditions in dedicated runs with the use of the set of steel
plates as the energy degraders). A detailed description of the procedure can be found
in [79]. Here only a brief description of both the steps are explained. The conversion
of the obtained proton calibration function, into the one for deuteron, is presented.

Step 1. Translating channel into deposited energy: In the forward wall of
BINA, each stopping E-detector is supplied with two photomultiplier tubes (PMTs) on
its two ends (left-PMT and right-PMT). When a charged particle hits the E-detector,
in an ideal condition both the PMs respond, giving two pulse height values.

The gains of PMT’s were well matched, so the difference in the signals, obtained
from the left-PMT and right-PMT, is mainly due to different light attenuation. This
results in position-dependent light collection along a scintillator assembly. To perform
the energy calibration for a given E-bar, a position independent CLR value was obtained
as a geometric mean of the left-PMT signal (CL) and the right-PMT signal (CR), i.e.
CLR =

√
CL × CR. The new quantity CLR is called a "reduced signal" for a hit in

a single E-detector and the position-dependent part of exponential attenuation effect
cancels in this average. The central two E-detectors were partially cut from the middle
(due to a beam-pipe hole) and therefore the "reduced signal" for them was taken as
a sum of the two signals, i.e. CLR = CL + CR, instead of the multiplication. Thus
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Figure 4.8: The light output relation between different particles for the BICRON plastic
scintillators. Image Credit: Saint-Gobain Ceramics & Plastics, Inc.

avoiding the "zero signal" situation when one of the two PMT signals is absent.
The obtained CLR hardly depends on the hit position [41,74]. The relation between

the deposited energy and CLR is represented by a nonlinear function, with parameters
depend on the E-detector, side (left, right) of the detector and the θ angle (see Fig. 4.6).
In general the function can be written as follows:

Edep(θ) = f(CLR(θ, side)) (4.1)

where Edep(θ) is the energy deposited in the E detector, obtained with the use of the
GEANT42 simulation for the BINA detector. The detector geometry and the important
parameters of the set-up such as materials, dimensions and distances are included in
the simulation.

The relations described with the Eq. 4.1 have a non-linear character at energies
below 40 MeV which is caused by the quenching effect (described with the Birk’s
formula [80]). The observed amount of the quenching effect was very small therefore
non-linear correction functions were fitted (see in Fig. 4.7) to the Edep(θ) vs. CLR

dependencies. The functions obtained are the calibration for a given polar angle θ (left
or right-half side) and for a given E-detector.

2GEANT4 is a software toolkit for both full and fast Monte-Carlo simulation of detectors in high
energy physics.
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Since the deuterons from the elastic dp process are not detected in full range of
θ angle in the wall, the obtained proton calibration functions were used to calculate
the same dependencies for the deuterons. Due to different scintillation light output
for protons and deuterons a well known light-output to energy deposit relations [81]
for these particles (as shown in Fig. 4.8) were used to translate the proton function
into the one for the deuterons (and similarly to the ones for 3H and 3He). The punch-
through protons were observed in a region of small θ angles and the effect of incomplete
energy loss was corrected for by slight change of the light output relation at the highest
energies. A final formula which was used to recalculate the light outputs of protons
(Edep) into the one for deuterons (Ed

dep) is given as follows:

Ed
dep = a0 + a1Edep + a2E

2
dep + a3E

3
dep + a4E

4
dep + a5E

5
dep (4.2)

with fitted parameters:
a0=0.79±0.21,
a1=1.52±0.03,
a2=(-1.75±0.12)× 10−2,
a3=(2.51±0.20)× 10−4,
a4=(-1.56±0.14)× 10−6,
a5=(3.49±0.37)× 10−9

E d
dep (E dep) denotes the energy deposited by deuteron (proton).

Step 2: Converting deposited energy (Ed
dep) into initial energy (Einit): The

energy deposited by a particle in the E-detector is lower compared to its initial energy
Einit. It is due to the energy-loss in the materials (such as target material and window,
opening flange of BINA, MWPC, ∆E, air, wrapping foil etc.) placed between the
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Figure 4.9: A schematic view of the materials in between the reaction point and hit position
in the E-detector. The figure is not to scale.
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Figure 4.10: The plot presents energy deposited in the E-detectors vs. energy at the reaction
point for different scattering angles of the deuterons. The inset shows zoom of the low energy
range where the energy loss depends on scattering angle of the deuteron. The diagonal line
(y=x) was drawn to show deviation from the linear response.
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Figure 4.11: A breakup kinematics; range of accepted data, defined as θd = 20 ± 1◦,
θp = 30 ± 1◦ and φdp = 180 ± 5◦, is presented. The solid line refers to the kinematics
calculated for the central values of this range. Left panel shows the kinemtics before applying
the light output correction for deuteron (Fig. 4.8) and the right panel after the correction.
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reaction point and the E-detector, see Fig. 4.9. These losses depend on the scattering
angle.

To correct for this effect, the GEANT4 simulation was utilized. The particles
(protons and deuterons) were generated at given polar angle θ energy Einit changed
with a step of 1 MeV at lower energies (below 30 MeV) and a step of 5 MeV at
higher ones. The distribution of the simulated deposited energy was then fitted with
a Gaussian function. The mean values (Edep) obtained from the fits were then plotted
as a function of the corresponding Einit. Finally a polynomial of rank 8 was fitted to
obtain the relation ("correction function") between Edep and Einit, see Fig 4.10. The
procedure was repeated for all the bins in the polar angles, varied between 10.5◦ and
37.5◦ with the step of 3◦.

To check the calibration correctness, a kinematical relation for deuterons and pro-
tons from the dd → dpn breakup was drawn (see Fig. 4.11). One can see that the
experimental data follow the calculated kinematics.

4.4.2 Ball scintillators

In the experiment presented in this work, only 55 out of all the 149 ball elements were
put into operation, allowing to detect a charged particles scattered with polar angles
up to 80◦ (see Appendix A). Since only thick scintillators were used (no phoswich
function), therefore a direct particle identification was not possible. To overcome this
obstacle, the kinematical relation of the elastic scattering were used to perform the ball
calibration. Since the ball elements are covering polar angles above 40◦, it was necessary
to use wall-ball coincidences to select the dd elastic scattering process. The particle
detected in the wall was required to be deuteron (selected by particle identification
on ∆E-E) with energy above certain threshold and co-planar with the corresponding
coincident deuteron in the ball, that is |∆φ− 180◦| < 10◦. At this point, the angles in
ball (φballd and θballd ) were taken at the centroid of ball elements.

Another obstacle was the lack of light tightness of the ball elements, which resulted
in additional contributions from the neighboring elements to the registered signal, i.e. a
particle was registered in the ball with more than one element responding. Contribution
of such events was significant and could not be neglected. Therefore to reconstruct a
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Figure 4.12: The ADC spectrum for a given ball element. The left panel shows distribution
before applying any cuts and the right panel presents the same distribution but after selecting
the wall-ball dd coincidences.
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particle emission angle and energy, a cluster instead of a single element was considered
in the further analysis.

In order to obtain reliable cluster information (energy and angles) of a reconstructed
event, one needs to balance the signal (ADC channel) values, correcting for gain vari-
ations between individual PMTs. Therefore a preliminary calibration was performed
and the cluster candidates were selected. The procedure is briefly described in following
paragraphs.

Preliminary calibration, (without clusterization): At first, the ball elements
characterised with producing noisy signal or the "dead" (not working) ones were dis-
carded from the analysis. For the remaining elements, the so-called "well controlled"
wall-ball coincidences originating from elastic dd scattering were chosen in the following
three steps:

step 1: Knowing the angular ranges (both, polar and azimuthal) of a given ball ele-
ment and using the kinematical relation for the elastic dd process, the angular
ranges (in ∆θwall and ∆φwall) of the corresponding coincident deuteron in wall
were fixed. This ensured that the particle in ball is the deuteron from the elastic
dd process with very low admixture of breakup protons. Fig 4.12 shows sample
ADC spectra before and after applying these cuts.

step 2: The elastically scattered deuterons were selected in wall with a bin ∆θwall
such that the corresponding bin ∆θball of the deuteron in ball was lying close to
the geometrical center of that element. This reduced the number of events which
were registered as a cluster.

step 3: then the events were filtered by applying upper limit on the amount of the
light leakage from a given ball detector to its neighbors. Depending on the ball
element, the upper limit value was set between 1-10%.
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Figure 4.13: A sample spectrum of ADC response of a chosen ball element (here #51) for
dd elastic scattering. Few different cuts on θwall were imposed (see the legend) producing
peaks in the corresponding ADC spectra (different line colors).
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Figure 4.14: A sample of the applied linear calibration fit is presented for a given ball
element. The fit parameters are a=0.03557±0.00014 MeV/channel and b=14.975±0.089 MeV.

Ideally the steps 2 and 3 are selecting events with "single detector clusters". Within
these well controlled events, when selecting a specific polar angle (θwall) of the deuteron
detected in the wall, one expects a corresponding energy peak for the coincident
deuteron in ball.

By changing the θwall values, the corresponding peak in a given ball element was
shifted, see Fig 4.13. Knowing the θwall and therefore the energy Eball deposited in
ball (from the kinematics), it was possible to find a relation between the ADC channel
and energy. Since the energy range covered by the ball is very small, a simple linear
approximation function was assumed, see Fig. 4.14.

The ball elements were classified into six rings and then into subrings charecterized
by the same geometrical orientation. Only the first ring (having three subrings) and
the second one (with four subrings) were working, see Fig. 4.15. Such classification not
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Figure 4.15: A part of the Mercator projection (bending of lines has been neglected) for the
first two rings is shown schematically. Each ring has triangles with their different orientations
— in each orientation the centroid of a triangle coincides with a common polar angle θ.
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only simplified the task of finding the elastic peak position in the ADC spectra, but
also allowed one to identify unusual behavior of any ball element within the subring.

To be in consistence with the forward wall geometry, the azimuthal angles (φ) of
the ball were considered in the range from -180◦ to +180◦, with the lower half ball
covering a range from -180◦ to 0◦ and upper one from 0◦ to +180◦. What is more the
target was mounted in such a way that it was slightly tilted with respect to the vertical
axis (see Fig. 3.9). Therefore the particles which scattered in the lower half region of
the ball, passed through an extra material around the target (the thermal shielding
and the target cell). In consequence, the energy of the detected particles was very low
or the particles were stopped before they reached the detector. This manifested itself
as up/down asymmetry in a spectrum of the relative azimuthal angles for the wall-ball
coincidence, see Fig. 4.16.

An example of the wall-ball polar angles correlation, for a co-planar dd elastic
scattering process, is presented in Fig. 4.17. The most populated regions on a given
subring reproduces the proper θwall-to-θball kinematical relation.

Cluster information: A cluster consist of a group of ball elements or a single ball
element. The neighboring channels are considered to belong to the same cluster if their
energy is above certain threshold. A given cluster is characterized with its azimuthal
φc and polar θc angles and its energy Ec. The φc and θc are calculated as weighted
average of the angles of the cluster elements as follows:

φc =

n∑
i=1

φiEi

n∑
i=1

Ei

(4.3)

θc =

n∑
i=1

θiEi

n∑
i=1

Ei

(4.4)

where n is the number of elements constituting a cluster and i refers to the ith element3
in the cluster.

In order to reconstruct the cluster energy, one needs to take into account a so-called
attenuation factor α which refers to the light loss on the borders of the ball elements.
Thus the cluster energy is calculated as follows:

Ec = Emax +
n−1∑
i=1

(1 + α)Ei, (4.5)

where n and i have the same meaning as in the Eq. 4.4 and Eq. 4.3, and the Emax is the
energy deposited in a central cluster element where the particle is detected (deposits
the largest part of its energy). For the clusters, it was sufficient to take only the
nearest neighboring elements (3 on the sides and 9 on the vertexes), see Appendix A
for details. The estimation of α was done by looking at cluster events where only two
adjacent ball elements responded to the detection of an elastically scattered deuteron.

3Note that the angles (φ and θ) for a ball element are at the centroid of the element.
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Figure 4.16: The distribution of elastically scattered wall-ball coincident deuterons is pre-
sented as a function of their relative azimuthan angle. The peaks are centered around ±180◦

and the width of the peaks represents the angular resolution of the detector. Clusterization
(the red curve) led to an improvement in the angular resolution as compared to analysis
performed without clusterization (the black curve).

One assumes that the particle is detected in the element with largest energy. Sum of
the energies in the two ball elements is found smaller compared to the energy expected
by the dd elastic kinematics. This difference is accounted for the energy lost in the
surface between the two ball element. In principle, each element having 12 neighbors
at most, it would be a tedious task to obtain the α coefficient for the surface between
every two adjacent ball elements. However, Study shows that in most part of the ball,
the α coefficients are about 10%.

After applying the angle reconstruction based on the cluster information (Eq. 4.4
and Eq. 4.3), the distribution of the relative azimuthal angle (see Fig. 4.16) and polar
angles (see Fig. 4.18) were obtained. The resolution is significantly improved when
comparing to the reconstruction method based only on a single ball element. To test
this method with respect to the energy reconstruction, the wall-ball energy kinematical
relation for the dd elastic scattering process was drawn (see Fig. 4.19). The events
group along the calculated kinematics.

Since the most basic variables which characterize the particle are reconstructed far
better when using the clusterization method, thus this approach was used in the further
analysis. The estimated overall energy resolution in the ball is about 10-20%.

The clusterization method is less accurate when the reconstructed clusters lie at
the edge of the ball’s acceptance (and near the target holder entrance) as well as it can
contain an element with no response ("dead" element). The light in such situation is
not completely recovered and the energy and angular resolution is diminished.
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Figure 4.17: A correlation between polar angles of wall (θwall) and ball (θball) is presented
for the wall-ball coincident events. The horizontal bands are manifested by the ring and
subring structure of the ball elements as explained in the Fig. 4.15

 [degree]
wall

θ

10 15 20 25 30 35 40

 [
d
e
g
re

e
]

b
a
ll

θ

40

45

50

55

60

65

70

75

80

1

10

2
10

3
10

4
10

5
10

Figure 4.18: The same as Fig. 4.17 but after applying clusters. One can notice that the
cluster method give more realistic angular distribution for most of the events, filling the empty
gaps between the rings (and sub-rings) of the ball elements.
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Figure 4.19: The wall-ball energy correlation for the dd elastic scattering reaction. The
black line refers to the calculated kinematics.

4.5 Discrimination of reaction channels

Elastic dd scattering and dp-quasifree process: To discriminate the elastically
scattered deuterons registered in wall from the breakup ones, additional cuts were im-
posed on the energy (seen as vertical dashed line) within the "d gate" as shown in
Fig. 4.5, right panel. To calculate a number of elastically scattered deuterons — to be
used further for the normalization purpose (see Sec.4.7), a careful background subtrac-
tion was performed as described in Sec.4.6. In case of the wall-ball dd coincidences,
applying the additional co-planarity condition (i.e. cut on the relative azimuthal angle
|∆φ− 180◦| < 10◦), lead to a suppression of the breakup contamination (see Fig. 4.20,
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Figure 4.20: The wall-ball coincidences with deuterons selected in wall; left panel shows the
deuterons full-filling the co-planarity condition. The elastically scattered and QFS deuterons
are easily distinguished. Right panel presents the same spectrum but with the cut applied to
the elastically scattered deuterons.
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Figure 4.21: The kinematical spectra of the transfer reactions are presented for the 3H

(left panel) and 3He (right panel) particles. The solic black lines represent the calculated
kinematics.

right panel). However, due to low efficiency of the ball detectors (see Sec. 4.6.4) this
condition was not further used for luminosity determination (normalization).

The quasi-free three-body process (QFS) was also identified within the co-planar
wall-ball coincidences. As it is seen in Fig. 4.20, the deuterons coming from dp-quasifree
process are spread over a wide band around the calculated dp kinematics. This broad-
ening is due to the fact that the spectator neutron caries some minimum energy. There-
fore one can study the QFS process as a function of energy of the spectator neutron
(see Section 4.7).

Transfer reactions: In case of the transfer reactions (see Sec. 2.5), charecterized
with low cross section (in comparison to the elastic and breakup process) the amount
of observed particles was small. The cross-section (and the kinematics) of both the
transfer reactions is comparable, therefore one expects to observe the same amount of
3H and 3He particles in a given telescope.

The 3He particles were found well separated due to their relatively large energy
losses in ∆E detector whereas the 3H particles were lying very close to the branch
of the breakup deuterons and therefore it was difficult to separate them. Particle
identification gates were also applied for these heavier particles and after applying the
calibration agreement with calculated kinematics was checked, see Fig. 4.21.

One can notice that the energy threshold for 3He is very large, about 70 MeV,
whereas for the 3H it is of about half, that is 35 MeV. The 3He nucleus has twice the
electric charge of the 3H, and according to the Bethe-Bloch formula, the energy loss of
a charged particle in ionizing medium is in proportion to the charge of that particle.
The mentioned above analysis is based on PID, with no requirement of coincidence.
However, in case of the neutron transfer channel, it was possible to register both, the
wall-wall and the wall-ball coincidences. Whereas in case of proton transfer channel
only the single track of 3He in wall were considered4.

4Due to small efficiency of neutron detection in ball, the wall-ball coincidence was also observed in
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4.6 Detector efficiency

In order to obtain absolute values of the breakup cross section, it is necessary to take
into account efficiency of the detection system. Depending on the type of the detected
particle, proton or deuteron, corrections were done separately. Determining the BINA
detector efficiencies is a procedure of finding scaling factors for the obtained number of
the breakup coincidences Nbr(S,Ωd,Ωp), registered at the angles Ωd = (θd, φd) and Ωp

= (θp, φp), where θd, θp, φd, φp correspond to the scattering angles of the coincident
particles. One can distinguish between a hardware and a geometrical efficiency.

In the first case, probability of detecting a charge particle is connected with an
efficiency of each element of the detectors: wall (MWPC, ∆E, E) and ball. Certain
detector elements became inefficient i.e. they function with lower efficiency or cease
to function at all ("dead" wires/elements), what can cause quite a significant effect.
In case of the scintillator hodoscopes, the inefficiencies also occur if a charged particle
escape through the gap between two adjacent scintillators (in ∆E hodoscope)or deposits
its energy in both of them (in the E hodoscope).

In case of the geometrical efficiency, one can count a so-called "configurational inef-
ficiency". If both charged particles (a proton and a deuteron) coming from the breakup
reaction dd→dpn) hit the same E-bar or ∆E strip, its not possible to distinguish be-
tween their signals and have proper energy information so the event is rejected. Size
of the effect is strongly dependent on the angular configuration of the two particles.

The above effects can affect the measured angular distributions causing sometimes
large fluctuations. In order to eliminate and compensate their role, efficiency maps in
θ, φ co-ordinates, reflecting the correction factors, were calculated for the wall and ball
components separately. In each case a common binning size was set to 1◦ and 5◦ in θ
and φ angles, respectively. Finally the total efficiencies were calculated.

4.6.1 MWPC efficiency

The charged particles passing through the MWPC detector induce signals in wire-
planes. If the signal is below certain threshold or does not appear at all, such event is
counted for inefficiency of that wire-plane. The efficiency varies across the active area
of MWPC. The maps of individual planes were obtained and the total efficiency was
calculated as a product of the efficiencies of all the three wire-planes.

The efficiency of the given plane was found by determining θ and φ angles from hits
in the two other planes and checking, if the corresponding hit in the plane of interest
is present. Such a procedure was performed by counting the number of events in the
angular segments of ∆θ = 1◦ and ∆φ = 5◦ (standard granularity to be used also in
subsequent sections of rest of the detector efficiency). Only the single particle events
were taken into account (maximum one hit in each plane, one hit in ∆E and one hit in
E). The probability of registration of a particle in a given MWPC plane, for example
in the x-plane, for a given angular segment is:

εx(θ, φ) =
Nxyu(θ, φ)

Nxyu(θ, φ) +Nyu(θ, φ)
(4.6)

the proton transfer channel. This may be useful, in future, to find neutron detection efficiency of ball
by knowing the wall-ball coincidence.
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Figure 4.22: Efficiency map of MWPC. The elliptic like structure illustrates the "dead-
wires".

where Nxyu(θ, φ) is a number of events registered in a given angular bin (θ, φ) in
the three planes, whereas Nyu(θ, φ) is a number of events, registered in this bin, but
with at least one wire hit in plane y and one in plane u. The efficiencies of y and u
planes were calculated in the similar way. The total MWPC efficiency was obtained
by multiplication of the probabilities for particle registration in the individual planes:

εxyu(θ, φ) = εx(θ, φ) · εy(θ, φ) · εu(θ, φ) (4.7)

Fig. 4.22 shows the efficiency map for the whole MWPC detector. Due to the
square shape of MWPC the range of polar (θ) angle between 30◦ and 40◦ is only
partially covered in azimuthal angle φ (see empty region). One can notice the broken
("dead") wires seen as low intensity areas. The method does not work for two crossing
dead wires in two planes, such bins on the efficiency map were completely rejected and
were corrected for with additional Monte Carlo simulations. The MWPC efficiency is
generally above 95%, but in some regions it falls down dramatically to about 70%. The
MWPC efficiency was determined within statistical accuracy of 0.2%.

4.6.2 ∆E scintillators:

The efficiency for ∆E was obtained in a similar way as in the case of MWPC, taking the
MPWC and E-detectors as reference counters. If a particle was registered in MWPC
and the E-detector but not in ∆E then such event was counted for inefficiency of the
∆E detector. The inefficiency is mainly due to two reasons: the ∆E scintillators are
very thin and a fraction of high energy charged particle may transmit through the
∆E detector without leaving enough energy to be registered or the particles may pass
through the gap between two ∆E strips. An efficiency map of ∆E was calculated with
the standard granularity and is presented in Fig. 4.23. As one can see, the efficiency
in most of the area of the map, excluding the detector borders, is almost 100%. The
statistical accuracy of the ∆E efficiency was found to be 0.15%.
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Figure 4.23: Efficiency map of the ∆E transmission detector.

4.6.3 E scintillators:

To establish the E-detector efficiency, one has to count for two different effects whose
magnitude, in some case, can significantly reduce the detector efficiency; these are the
so-called "cross-over effect" and the "configurational effect".

The cross-over events are present when a charged particle is registered in the two
adjacent E-scintillators. Such events were rejected from the analysis and were compen-
sated by simulating the effect. A sample distribution of the cross-over events can be
seen in Fig. 4.24, obtained using the GEANT4 simulation for the elastically scattered
deuterons. The inefficiency due to cross-over were found at most 1%.

Xplane of MWPC [mm]
180 90 0 90 180

Y
p

la
n
e
 o

f 
M

W
P

C
 [
m

m
]

180

90

0

90

180

1

10

Figure 4.24: Cross-over events, obtained from the GEANT4 simulation, shown as a function
of XY wire-planes.
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Figure 4.25: A bar chart representing the inefficiency for 20 different breakup configurations.
In general, the inefficiency increases with decrease in the spatial distance between the two
outgoing particles.

The configurational inefficiency has influence only in the case of the breakup dd→dpn
process. To correct for this effect, the number of breakup coincident events for each
analyzed configurations were counted. For the same set of breakup configurations,
GEANT4 simulations were performed and fraction of the breakup coincidences, with
proton and a deuteron registered in the same E-detector, was obtained. Then corre-
sponding correction factors were calculated. The configurational inefficiency was found
large for the configurations with a small relative azimuthal angle φdp. For example at
φdp=20◦ the inefficiency reached to almost 50% and by increasing φdp, its magnitude
became smaller reaching below 5% in the case of the co-planar configurations and all
other configurations analyzed within this work, i.e. with φdp = 140◦ and 160◦. The
statistical uncertainties, in both the above mentioned inefficiencies, are within 0.1%.

4.6.4 Ball efficiency

The ball efficiency was calculated with the use of the elastically scattered deuterons
and information from the wall detector like the particle identification and energy cut
imposed on elastic peak. To find the efficiency, the single track deuterons were counted
(Nwall) under the mentioned constraints on wall. Having the energy and momentum
of this first deuteron registered in wall and knowing kinematical relation for the dd
scattering, one can verify the information of the second deuteron in ball. Then number
of the elastically scattered deuterons was counted in the case when both deuterons
were detected as a wall-ball coincidence (Nwall−ball). In the latter case, additional co-
planarity condition was applied as ∆φ=10◦. The probability of registration of a particle
in ball for a given angular segment was then calculated with the following formula:

εball(θ, φ) =
Nwall−ball(θ, φ)

Nwall−ball(θ, φ) +Nwall(θ, φ)
(4.8)

Fig. 4.26 presents the efficiency map obtained for the ball detector with the standard
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Figure 4.26: Efficiency map of ball. The broken or not working ball elements are visible in
inefficient triangular regions below θball = 70◦.

binning size. One can notice the target shadow (as explained in Sec. 4.4.2) and the
broken ("dead") ball elements. Due to the kinematical reasons, the efficiency becomes
almost zero above θ=70◦. The deuterons above this angle have very low kinetic energy
and, therefore, are stopped before reaching the ball detector. The statistical uncertainty
in this case was found at most 0.28%.
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4.7 Analysis of elastic scattering process

Due to kinematic relations, it is not possible to detect both the deuterons from the
elastic scattering (as explained in Sec. 2.3.1) in wall; one of them is always emitted at
the angle corresponding to the acceptance of ball. The analysis presented in Sec. 4.6.4
reveals rather low ball efficiency, so the number of wall-ball coincidences is reduced
and burdened by high systematic uncertainty due to the ball efficiency correction.
Therefore, in order to obtain the number of elastically scattered deuterons with a good
statistical accuracy, the selection of deuterons was done based on wall information only.
That is, the particle is identified as deuteron and, it has no coincident particle in wall,
though another particle may (or may not) be registered in ball; let’s call this selection
rule as "single track in wall". The single tracks in wall assure that all the deuterons
from elastic scattering are selected and the deuterons coming from wall-wall coincidence
of dd→dpn breakup are rejected which otherwise would give a large background. Final
selection relies on the deposited energy, as explained in the following section. One
has to cope with the remaining background, largely due to the deuterons coming from
wall-ball coincidences of the breakup reaction.

4.7.1 Background subtraction and calculation of normalization
factor

The counts for elastically scattered deuterons, are obtained after careful subtraction
of the background deuterons coming from the dd→dpn breakup process. An exclusive
distribution of single track deuterons, registered in the forward wall at three different
θ angles, is presented in Fig. 4.27. A sharp peak due to the elastically scattered
deuterons can be seen at the highest energy region of each distribution (marked with
"1"). The peak is contaminated by the background of the deuterons originating from
the dd→dpn breakup process which is spread over the entire energy range. Depending
on the scattering angle, the amount of background varies. Moreover two broader peaks
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Figure 4.27: Energy distribution of the deuterons detected in wall, at three different θ
angles, is presented. Refer to the text for the details.
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Figure 4.28: Background subtraction method presented on sample energy spectrum ob-
tained for deuteron scattering angle θ=16.5±0.5◦. The distribution obtained after the back-
ground subtraction (red line) is fitted with a Gaussian (blue) whose mean value is found
146.60±0.0003 MeV which is consistent with the value of 146.59 MeV resulting from kine-
matic relations.

contribute to the spectrum (marked with "2" and "3"). The second peak is dominated
by dp-quasifee process (the target deuteron is disintegrated). The peak marked with
"3" (see inset of the figure) contains events from the pd-quasifee process (the beam
deuteron is disintegrated). The background was subtracted with the use of Statistics-
sensitive Non-linear Iterative Peak-clipping (SNIP) algorithm [82], see Fig. 4.28. Due
to the reason that the exact shape of the background is not known, the simplest linear
one was assumed. Reliability of the applied algorithm was confirmed by comparing the
peak position (obtained by fitting a Gaussian) with the theoretically calculated values
at the given scattering angle.

4.7.2 Cross-section scaling

During the experiment, it was not possible to have a reliable beam current measure-
ment. Therefore the obtained distributions of elastically scattered deuterons were
scaled to the existing precise experimental data of nearest energies, from BBS experi-
ment [40].

First, the number of elastically scattered deuterons, obtained after the background
subtraction, was corrected for various efficiencies of detection system, see Sec.4.6 and
Fig.4.29. Next, the corrected distribution was transformed to the center-of-mass system
and, subsequently, presented as a function of the four-momentum transfer (q) which is
square root of absolute value of the Mandelstam variable (t) and it is given as follows:

q =
√
|t|, where, t = 2p2

1cm(cos θ1cm − 1) (4.9)

and p1cm (θ1cm) is the momentum (scattering angle) of the deuteron in the center-of-
mass frame. A detailed study of four-momentum transfer for the few-nucleon system
can be found in reference [41]. When presenting the cross-section distribution as a
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Figure 4.29: The distribution of elastically scattered deuteron as a function of its polar
angle θ is presented before and after applying various efficiency corrections.

function of q, one finds a scaling region where the distributions at different beam ener-
gies overlap. Such an effect suggests simplicity of the reaction mechanism in which the
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Figure 4.30: Cross section for 160 MeV is shown after scaled to the existing data from
BBS-experiment at 180 MeV. The BBS data are taken from [40]
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dynamical part of the scattering cross section predominantly depends on q regardless
of the reaction energy. Benefiting from this fact, the entire distribution of 160 MeV
data was scaled to the existing BBS data at 180 MeV, in the scaling region below
q=250 MeV/c (see the Fig. 4.30). To this end a function y=f(q) — in the form of a
polynomial of rank-7 multiplied with an exponential (i.e. "pol7*expo" function in the
ROOT framework) — was fitted to the data measured at 180 MeV, with a reduced
χ2=4.45, and the following parameters were obtained:
a0=7.98±0.46
a1=(-3.09±0.15)×10−02

a2=(-1.53±0.83)×10−04

a3=(7.06±3.27)×10−07

a4=(1.89±0.89)×10−09

a5=(-4.74±2.34)×10−12

a6=(-2.90±1.44)×10−14

a7=(7.99±3.43)×10−17

The resulting function was multiplied by a scaling factor kscale treated as the only
free parameter of the function y=kscale×f(q), which was fitted to the distribution of
elastically scattered deuterons of this work. As the result, the parameter where kscale
was found to be:

kscale = 33870122± 475679 [counts/mb] (4.10)

The obtained scaling factor is used in the next section for the normalization of the
breakup cross section. Note that kscale account for the experimental conditions such as
beam current, target thickness etc.

4.8 Breakup reaction analysis

4.8.1 Evaluation of breakup coincidences

In order to obtain the breakup cross section for a given angular configuration, (θd, θp,
φdp), the number of counts of deuteron-proton coincidences, corrected for the detector
efficiencies, are projected onto the corresponding theoretical kinematics, see Fig.4.31.

The convention for selecting S=0 point and the S -curve direction is defined in Sec.
2.3.2. The S -curve is divided into segments of equal width ∆S (4 MeV) along its
length and each event is ascribed to one ∆S segment according to its closest point on
the kinematics. Farther, a new variable D is introduced (see Fig. 4.32) as a signed
distance of the event to the kinematical curve, with events from inside (outside) the
kinematics having negative (positive) distance.

For each ∆S segment, counts of the breakup coincidences are projected onto the
D-axis, as shown in Fig.4.32. One expects the obtained distribution along D-axis to be
centered around D=0 and its tail distribution on the D<0 region may carry background
of accidental coincidences. Since the exact form of this background is not known, as a
first approximation, we take it of the wedge-like (decreasing as moving from -D to +D)
shape as presented in Fig.4.32. The counts obtained after the background subtraction,
for each ∆S, are then normalized using Eq. 4.11.
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Figure 4.31: A sample breakup kinematics for chosen angular configuration (θd = 18± 1◦,
θp = 22±1◦, φdp = 180±5◦) is presented. Shadowed area represents one ∆S bin (for definition
of S see Section 2.3.2) with the D-axis perpendicular to a segment ∆S and representing
distance of a data point from the kinematical curve; for details see the text.
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∆S segment (see Fig.4.31). The background subtraction is done with the help of SNIP
algorithm [82]. The obtained distribution, after subtraction, was fitted with a Gaussian.
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4.8.2 Three-body breakup cross-section

Since the measurement of the dd→dpn breakup and the dd elastic scattering were done
simultaneously, one can profit from the fact, that the factors such as beam current,
thickness of the target or dead-time are identical. Therefore, the differential cross
section of breakup process is normalized relatively to the elastic scattering process.
Explicit formula for both these quantities are given in the Appendix B. The differential
cross section of the breakup process can be expressed as follows [18]:

d5σ

dΩddΩpdS
(S,Ωd,Ωp) =

dσel
dΩd

(Ωd) ·
∆Ωel

d ε
el(Ωel

d )

Nel(Ωd)
· Nbr(S,Ωd,Ωp)

∆Ωd∆Ωp∆S
· 1

ε(Ωd)ε(Ωp)
, (4.11)

where,
Nel is the number of the elastically scattering deuterons registered in the solid angle
Ωel
d ,

Nbr is the number of of the deuteron-proton coincidences from the three-body breakup
process registered at solid angles Ωd, Ωp and within a ∆S-wide arc-length bin,
ε(Ωi) is position dependent total detector efficiency for the breakup particles in the
wall (subscript i stands for d or p.).

Note that the first two terms — the elastic cross section and the inverse of counts
for elastic events, corrected over efficiencies and solid angle — can be replaced by the
scaling factor kscale and then the equation Eq.4.11 reduces to the following:

d5σ

dΩddΩpdS
(S,Ωd,Ωp) =

1

kscale
· Nbr(S,Ωd,Ωp)

∆Ωd∆Ωp∆S
· 1

ε(Ωd)ε(Ωp)
(4.12)

Total of 147 breakup configurations were analyzed and the obtained breakup differential
cross sections are presented in Ch. 5. Since the calculations, the data are compared
with, are relevant "near QFS", the geometries close to co-planar (i.e. with φdp = 140◦,
160◦ and 180◦) have been analyzed.
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4.9 Possible sources of uncertainty
Two types of uncertainties influence the obtained breakup cross sections — the statis-
tical and the systematic one. The first one arises mainly due to the error in the number
of counts obtained for the the elastic scattering (Section 4.7) and for the breakup co-
incidences (Section 4.8), with a negligible contribution of the statistical uncertainties
of the detection efficiency (Section 4.6). The typical statistical uncertainty of the cross
section (where a typical value is 0.2 mb· sr−2· MeV−1) for breakup configurations, with
φdp = 160◦ and 180◦, is about 1.2%. It varies between 1% to 5%. Due to its relatively
low value (typically 0.03 mb· sr−2· MeV−1) the cross section measured in breakup con-
figurations with φdp = 140◦ has larger statistical uncertainty of about 3.5%, varying
between 2% to 8%.

The systematic uncertainties were largely reduced via careful pre-sorting of the
data (as explained in the Section 4.2) and study of the detection system geometry
(as discussed in [18]). The remaining systematic uncertainties, due to various possible
effects, were estimated and are briefly discussed below:

1. Particle identification

Various types of particle were identified via defining graphical cuts (i.e. "d gate"
and "p gate" as shown in Fig. 4.5) enclosing the branches/spots on the ∆E-E
spectra. A finite precision in defining such gates may lead to mixing of particle
types, i.e. protons can be identified as deuteron and vice versa (see Fig. 4.34), or
cutting out a part of useful events. The systematic uncertainty associated with
this process was estimated by repeating the analysis based on slightly modified
gates (moving the line separating protons from deuterons by 18 channels (in ∆E)
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Figure 4.33: An example of particle identification gates applied to select deuterons, pre-
sented for sample ∆E-E telescope. The solid (black) line corresponds to the original gate
(graphical cut) used to obtain the final results. The gate presented in long-dashed green
(short-dashed red) line were used for the purpose of error estimation in the final results.
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Figure 4.34: Illustration of mixing of particle types: events presented in Fig. 4.33 in one
energy bin (here E=500 channel) have been projected onto ∆E axis. The resulting peaks,
marked with the identified particle types (i.e. protons and deuterons), are fitted by Gaussian
distribution and their overlap is accounted for the amount particle mixing.

up and down, see Fig.4.33) and calculating the relative difference of the resulting
cross-section value. The typical uncertainty related to this effect, on the final
cross sections, was found not more than 5%.
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Figure 4.35: Zoom of Fig. 4.30: the region between two black arrows indicates the separation
of two BBS data sets slightly above the scaling region. Assuming that the 160 MeV data should
lie within this limit, the arrows indicate the systematic uncertainty of the scaling procedure.
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2. Absolute normalization

The obtained distribution of elastically scattered deuterons was normalized to
the 180 MeV BBS data set in the scaling region (characterized with low four-
momentum transfer(q))— see Section 4.7.2. In the scaling procedure, we assume
that the cross section at different beam energies coincide (as shown in Fig.1.4),
showing almost energy independent behaviour of the dynamics. The scaling is
not necessary exact, so the possibly close energy was chosen. For the control,
the lower energy of 130 MeV could be used, however, the BBS data at 130 MeV,
measurement during the same experiment as 180 MeV, have no data point in the
scaling region. Therefore, the region slightly above the scaling was chosen and it
was assumed, that the curve for 160 MeV should be placed between the curves
for two BBS data sets (see Fig. 4.35) and the uncertainty of the scaling factor
kscale was determined. The uncertainty in the final cross section, associated, with
the choice of scaling region, was estimated to be of 2.9%. This value is further
affected by the uncertainty in the BBS data, which is quoted to be 5.02 % in
reference [40].

3. Reconstruction of the scattering angles

The reconstructed emission angles (θ and φ) of a detected charged particle can be
affected by various factors. One of them is the discrete information from MWPC
(i.e. finite 12 mm spacing between MWPC planes and the wire-spacing of 2 mm
in each plane). This results in a limited angular resolution which varies across the
MWPC plane. The resolution in θ is about 0.5◦ at θ = 10◦ which decreases with
increasing θ, reaching the resolution of about 0.3◦ at θ = 30◦. The resolution
in φ depends on θ and varies between 0.6◦ and 2.3◦. The angular resolution
is relatively small compared to the chosen angular ranges applied in defining
kinematic configurations and hence the influence of angular uncertainty on the
final results is negligible. The other factors that can affect the reconstructed
angles, with the assumption of the point-like source, are the finite target thickness
(about 6.6 mm) and size of the beam spot on the target (about 3 mm in diameter).
The spread associated with the reconstructed angles in the breakup cross section
was estimated to be of maximum 1%. The beam position on target and target
to MWPC distance were checked on the basis of dp elastic scattering kinematics
measured in the run with LH2 target and absolute value of the θ was controlled
within precision better than 0.3◦ [79].

4. Background subtraction

The amount of background in case of breakup coincidences was found negligibly
small (See Fig. 4.32) and therefore the associated systematic uncertainty was
neglected. However, the background contribution in case of the elastic scatter-
ing process was large and its subtraction procedure could have been a source of
significant systematic uncertainty. One way to estimate the amount of this sys-
tematic error is to look at the difference in number of counts obtained in case of
"single track in wall" and in case of the wall-ball coincidences, much less affected
by background. To do this, first a ball element with a good detection efficiency
is chosen and the events corresponding to wall-ball coincidences with that par-
ticular element are selected. For those events the deuteron energy distribution is
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Figure 4.36: Comparison of the number of counts for "single track in wall" (blue) to the
"wall-ball coincidences" (red), for ball element 47 and solid angle in wall (θ = 22±1◦, φ
=−7±5◦), is presented as a function of deuteron energy. Inset shows the same comparison
after applying the background subtraction procedure as described in Sec. 4.7.1.

built. The solid angle for particles registered in wall (∆θ,∆φ) is chosen in such a
way that the corresponding solid angle of second deuteron (originating from dd
elastic scattering) lies withing the chosen ball element. Then the "single tracks in
wall" (as described in Section 4.7) are obtained for the same solid angle (∆θ,∆φ).
This procedure was performed for seven different well working ball elements, the
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Figure 4.37: The same as Fig. 4.36 but for ball element 51 and the solid angle in wall (θ =
25±1◦, φ = −53±5◦)
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Figure 4.38: Comparisons of sample cross sections obtained with (a) regular bin size of
∆φdp = 10◦ (blue), and (b) smaller bin size of ∆φdp = 4◦ (red).

obtained spectra for two of which are presented in Fig. 4.36 and Fig. 4.37. De-
pending on the signal-to-background ratio observed in analysis of single track in
wall, the number of events obtained in analysis of the wall-ball coincidences was
by 1 to 10 % lower. As a results, the systematic uncertainty due to this effect on
cross section was estimated to be about 5%.

5. Energy calibration

The error in the calibration function can affect the shape and length of the S -
curve which ultimately influences the height of the distribution cross section. The
influence of this systematic effect on the final results is estimated by varying the
calibration parameters and its found to be below 1%.

6. Averaging Problem

The experimental cross section, for a given angular configuration (θd, θp, φdp),
is evaluated by taking a finite bin width around these angles, i.e. θd ± 1

2
∆θd,

θp ± 1
2
∆θp and φdp ± 1

2
∆φdp. The bin width is taken wide enough (here ∆θd =

∆θp = 2◦ and ∆φdp= 10◦) for the purpose of good statistical accuracy. On the
other hand, the theoretical predictions, used for the comparison, are calculated
at the central values of these angular bins. As explained in [83], one has to
take the theoretical predictions averaged over the experimental bin width. The
systematic effect associated with the averaging is related to the size of the angular
bin width. For this work, the bin size of relative azimuthal angle, ∆φdp= 10◦, was
quite large (as compared to the bins in polar angles ∆θd = ∆θp = 2◦). In order to
estimate the associated systematic error, the analysis was repeated with smaller
bin size ∆φdp= 4◦. Comparisons of sample cross sections for the two different bin
sizes, ∆φdp= 4◦ and ∆φdp= 10◦, are presented in Fig. 4.38. The systematic error
associated with this effect, in most cases, was found up to 5%.
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Table 4.1: Sources of systematic effects and their influence (in %) on the final results.

Source of uncertainty
effect on the cross section

[%]

Particle identification 5.0

choice of scaling region

(error in kscale)
2.9

Absolute normalization
error quoted for BBS data 5.02

Reconstruction of angles 1.0

Background subtraction 5.0

Energy Calibration 1.0

Averaging Problem 5.0

Total 10.52



Chapter 5

Results and Discussion

In this chapter, the discussion of the experimental results and their comparison with the
theoretical predictions are presented. To make a reliable comparison between data and
theories usually one performs a χ2 analysis. In this case, however, the calculations are
only approximate, thus such an analysis would not be statistically meaningful. There-
fore, to be able to conclude on the calculations quantitatively, the distance between
each data point and corresponding theory point was calculated and normalized to the
theory. The quantitative analysis was performed with respect to two variables: energy
of the relative motion of the deuteron-proton pair (Erel) and the neutron energy(En).

The results for the dd→dpn breakup reaction are presented in the form of five-fold
differential cross section for 147 chosen angular configurations defined by θd, θp, φdp.
The proton (θp) and the deuteron (θd) polar angles are changed with a step of 2◦, in
the range from 16◦ to 28◦, resulting in total of 49 different combinations. Each of the
combinations is studied for three different relative azimuthal angles φdp: 140◦, 160◦ and
180◦. The choice of the φdp angles is motivated by studies of the phase-space region
dominated by dp-QFS. In this case the neutron acts as a spectator with its energy close
to a minimum. The bin size for the polar angles was set to be ∆θd=∆θp=2◦ and for the
relative azimuthal angles ∆φdp=10◦. The cross section distributions are presented as a
function of a kinematical variable S. The corresponding bin size was chosen to be ∆S=4
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Figure 5.1: Sample cross section distributions obtained for 3 geometries characterized by
the same combination of polar angles:(θd=22◦, θp=20◦) and three different φdp values: 140◦

(left), 160◦ (center) and 180◦ (right). The solid lines are for theoretical prediction — blue
with 1-term calculations and green with 4-term calculations (see Section 2.2). The dashed-line
and the right hand scale (both in red color) present the dependence of the spectator neutron
energy (En) along S-axis.
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Figure 5.2: Relative discrepancies between the experimental data and the theoretical pre-
dictions of the breakup cross sections as a function of (a) the spectator neutron energy (left)
and (b) relative energy of the deuteron and the proton (right).

MeV. These integration limits are wide enough to reach good statistical accuracy. For
each configuration the data points are presented along with their statistical uncertainty.

Since the exact theoretical calculations are not yet available, the obtained results
are compared with the ones (provided by A. Deltuva) based on the SSA, expected to
be a rough estimate near QFS kinematics, i.e. so-called one-term calculations (1-term)
and four-term calculations (4-term) (see Section 2.2). The spectator neutron energy
is presented along with the cross-section distributions to have a feeling of how far the
data points are from the QFS limit. Here it is worth to mention that the calculations
are based on the non-relativistic framework and therefore the kinematical variable S
has to be recalculated to the relativistic form. This was done simply by a projection
of the kinematics used in the calculations onto the relativistic one.

Sample of the cross-section distributions obtained, for a chosen combination of po-
lar angles (θd = 22◦, θp = 20◦) and for the three relative azimuthal angles is presented
in Fig. 5.1. The whole set of cross-section results is presented in Appendix C.

The data are arranged in a way that for a given θd the full set of the cross section for
all analyzed θp is presented. For the lower available θd = 16◦ and for the QFS configu-
rations (φdp = 180◦), the agreement between the data and the 1-term calculations are
visible at θp = 18◦. With the increasing value of θd, the agreement in case of the 1-term
theory and the data appears at θp = 18◦, 20◦, whereas for the 4-term ones it is seen
only for θp = 22◦. A similar picture repeats also at the higher analyzed θd, up to 26◦.
For the θp = 28◦ the both kinds of the calculations give the same results, therefore one
can estimate a difference between the calculations and the data according to increasing
value of θd. As one can notice, the difference decrease and for the configuration of
θd = 28◦, θp = 28◦ is about 3 times less than for θd = 16◦, θp = 28◦.

The discrepancies observed between the results and the theoretical calculations are
rather large. However a relative difference between the data and theory, defined as
(σexp-σth)/σth, is calculated and presented as a function of (a) the spectator neutron
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Figure 5.3: Similar to Fig. 5.2: except the relative discrepancies between the experimental
data and the theoretical predictions are presented for individual data points. The data points
for a given relative azimuthal angle are grouped in one color — φdp = 140◦ (red), φdp = 160◦

(blue) and φdp = 180◦ (green).

energy (En) and (b) the energy of relative motion of deuteron-proton pair (Erel). Such
a study allows one a quantitative verification of the calculations.

As expected, at very small En, both types of the calculations describe the data
equally well. With the increasing values of En, the 4-term calculations relatively better
describe the data. The same trend can be observed when presenting the individual
data points grouped (different color) for a given φdp, see Fig. 5.3. Here, as one can see,
the data-vs-theory is the best described for φdp = 180◦ and (as one moves away from
QFS limit) worst for φdp = 140◦ .

Based on the set of the cross section for individual configurations few conclusions
can be drawn. The shape of the cross-section distributions for configurations with φdp =
160◦ and 180◦ is equally well reproduced by the calculations. However, due to relatively
small values of the cross-section, it is difficult to conclude on the data for φdp=140◦.
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From the theoretical point of view, single-scattering approximation is expected to be
more reliable when the spectator energy is small. In some cases, especially at φdp =
180◦, a reasonable agreement is seen. Furthermore, if 1- and 4-terms theories do not
agree, this implies that other terms beyond the 1st one are important too. Therefore,
more complicated picture should be considered in this situation, like interplay involving
higher-order terms. Having only rough calculations, the approximation is more trust
worthy when 1- and 4-term theories agree and in such cases the comparison with the
data is reasonable. What is more, the higher-order terms are expected to be suppressed
more when the neutron-deuteron and neutron-proton relative energies are larger, i.e.,
when the proton and the deuteron are scattered at larger θ with larger energies.

From the data side, one should also take into account a large systematic uncertainty
associated with the absolute normalization. The discrepancy at the smallest Erel values
can be, on the other hand, attributed to the seizable contribution of the Coulomb force.



Chapter 6

Summary, Conclusion and Outlook

The aim of this work was to investigate the 2H(d, dp)n breakup reaction near quasi- free
scattering (QFS) kinematics, at which the spectator neutron energy (En) remains close
to zero. The experiment was performed at the KVI Groningen facility. The deuteron
beam at 160 MeV energy was provided by the AGOR cyclotron and was impinged
on the liquid deuterium target. The reaction products were detected using the 4π
BINA detection system. The set of the five-fold differential cross section d5σ

dΩ1dΩ1dS
was

obtained for 147 dp configurations. The results complement the database of 4N systems
with about 4500 new data points. In addition, the data collected with the backward
part of BINA (ball) were for the first time analyzed extensively. The most significant
steps in the data analysis were the introduction of the cluster based angular and energy
information into the charged particles track reconstruction and the ball calibration.

The cross-section results have been compared to the very first theoretical calcula-
tions using single-scattering approximation (SSA) based on the CDBonn+∆ potential,
provided by A. Deltuva. Despite the fact that the energy at which the experiment was
carried out was not high enough for SSA, the approximate calculations describe the
data fairly well and for a few configurations satisfactory agreement have been achieved.
Both, the 1-term and the 4-term calculations, reproduce the data well at lowest En.
As the En increases, the discrepancy between 1-term calculation and the data becomes
larger compared to the one based on the 4-term. This behavior is quite obvious since
the 4-term calculations include more dynamical terms. In general, the data are de-
scribed better by the theory at φdp=180◦ and worst for the lower studied values of
φdp. Moreover, as one moves to the larger values of θd , the discrepancy between both,
1-term and 4-term, calculations decreases what indicates that the additional part of
the dynamics which contributes to the QFS state is less important and in such cases,
the agreement is improved.

The strategy developed for trajectory and energy reconstruction in the ball will
certainly be useful for exploring the region of larger scattering angles. Moreover, the
data analysis can be extended to other channels in dd scattering. One may study
for example the transfer channels which have already been identified and shown or the
double quasi-free process within four-body breakup dd→ppnn, where both neutrons are
acting as spectators. The results obtained are very important for the future theoretical
studies of the 4N systems dynamics, serving as a verification tool for the calculations
currently being developed which are entering in a new step of the advancement.
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Appendix A

List of ball elements

The backward ball of BINA has 149 phoswich elements as explained in the Chapter 3.
The table below provides list of first 55 ball elements, each with list of it’s neighbor
elements and angular information about their geometrical centers. With a triangular
shape, each elements has maximum 12 neighbors — 3 elements from three sides (si,
where i=1,2,3) and 9 elements from three vertexes (vj, where j=1,2,..,9) — each vertex
with three neighbors. There is exception for an element, placed at an edge of gaps
(the target-holder entrance, the beam-pipe entrance, the forward window opening),
will have less than 12 neighbors.

Figure A.1: Ball element neighbors. See the text for the details.

During the analysis, the vertex neighbors can be switched off or on. In present
work we used only the nearest neighbors, this is because the inclusion of neighbors-of-
neighbor didn’t have any notable influence on the results.
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76 A. List of ball elements

Table A.1: A table listing all the ball elements BINA’s
backward ball — each with it’s centroid angles ( φ and θ)
and it’s neighbor elements. The first column represents
the elements number, the second and third columns are
the angles. Rest of the columns represent neighbor ele-
ments (see the text for detail).

ball angles neighbors

nr. [degree] on sides on vertexes

(#)(#)(#) φφφ θθθ s1s1s1 s2s2s2 s3s3s3 v1v1v1 v2v2v2 v3v3v3 v4v4v4 v5v5v5 v6v6v6 v7v7v7 v8v8v8 v9v9v9

1 71.25 45.0 2 25 — 3 23 24 26 27 55 — — —

2 54.0 50.0 1 3 27 4 25 26 28 29 55 — — —

3 36.75 45.0 2 4 — 1 5 6 27 28 29 — — —

4 25.75 53.5 3 5 29 2 6 27 28 30 31 — — —

5 10.25 53.5 4 6 31 3 7 29 30 32 33 — — —

6 359.25 45.0 5 7 — 3 4 8 31 32 33 — — —

7 342.0 50.0 6 8 33 5 9 31 32 34 35 — — —

8 324.75 45.0 7 9 — 6 10 11 33 34 35 — — —

9 313.75 53.5 8 10 35 7 11 33 34 36 37 — — —

10 298.25 53.5 9 11 37 8 12 35 36 38 39 — — —

11 287.25 45.0 10 12 — 8 9 13 37 38 39 — — —

12 270.0 50.0 11 13 39 10 14 40 41 37 38 — — —

13 252.75 45.0 12 14 — 11 15 16 39 40 41 — — —

14 241.75 53.5 13 15 41 16 42 43 12 39 40 — — —

15 226.25 53.5 14 16 43 13 44 45 17 41 42 — — —

16 215.25 45.0 15 17 — 13 14 43 44 45 18 — — —

17 198.0 50.0 16 18 45 46 47 19 15 43 44 — — —

18 180.75 45.0 17 19 — 16 20 21 45 46 47 — — —

19 169.75 53.5 18 20 47 21 48 49 17 45 46 — — —

20 154.25 53.5 19 21 49 18 50 51 22 47 48 — — —

21 143.25 45.0 20 22 — 18 19 23 49 50 51 — — —

22 126.0 50.0 21 23 51 52 53 24 20 49 50 — — —

Continued on next page
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Table A.1 – Continued from previous page

ball angles neighbors

nr. [degree] on sides on vertexes

(#)(#)(#) φφφ θθθ s1s1s1 s2s2s2 s3s3s3 v1v1v1 v2v2v2 v3v3v3 v4v4v4 v5v5v5 v6v6v6 v7v7v7 v8v8v8 v9v9v9

23 108.75 45.0 22 24 — 21 51 52 53 25 1 — — —

24 97.75 53.5 23 25 53 1 54 55 51 52 22 — — —

25 82.25 53.5 24 1 55 23 26 27 2 53 54 — — —

26 67.0 73.5 1 27 56 25 1 2 57 58 28 54 — —

27 54.0 65.25 26 28 2 1 25 55 3 4 29 56 57 58

28 41.0 73.5 27 29 58 2 3 4 59 60 30 26 56 57

29 36.5 67.5 28 30 4 27 2 3 5 31 58 59 60 —

30 18.0 75.25 29 31 60 4 5 28 58 59 61 62 32 —

31 0.5 67.5 30 32 5 6 7 33 60 61 62 4 29 —

32 355.0 73.5 31 33 62 5 6 7 63 64 34 30 60 61

33 342.0 65.25 32 34 7 5 6 31 8 9 35 62 63 64

34 329.0 73.5 33 35 64 7 8 9 65 66 36 32 62 63

35 324.5 67.5 34 36 9 33 7 8 10 37 64 65 66 —

36 306.0 75.25 35 37 66 9 10 67 68 38 34 64 65 —

37 287.5 67.5 36 38 10 9 35 11 12 39 66 67 68 —

38 283.0 73.5 37 39 68 10 11 12 69 70 40 36 66 67

39 270.0 65.25 38 40 12 10 11 37 13 14 41 68 69 70

40 257.0 73.5 39 41 70 12 13 14 71 72 42 38 68 69

41 252.5 67.5 40 42 14 39 12 13 43 15 70 71 72 —

42 234.0 75.25 41 43 72 40 70 71 14 15 73 74 44 —

43 215.5 67.5 42 44 15 16 17 45 72 73 74 14 41 —

44 211.0 73.5 43 45 74 15 16 17 75 76 46 42 72 73

45 198.0 65.25 44 46 17 15 46 43 18 19 47 74 75 76

46 185.0 73.5 45 47 76 17 18 19 77 78 48 44 74 75

47 180.5 67.5 46 48 19 45 17 18 49 20 76 77 78 —

48 162.0 75.25 47 49 78 19 20 79 80 50 46 76 77 —

Continued on next page
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Table A.1 – Continued from previous page

ball angles neighbors

nr. [degree] on sides on vertexes

(#)(#)(#) φφφ θθθ s1s1s1 s2s2s2 s3s3s3 v1v1v1 v2v2v2 v3v3v3 v4v4v4 v5v5v5 v6v6v6 v7v7v7 v8v8v8 v9v9v9

49 143.5 67.5 48 50 20 47 19 78 79 80 21 22 51 —

50 139.5 73.5 49 51 80 20 21 22 81 82 52 48 78 79

51 126.0 65.25 50 52 22 49 20 21 23 24 53 80 81 82

52 113.0 73.5 51 53 82 50 80 81 54 22 23 24 — —

53 108.5 67.5 52 54 24 25 55 82 51 22 23 — — —

54 90.0 75.25 53 55 — 24 25 26 56 52 82 — — —

55 71.5 67.5 54 25 26 53 24 25 1 2 27 56 — —



Appendix B

Formula for differential cross section

The differential elastic scattering cross section can be given as follows:

dσel
dΩd

(Ωel
d ) =

1

n(1− τ)N0∆x
· Nel(Ω

el
d )

∆Ωel
d

· 1

εel(Ωel
d )εel,ball(Ωel,ball

d )
(B.1)

where,
n = density of the interaction centers in the target,
(1− τ) = elcronic live-time (fraction of time when the DAQ is active to accept events),
N0 = collected charge in the FC (in the units of elementary charge e),
∆x = target thickness,
Nel = counts of the elastically scattering deuterons registered in the solid angle Ωel

d ,
εel(Ωel

d ) = total detector efficiency for deuteron in the wall,
εel,ball(Ωel,ball

d ) = total detector efficiency for deuteron in the ball. For the case of the
single track elastic events in wall, εel,ball(Ωel,ball

d ) = 1. In case of the three body breakup
process, the diff. breakup cross section is given as follows:

d5σ

dΩddΩpdS
(S,Ωd,Ωp) =

1

n(1− τ)N0∆x
· Nbr(S,Ωd,Ωp)

∆Ωd∆Ωp∆S
· 1

ε(Ωd)ε(Ωp)
(B.2)

where,
Nbr = counts of the deuteron-proton coincidences from the three-body breakup process
registered at solid angles Ωd, Ωp and projected onto a ∆S-wide arc-length bin,
ε(Ωi) = total detector efficiencies for the breakup particles in the wall (subscript i
stands for d or p.).
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Appendix C

Breakup Cross Section Results

Please go to the next page.
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— φdp = 140◦ φdp = 160◦ φdp = 180◦

θp = 16◦
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Figure C.1: Results at θd = 16◦ for different φdp (columns) and different θp (rows). The
solid lines are for theoretical prediction — blue with 1-term calculations and green with 4-
term calculations (see Section 2.2). The dashed-line and the right hand scale (both in red
color) present the dependence of the spectator neutron energy (En) along S-axis.
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Figure C.2: The same as Fig.C.1, except for θd = 18◦.
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Figure C.3: The same as Fig.C.1, except for θd = 20◦.
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Figure C.4: The same as Fig.C.1, except for θd = 22◦.
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Figure C.5: The same as Fig.C.1, except for θd = 24◦.
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Figure C.6: The same as Fig.C.1, except for θd = 26◦.
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Figure C.7: The same as Fig.C.1, except for θd = 28◦.



Bibliography

[1] H. Yukawa, Proc. Phys. -Math. Soc. Japan 17, 48 (1935).

[2] H. J. Bhabha, Nature 143, 276 (1939).

[3] G. Occhialini and C. Powell, Nature (1947).

[4] M. Taketani, S. Nakamura, and M. Sasaki, Progress of Theoretical Physics 6,
(1951).

[5] V. Stoks, R. Klomp, C. Terheggen, and J. D. Swart, Physical Review C 49, 2950
(1994).

[6] R. Wiringa, V. Stoks, and R. Schiavilla, Physical Review C 51, 38 (1995).

[7] R. Machleidt, F. Sammarruca, and Y. Song, Physical review C: Nuclear physics
53, R1483 (1996).

[8] H. Witala et al., Physical Review Letters 81, 11 (1998).

[9] S. Pieper, V. Pandharipande, and R. Wiringa, Physical Review C 64, 1 (2001).

[10] E. Epelbaoum, W. Glöckle, and U.-G. Meißner, Nuclear Physics A 637, 107
(1998).

[11] E. Epelbaoum, W. Glöckle, A. Krüger, and U.-G. Meißner, Nuclear Physics A
645, 413 (1999).

[12] J.-I. Fujita and H. Miyazawa, Progress of Theoretical Physics 17, 360 (1957).

[13] E. Stephenson et al., Physical Review C 60, 3 (1999).

[14] R. Bieber, Physical Review letters 84, 606 (2000).

[15] H. Sakai, Physical Review letters 84, 5288 (2000).

[16] K. Sekiguchi et al., Physical Review C 65, 34003 (2002).

[17] K. Ermisch, Physical Review C 68, 1 (2003).

[18] S. Kistryn et al., Physical Review C 68, 1 (2003).

[19] K. Sekiguchi, Physical Review C 70, 1 (2004).

[20] S. Kistryn, Physical Review C 72, 1 (2005).

88



BIBLIOGRAPHY 89

[21] K. Ermisch, Physical Review C 71, 1 (2005).

[22] S. Kistryn, Physics Letters B 641, 23 (2006).

[23] B. v. Przewoski et al., Physical Review C 74, 1 (2006).

[24] E. Stephan, Physical Review C 76, 21 (2007).

[25] H. Mardanpour et al., European Physical Journal A 31, 383 (2007).

[26] H. Amir-Ahmadi, Physical Review C 75, 1 (2007).

[27] A. Ramazani-Moghaddam-Arani, Physical Review C 78, 014006 (2008).

[28] I. Ciepał et al., Physical Review C 85, 17001 (2012).

[29] N. Kalantar-Nayestanaki, Reports on Progress in Physics 75, 016301 (2012).

[30] S. Kistryn and E. Stephan, Journal of Physics G: Nuclear and Particle Physics
40, 63101 (2013).

[31] E. Stephan, S. Kistryn, and N. Kalantar-Nayestanaki, Few-Body Systems 55, 627
(2014).

[32] J. W. Holt, N. Kaiser, and W. Weise, Progress in Particle and Nuclear Physics
73, 35 (2013).

[33] H. Witała and W. Glöckle, Journal of Physics G: Nuclear and Particle Physics
37, 064003 (2010).

[34] K. Sagara, Few-Body Systems 48, 59 (2010).

[35] H. Witała, J. Golak, W. Glöckle, and H. Kamada, Physical Review C 71, 1 (2005).

[36] H. Witała et al., Physical Review C 77, 034004 (2008).

[37] B. Kłos et al., EPJ Web of Conferences 66, 5 (2014).

[38] I. Ciepał et al., Acta Physica Polonica B 46, 459 (2015).

[39] A. Micherdzińska et al., Physical Review C 75, 54001 (2007).

[40] C. Bailey, PhD Thesis, Indiana University, U.S.A. (2009).

[41] A. Ramazani-Moghaddam-Arani, PhD Thesis, University of Groningen, The
Netherlands (2009).

[42] C. Alderliesten and A. Djaloeis, Physical Review C 18, (1978).

[43] V. Bechtold et al., Nuclear Physics A 288, 189 (1977).

[44] A. Ramazani-Moghaddam-Arani, Physical Review C 83, 024002 (2011).

[45] W. Glöckle, The Quantum Mechanical Few-Body Problem - Texts and Mono-
graphs in Physics, Springer-Verlag, 1983.



90 BIBLIOGRAPHY

[46] L. D. Faddeev, Sov. Phys. JETP 12, 1014 (1961).

[47] A. M. Mukhamedzhanov, V. Eremenko, and a. I. Sattarov, Physical Review C -
Nuclear Physics 86, (2012).

[48] C. Elster, Lecture notes - chapter 1, The Nucleon-Nucleon System (Winter 1999:
Phys 755: Nuclear Theory) (1999).

[49] W. Glöckle, Nuclear Physics A 41, 620 (1970).

[50] W. Glöckle et al., Physics Reports 274, 107 (1996).

[51] B. S. Pudliner et al., Physical Review C 56, 75 (1997).

[52] R. B. Wiringa, Nucleon-Nucleon Interactions: Contemporary Nuclear Shell Mod-
els, 1997.

[53] J. Carlson and R. Schiavilla, Reviews of Modern Physics 70, 743 (1998).

[54] E. Epelbaum, Physical Review C 66, 1 (2002).

[55] E. Epelbaum, W. Glöckle, and U.-G. Meißner, Nuclear Physics A 747, 362 (2005).

[56] E. Epelbaum, Progress in Particle and Nuclear Physics 57, 654 (2006).

[57] E. Epelbaum, Reviews of Modern Physics 81, 1773 (2009).

[58] A. Deltuva, R. Machleidt, and P. Sauer, Physical Review C 68, 1 (2003).

[59] A. Deltuva, A. Fonseca, and P. Sauer, Physical Review C 73, 3 (2006).

[60] O. A. Yakubovsky, Sov. J. Nucl. Phys. 5, 937 (1967).

[61] A. Deltuva, Few-Body Systems 55, 621 (2013).

[62] A. Deltuva and A. C. Fonseca, Physical Review Letters 113, 102502 (2014).

[63] A. Deltuva and A. C. Fonseca, Physical Review C 90, 044002 (2014).

[64] A. Deltuva and A. Fonseca, Physics Letters B 742, 285 (2015).

[65] A. Deltuva, Private communication (2015).

[66] O. O. Beliuskina et al., Problems of Atomic Science and Technology 162 (2013).

[67] G. Ohlsen, Nuclear Instruments and Methods 37, 240 (1965).

[68] A. Ramazani-Moghaddam-Arani et al., Physics Letters B 725, 282 (2013).

[69] H. Mardanpour-Mollalar, PhD Thesis, University of Groningen, The Netherlands
(2008).

[70] N. Kalantar-Nayestanaki et al., Nuclear Instruments and Methods in Physics Re-
search A 444, 591 (2000).



BIBLIOGRAPHY 91

[71] S. Gales, Proc. 11-th Conference on Cyclotrons and their Applications (lonies,
Tokyo,) (1987).

[72] M. Volkerts et al., Nuclear Instruments and Methods in Physics Research Section
A 428, 432 (1999).

[73] J. J. Benedetto and M. Fickus, Advances in Computational Mathematics 18, 357
(2003).

[74] E. Stephan, Habilitation Thesis, University of Silesia, Katowice, Poland (2010).

[75] N. Kalantar-Nayestanaki, J. Mulder, and J. Zijlstra, Nuclear Instruments and
Methods in Physics Research Section A 417, 215 (1998).

[76] W. Parol et al., Acta Physica Polonica B 45, 527 (2014).

[77] A. Micherdzinska, PhD Thesis, University of Silesia, Katowice, Poland (2003).

[78] A. Biegun, PhD Thesis, University of Silesia, Katowice, Poland (2005).

[79] W. Parol, PhD Thesis, Jagiellonian University, Cracow, Poland (2015).

[80] J. B. Birks, The specific fluorescence of anthracene and other organicmaterials,
1951.

[81] Saint-gobain, Saint Gobain: Plastic Scintillators Data Sheet, 2015.

[82] C. Ryan et al., Nuclear Instruments and Methods in Physics Research Section B
34, 396 (1988).

[83] I. Ciepał, PhD Thesis, Jagiellonian University, Cracow, Poland (2010).



Acknowledgements
I would like to thank to all the people who have helped me at small and big level to
complete this thesis.

Foremost, I would like to express my sincere gratitude to my promoterProf. Stanisław
Kistryn for giving me this opportunity. I truly appreciate the help and support I got
from you even though you, being as a prorector, had bigger responsibilities. You made
me capable of be an independent researcher and encouraged me to participate in vari-
ous (inter)national scientific events so that I could learn more and develop my scientific
career.

I am extremely thankful to my co-promotorDr. Izabela Ciepał, and to my colleagues
Dr. Elżbieta Stephan andDr. Adam Kozela for their active input in every aspects
of my thesis. Your guidance and help through the data analysis and writing of the thesis
was truly a biggest support. Without you three folks, I wouldn’t have kept my thesis
well on track while maintaining a good quality, how can I ever possibly thank you.
Your help means world to me.

My special thanks go to Prof. Paweł Moskal and his family, for the kindness and
warm welcoming that you showed me. You took care of my stay in Poland so well that I
felt like a home away from my home. There are no words to show you my appreciation
in a true sense for so many things you did for me.

I would like to express my gratitude to the head of the Nuclear Physics Department,
Prof. Bugusław Kamys, for his crucial support. Your wise advises saved me from
many bureaucratic and administrative hurdles.

This work would not have been possible without endless support of the people and the
AGOR cyclotron team at KVI, the Netherlands. Thank you so much Prof. Nasser
kalantar-Nayestanaki and Dr. Johan Meschendorp. Thank you Nasser also for
taking care of my stay in Groningen. I also thank to Harry Timersma and Rob
Kremers for their precious and peculiar technical support. My sincere thanks also
to the entire experimental team; Prof. Kazimierz Bodek, Dr. Jacek Zejma,
Dr. Barbara Kłos, Dr. Indranil Mazumdar, Dr. Izabela Skwira-Chalot,
Dr. Alexandra Wrońska and Wiktor Parol. Wiktor, thanks a lot also for your
co-operation and help with analysis codes.



I would also like to thank to...

... the theory group of Lisbon,Dr. Arnas Deltuva andProf. Antonio C. Fonsceca
for taking care of my stay in Lisbon and providing me the theoretical calculations.

... the theory group at my Department; Prof. Henryk Witała, Prof. Jacek Golak
and Dr. Roman Skibiński for their support.

... the rest of the faculty members and staff of the Nuclear Physics Department, who
have been very kind and helpful to me; Prof. Jarczyk, Prof. Władysław Waluś,
Prof. Reinhard Kulessa, Prof. Andrzej Magiera, Prof. Piotr Salabura, Prof.
Zbigniew Rudy, Prof. Jerzy Smyrski. This paragraph is incomplete without
mentioning administration support of Mrs. Alicja Mysłek,Mrs. Agnieszka Wach
and Mrs. Teresa Gucwa - Ryś, thank you so much.

... my colleagues for their supports; Eryk, Wojciech (C+++++), Marcin, Witold,
Kacper, Magda, Iryna, Sushil, Jinesh, Tomek, Tomasz, Szymon, Ewelina,
Anna, Ayeh, Yasir, Aladin, Jacek, Jan, Andrzej, Damian, Greg, Wiktor.

... the team at the WASA-at-COSY facility; Prof. James Ritman, Prof. Frank
Goldenbaum and Dr. Volker Hejny for taking care of my stay in Juelich. And
how can I miss to thank my dear friend Slava at FZJ - Juelich.

... Prof. Krzysztof Rusek, Prof. Ismael Martel and Prof. Kirby Kemper for
their teachings and support at various events, in particular at the HIL workshop.

... Prof. Giuseppina Orlandini, Prof. Alejandro Kievsky, Prof. Nir Barnea,
Dr. Andreas Nogga, Dr. Rimantas Lazauskas and Dr. Mario Gattobigio for
their fruitful discussions and teachings on theoretical aspects of few-nucleon interac-
tions.

... people at IFJ PAN; Prof. Adam Maj, Prof. Paweł Olko, Dr. Jan Swakon,
Prof. Antoni Szczurek and Prof. Jan Styczek for their friendly interactions
during my presence at IFJ.

... Prof. Edward Stephenson and Dr. Crystal Bailey for sharing their results so
that I could scale the elastic scattering cross-section presented in this work.

... Mgr Krzysztof Byrski and prorector Prof. Andrzej Mania for helping me
with my accommodation in Krakow.

... my former college teachersDr. Pruthul Desai, Dr. Ashok Mody, Dr. Ashwin
Patel, Anil Bhatt sir and the staff of Navyug Science college, without your support
I wouldn’t reach to the present stage to achieve this success.



... my dear friends/colleagues from India/abroad for the their direct/indirect support,
thank you Prof. Per Brunsel, Prof. Guido van Oost, Prof. Gerard Bon-
homme, Frank Janssens, Jay Mody, Divya Kurup, Alok, Bhavesh (sallu),
Nilanjan, Amol, Alen, Leana, Fra, friends from Amreli’s Khatri boarding.

... my polish friends Angelika (carla), Emi, Nadzeja, Malika, team of AZS AWF
KRAKÓW MASTERS, friends from żaczek dormitory ...(list goes on)

We acknowledge support by the Foundation for Polish Science - MPD program,
co-financed by the European Union within the European Regional Devel-
opment Fund.

Last but not least, I appreciate very much the love, support and most importantly
patience of my family; parents Ravi and Kusum, sisters Apla and Nita, brother Dipu,
and my girlfriend (now wife) Jagoda. Words are not enough to thank you Jagoda for
the support and motivation you gave during the most crucial last year of my PhD.


	Introduction
	Theoretical background
	NN and 3N interactions
	Realistic NN potentials
	Chiral perturbation theory (ChPT)
	Coupled-channel potentials (CCP)

	4N interactions - a step forward
	Reaction kinematics
	Elastic and quasi-free (QFS) scattering
	Three-body breakup
	Transfer channels


	Experiment
	AGOR cyclotron and beam lines
	The BINA detector
	Forward wall
	Backward ball
	Electronics

	Target system
	Beam intensity monitor

	Data Analysis
	Framework
	Pre-analysis of raw data and event selection
	Time information
	Track reconstruction

	Particle identification
	Energy calibration
	Wall scintillators
	Ball scintillators

	Discrimination of reaction channels
	Detector efficiency
	MWPC efficiency
	E scintillators:
	E scintillators:
	Ball efficiency

	Analysis of elastic scattering process
	Background subtraction and calculation of normalization factor
	Cross-section scaling

	Breakup reaction analysis
	Evaluation of breakup coincidences
	Three-body breakup cross-section

	Possible sources of uncertainty

	Results and Discussion
	Summary, Conclusion and Outlook
	Appendix
	List of ball elements
	Formula for differential cross section
	Breakup Cross Section Results
	Bibliography
	Acknowledgments

