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Preface

Results constituting the basis for this dissertation have
been published in seven articles [1–7] and presented at
eight conferences. The research has been realized at the
Jagiellonian University by means of the Jagiellonian PET
scanner. Ideas of proposed signal and image processing
have been positively judged and approved for application
by the Jagiellonian PET collaboration.



REVIEW COPY

DO NOT DISTRIBUTE



REVIEW COPY

DO NOT DISTRIBUTE

1. Introduction

Positron Emission Tomography (PET) is at present one of the most
technologically advanced diagnostic methods for non-invasive imaging in
medicine [8,9]. It plays a unique role both in medical diagnostics and in
monitoring effects of therapy, in particular in oncology, cardiology, neu-
rology and psychiatry. In PET measurement the patient is injected with
radiotracer, containing a large number of metastable atoms of positron
emitting radionuclide. Since the rate of assimilation of radiopharmaceu-
ticals depends on the type of the tissues, sections of the diseased cells can
be identified with high accuracy, even if they are not yet detectable via
morphological changes. Therefore, PET is extremely effective in locating
and diagnosing cancer metastases.

As the result of positron annihilation, two photons travelling off with
nearly opposite directions are produced. The detection system is usu-
ally arranged in layers forming a ring around the diagnosed patient. In
the basic PET measurement scheme, the information about the single
event of positron annihilation is collected in the form of a line joining
the detected locations that passes directly through the point of anni-
hilation, i.e. the Line-of-Response (LOR). The set of registered LORs
forms the basis for PET image reconstruction. New generation of PET
scanners utilizes not only information about the LORs but also takes
advantage of the measurement of the time difference between the arrival
of the two photons at the detectors, referred to as the Time-Of-Flight
(TOF) difference [10]. State-of-the-art TOF-PET scanners use scintilla-
tion crystals and operate at a time resolution, defined hereafter as the
coincidence resolving time (CRT), of the order of 300−400 ps [11, 12].
The fundamental improvement brought by TOF is an increase in signal-
to-noise ratio (SNR); in the first approximation the SNR improvement
due to TOF application is inversely proportional to the square root of
the CRT [13]. For example, if a time resolution of 400 ps is applied,
this yields, for a patient of about 40 cm average transaxial size, an SNR
about three times better than for non TOF information measurement.
The time resolution achievable with the scintillator detectors is limited
by the optical and electronic time spread caused by the detector com-
ponents, and by the time distribution of photons contributing to the
formation of electric signals. A detailed elaboration of the lower bound
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for time resolution has been published for most kinds of available crystal
scintillators in [14]. The modern technology of lutetium oxyorthosilicate
(LSO) crystals is particularly promising, as it shows an excellent timing
resolution. Studies using small LSO crystals indicate the timing limit at
the level of about 100 ps [15]. Recent theoretical studies indicate that
there are no physical barriers to reaching the resolution of about 10 ps
in the future [16].

In this context, it is worth to mention that the Jagiellonian PET (J-
PET) Collaboration developed a novel whole-body PET scanner based
on plastic scintillators [17–20]. Plastic scintillators are characterized by
superior timing properties compared to scintillator crystals. The TOF
resolution achievable with plastic scintillators may be even better than
100 ps for a large detector, even in the scale of one meter [19], and plastic
scintillators can be produced easily in variety of shapes and dimensions.
Detectors based on plastic scintillators are commonly used in nuclear
and particle physics experiments, however, due to negligible probabil-
ity of photo-electric effect, their potential for registration of low energy
photon, in the range of 511 keV, was so far not explored except for few
publications concentrated on the light propagation studies or callibration
methods [21,22].

The operational principles of the J-PET detector are similar to con-
ventional scanners, except that the highly accurate time information is
of paramount importance. State-of-the-art crystal based scanners use
TOF to improve the quality of the reconstructed image, but they can as
well operate in basic scheme, relying only on information from LORs. In
case of the J-PET, as it will be discussed in detail in the next chapters,
however, the accurate time information is essential to perform a signal
reconstruction. Therefore, the J-PET tomograph demands a preparation
of novel methods at each step of data processing. The goal of the work
presented in this dissertation is a development of the signal and image
processing methods taking into account the uniqueness of the J-PET de-
tector. Due to the dissimilarity from the conventional PET scanners, a
majority of the methods presented in this work are innovative solutions
in digital data processing in tomography.

This dissertation is organized into seven chapters.After this introduc-
tion the basics of PET physics and measurement techniques will be elu-
cidated and the main aspects of the data processing in the Jagiellonian
PET will be presented and discussed. Further, in the third chapter, a
short overview of the state-of-the-art algorithms that contributed to the
development of new concepts of signal processing and image reconstruc-
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tion will be given. That chapter precedes a presentation of the subsequent
steps of the developed data processing methods that will be described in
chapters four and five.The fourth chapter presents an original approach
to signal recovery and reconstruction, denoted in this work with low-
level signal processing, dedicated to the TOF-PET scanners. The fifth
chapter discusses high-level image processing. In order to perform image
reconstruction for the J-PET detector, a specific statistical model that
describes the probability density function of annihilation position, includ-
ing time measurement errors, will be introduced. A detailed descriptions
of the simulation and experimental studies and the comparison results
are given in the sixth chapter. The conclusions and directions for fu-
ture work are presented in chapter seven. The dissertation is supplied
with appendices containing derivation of math proofs that constitute the
main individual contribution to the digital signal and image processing
in tomography.
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2. Positron Emission Tomography

The first demonstration of PET technique for medical imaging use was
given in early 1950s by Brownell and Burnham. This was an inspira-
tion for the concept of emission tomography used to visualize functional
processes in the body in the late 1950s. The first 3-dimensional PET de-
tector, called PC-1, was developed at the Massachusetts General Hospital
and completed in 1969. This PET device comprised two planar opposed
arrays of crystal scintillators [23]. In 1973 Robertson and his co-workers
built the first ring PET scanner, which consisted of 32 detectors [24].
The cylindrical array of detectors has soon become the prototype of the
current shape of PET [25].

The fundamental requirement that comes together with the develop-
ment of the PET technology was to create radiopharmaceutical tracers
that could be administered safely to the patient’s body. Currently, the
most important radiopharmaceutical in PET examinations is fludeoxy-
D-glucose (18F-FDG) [26]. 18F-FDG is an analog of glucose used for
cellular metabolism having the hydroxyl group replaced by radionuclide
18F. Radionuclide 18F is produced in a cyclotron and has a relatively
long half-life, about 110 min, that allows its supply to remote places.
Similarly as glucose, 18F-FDG is absorbed by brain or kidney cells, and
what is most important, by the cancer cells presenting abnormally high
metabolism in comparison to the healthy organs. Therefore, PET imag-
ing presents the distribution of glucose consumption by the cells and an
overall cellular activity in the patient body.

Radionuclides are unstable due to the unsuitable composition of neu-
trons and protons and, therefore, decay by emission of radiation. When a
radionuclide is proton rich, as in the case of 18F, it decays by the emission
of a positron (β+) along with a neutrino (v):

1
1p+ → 1

0n + 0
1β

+ + v. (2.1)

For instance, the scheme for positron decay from 18F is:
18
9 F→ 18

8 O + 0
1β

+ + v. (2.2)
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The stability of radionuclide is achieved by converting a proton (1
1p+) in

the nucleus to a neutron (1
0n). Since a daughter nucleus is one atomic

number smaller than a parent nucleus, one of the orbital electrons has to
be ejected from the atom. As both an electron and β+ are emitted in the
decay described in Eq. (2.1), the right-hand side of this formula has to be
at least two electron mass more than the left-hand side, i.e., 2 × 511 keV
= 1022 keV. The energy beyond 1022 keV is shared as kinetic energy by
β+ and a neutrino.

After emission from the nucleus, β+ particle loses kinetic energy by
interactions with the surrounding matter. The range of positron depends
on many parameters such as the energy, charge as well as the density of
the matter it passes through. Therefore an empirical measurements are
usually provided to estimate the mean positron range in a given mate-
rial [27].When a kinetic energy of β+ particle approaches zero, positron
combines with an electron and both annihilate as a result of matter-
antimatter interaction. The positron-electron annihilation may proceed
directly or via formation of the intermediate positron-electron bound
state referred to as positronium. Positronium is a non-nuclear form com-
posed of the positron and electron that revolve around their combined
centre of mass. Positronium formation occurs with a high probability in
gases and metals, while in human tissue or water a direct annihilation of
the electron and the β+ particle is more likely, i.e., in about two-third of
all cases. As a result of matter-antimatter annihilation electromagnetic
radiation is given off. The most probable form that this radiation takes
is of two γ photons of 511 keV emitted back-to-back. Measurement of
the two opposite γ photons in coincidence by a pair of detectors is the
basis of PET. However, due to non-zero kinetic energies of positron and
electron in the moment of annihilation, the two γ photons are not emit-
ted exactly at 180o. This effect together with the non-zero range of the
β+ particle before annihilation, gives a fundamental lower limit of the
spatial resolution of PET images.

2.1 Interaction of γ photons with matter

The electromagnetic radiation in form of 511 keV γ photons is highly
penetrating. γ photons interact with matter by three main mechanisms:
photoelectric effect, Compton scattering, and pair production. The rela-
tive domination of these three interaction types depends on the γ photon
energy and on the absorbing material atomic number. Since in discus-
sion of PET technology we focus on the 511 keV γ photons, only two
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first mechanism of interactions, i.e., photoelectric effect and Compton
scattering, are considered. Pair production may be omitted, since the
energy of at least 1022 keV is required to initiate this mechanism.

2.1.1 Photoelectric effect

In the photoelectric effect, a γ photon is absorbed by the atom and
its energy is transferred to remove an electron from one of the atom
inner shells. The difference between the initial γ photon energy, denoted
hereafter as Eγ, and the binding energy of the electron in the shell is given
as the kinetic energy of ejected electron [28]. The vacancy created by the
electron is filled by the electron of outer orbital followed by emission of
the characteristics X-ray or an Auger electron.

The rough approximation of the probability of the photoelectric effect
may be given by [29]

Ppe = Z5
eff/E

3
γ (2.3)

where Zeff is an effective atomic number of the material and energy of γ
photon (Eγ) is given in keV. The dependence of the Ppe on the effective
atomic number for 511 keV annihilation γ photons is shown in Fig. 2.1.
As seen in Fig. 2.1, the photoelectric effect in human tissue (Zeff below
10) has negligible impact at energies of annihilation γ photons. However,
the probability of this process increases with increasing effective atomic
number of the absorber.

Figure 2.1. Approximation of probability of the photoelectric effect for 511 keV γ photon.

Ahead of the facts, we would like to stress that according to the re-
lation shown in Fig. 2.1, the photoelectric effect is the main mechanism
of interaction enabling the detection of the γ photons in state-of-the-art
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PET scanners; the effective atomic number of the scintillating detectors
is of order of 50. This topic will be covered in detail in section 2.2.1.

2.1.2 Compton scattering

In contrast to the photoelectric effect, in the Compton scattering the γ
photon interacts with an outer shell electron of the absorber material.
The γ photon is not absorbed by the atom, but is scattered with reduced
energy. The energy of the annihilation γ photon after the Compton
scattering (E ′γ) is the specific solution of the Compton equation, where
Eγ = 511 keV corresponds to the rest mass energy of the electron, and
therefore [28]:

E
′

γ = Eγ
2− cos(θs)

(2.4)

where θs is the scattering angle. Depending on the energy E ′γ, scattered γ
photon may again interact with the absorber. The Compton scattering is
the main mechanism of interaction in human tissue at energies of annihi-
lation γ photons; as shown in Fig. 2.1 for small Zeff the probability of the
photoelectric effect is negligible. The numerous studies of the interaction
of 511 keV γ photons with tissue-equivalent material have demonstrated
that in most cases, scattered photons detected during PET examinations
have undergone only single scattering interaction [30].

2.1.3 Attenuation of γ radiation

Single annihilation γ photon may interact with absorber material via
photoelectric effect or Compton scattering, or may pass through with-
out any interactions. For a beam of photons it is preferred to consider
the global parameter that describes the combined efficiency of all types
of interactions in the absorber. This parameter is denoted as attenua-
tion coefficient (µtot) and for γ photons with energies below 1022 keV,
including annihilation γ photons, is defined as [31]

µtot = µpe + µc (2.5)

where µpe is the photoelectric effect coefficient and µc is the Compton
scattering coefficient. For a well-collimated beam of photons, attenuation
takes the form of an exponential function with a constant value µtot, i.e.,

I(z) = I0 · exp (−µtot · z) , (2.6)
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where I0 stands for the initial photon beam intensity and I(z) is the
photon beam intensity after passing through distance z in material with
attenuation coefficient µtot.

2.2 Detection of γ photons

The basis of the detection of γ photons in PET technique is the inter-
action of radiation with scintillation detectors. The scintillation process
relies on the absorption of the γ photon and conversion of its energy into
a pulse of visible light. For typical scintillators, from several to several
dozen thousand of photons are emitted isotropically for a single 511 keV
γ photon. The rate of emission has an exponential distribution with a
constant value referred to as decay time. Depending on the emission an-
gle, part of the light escapes from the scintillator and the rest undergoes
internal reflection. Part of the light photons reach the photomultiplier
(PM) attached to one or more faces of the scintillation detector. The
light photons in PM are converted to an electrical signal and the inte-
gral of this signal (charge) is proportional to the energy deposited in the
scintillator by γ photon.

The overall charge spectrum of 511 keV γ photons acquired by the
detection system is broad and fluctuating; the photopeak that arrives
from the deposition of the total energy via photoelectric effect consti-
tutes only a small part of the spectrum. The continuous values of charge
(energy) represent incomplete deposition of energy by the annihilation γ
photons, e.g., due to one or more Compton scattering in the tissue. The
fluctuations in the acquired spectrum arise primarily from the statistical
nature of the conversion process of the deposited energy into charge. The
ability of the PET system to accurately measure the deposited energy is
of main importance.

2.2.1 Scintillation detectors

As gas and liquid scintillators have low detection efficiency, PET tech-
nology is based on the solid scintillation detectors. Currently, two types
of solid scintillators are considered for PET studies: inorganic crystals
and organic plastics, however, all commercial PET devices use inorganic
crystals. Plastic scintillators were not applied to PET technology due
to their low µtot for annihilation γ photons and small effective atomic
number of elements constituting the material.
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Attenuation coefficient for 511 keV γ photons for the plastic scintillator
BC-420 equals 0.098 cm−1 [32] and is about nine times smaller than for
common crystals like bismuth germanate (BGO) µtot = 0.950 cm−1 or
lutetium oxyorthosilicate (LSO) µtot = 0.866 cm−1 [33]. Consequently,
for a 2 cm thick scintillator the probability that annihilation γ photons
react in the detector amounts to about 0.2 for the plastic and about 0.8
for the crystal.

Plastic scintillators are composed mainly of carbon and hydrogen. The
effective atomic number of the scintillator determines the mechanism of
interactions of γ photons with the material. As shown in Fig. 2.1, small
atomic number corresponds to small probability that annihilation γ pho-
tons transfer all their energy to the electrons in the scintillator through
the photoelectric effect. Instead, γ radiation interacts with plastic scintil-
lator predominantly via Compton scattering and may deposit maximally
an energy of about 341 keV (see Eq. (2.4) for details). Therefore, the mea-
sured spectrum of energies of annihilation γ photons does not include the
photopeak around 511 keV and the valuable signal is concentrated in the
continuous part of the Compton region.

On the positive side, plastic scintillators have long light attenuation
length in comparison to crystal scintillators. As a result, enough light
photons reach PM in order to produce valuable signal when using scintil-
lators in form of long strips. Long crystal scintillators would simply ab-
sorb all of the light photons before they arrived to PMs. Moreover, the ex-
tremely short decay time of plastic scintillator BC-420 of about 1.5 ns [32]
is much better in comparison to best decay time of crystal scintillator of
about 16 ns for cerium doped lanthanum bromide (LaBr3:Ce) [33]. Due
to high costs, hygroscopicity and relatively small efficiency for the photo-
electric effect, the LaBr3:Ce is not regarded as the material of choice for
the PET detectors. The relative price of the LaBr3:Ce crystal is about
230 times greater than that of the plastic scintillator BC-420 [32]. The
unique timing properties of the BC-420 scintillators led to the develop-
ment of the first prototype PET device based on plastic detectors. This
idea will be introduced in section 2.3.

2.2.2 Light detection with photomultipliers

Photomultiplier tubes (PMTs) are the most commonly used photodetec-
tors in PET. This detector is a vacuum glass tube containing a photo-
cathode at one end, several dynodes in the middle, and an anode at the
other end. Typically high voltage of about 1 kV is applied across the tube
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to keep about 100 V increments between the dynodes [34]. Light pho-
tons strike the photocathode and knock out low energy electrons called
photoelectrons, from the photoemissive material via photoelectric effect.
Photoelectrons are accelerated toward the next closest dynode and the
process continues until the last dynode is reached. Typical gain of PMT
is in the range from 105 to 107 and leads to very good signal to noise
ratio. The main drawback of PMT is low quantum efficiency of about
20% [35].

2.3 Introduction of the Jagiellonian PET detector

In state-of-the-art PET scanners, the crystals are arranged in small
blocks [36]. Typically, each block is an array (e.g., 8 × 8) of small el-
ements separated from each other with reflective material. The readout
in the block design is performed by a set of photomultipliers attached
directly to the scintillator surface. The amplitude distribution of the
electric signals in the photomultiplier’s output allows to determine the
place of interaction of γ photon within the crystal with an accuracy
equivalent to the size of the smallest crystal element.

Clinical PET scanners are typically arranged in an array of rings with
a diameter of about 80 cm. These devices have a relatively small axial
field of view (AFOV) of about 20 cm, which offers limited body coverage
and low photon detection efficiency [37, 38]. Currently in order to per-
form a full body PET scan, multiple images at different bed positions
are acquired. The whole-body devices are equipped with a computer-
controlled moving bed, so that the patient can be positioned at different
locations along the AFOV. The total scan time depends on the patient’s
body length and the effective AFOV of the scanner per bed position.
Since the sensitivity decreases toward the periphery of the scanner, the
effective AFOV is less than the actual FOV and it is necessary to over-
lap the bed positions in whole-body imaging. A typical overlap is about
5 cm. The time for data acquisition at each bed position in whole-body
imaging is about 5 min. Therefore, the whole examination takes about
30 minutes and often requires the person being scanned to stay still in
an uncomfortable position for the entire scan.

Few pioneering projects propose the construction of a whole-body
PET scanner so that the entire human body can be imaged at once.
These new devices would be a notable change from what is possible
with current PET scanners in terms of examination time or measure-
ment precision. The whole-body technique would increase the effective
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sensitivity, decrease the time of the examination and reduce the neces-
sary image blur caused by the patient’s or scanner’s movements when the
whole body has to be examined. The dynamic range of the whole-body
scanners is much broader than of current tomographs with small AFOV,
i.e., the radiotracers may be tracked for a longer time without temporal
gaps [39]. The whole-body PET scanners would be able to detect very
small metastatic tumors or track whether a therapy is hitting its intended
target.Alternatively, the increased sensitivity could mean that far lower
doses of radioactive tracers will be required for a scan [40].

The Explorer collaboration [41,42] has built a 200 cm long whole-body
PET system that will have more than 400,000 crystals in total. The
scanner consists of 36 axial block rings composed of LSO scintillators
with an axial gap corresponding to one crystal pitch between adjacent
rings. Each ring has 48 detector modules forming a ring of 80 cm in
diameter [43]. The schematic visualisation of 3-dimensional geometry of
4 axial block rings of the Explorer scanner is shown on the left of Fig. 2.2.

Figure 2.2. Comparison of the concepts of state-of-the-art PET scanner based on inorganic
crystals (left) and the J-PET scanner (right). The figure is adapted from [44].

On the other hand, the J-PET collaboration aims at the construc-
tion of the PET scanner with a large AFOV and a superior timing res-
olution due to the use of fast plastic scintillators instead of inorganic
crystals [17–19,45,46]. Multiple small crystal scintillators along axial co-
ordinate (z) are replaced with a single scintillator strip in the J-PET de-
tector. This significantly reduces the number of photomultipliers, cables
and electronic boards in the PET device, therefore substantially lower-
ing production costs. In the J-PET device the readout in single strip
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is provided by a pair of photomultipliers placed outside of the detection
chamber, marked with small grey barrels in Fig. 2.2. This approach sim-
plifies the combining of PET with other modalities (magnetic resonance
or computed tomography) and enables extension of the AFOV without a
significant increase in cost. The axial coordinate (z) of the annihilation
photon interaction point in the strip is derived from the difference of the
light propagation time measured with the pair of photomultipliers. The
schematic visualisation of the J-PET tomograph is shown on the right of
Fig. 2.2.

2.3.1 Coincidence detection of γ photons

During the PET examination, two annihilation γ photons may be emitted
from anywhere within the scanner volume and the distance travelled by
each of them before interaction in the detectors can be as large as the
scanner diagonal. The larger the scanner FOV, the longer the maximum
timing difference between the detection of two γ photons in coincidence.
Using the value of speed of light, one may calculate that for a 100 cm
scanner FOV a maximum timing difference of about 3 ns between the
two detected signals is expected. The coincidence timing window cannot
be reduced to less than that value due to the possibility of annihilation
at the edge of the scanner volume. Therefore, the uncertainty of time
measurement in a PET system should not be higher than the size of this
time window.

Figure 2.3. Schematic representation of detecting two γ photons in coincidence. Detection
results in estimation of times t1 and t2 and the position of annihilation is reconstructed based
on the times difference.

Figure 2.3 illustrates a schematic representation of two detectors set
up to measure two γ photons emitted from a point equidistant from
both detectors (marked with a black star).The times t1 and t2 define the
signal arrival times in detectors on the left and right side, respectively.
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In the simplest case, the t1 and t2 may be derived as the times when
the registered signals cross a certain fixed voltage level. The first of the
signals, i.e., the one with estimated arrival time t1, triggers a pulse that
marks the start of the coincidence window of predefined width. Measured
difference between the times t2 and t1 depends on the time resolution of
the PET system; the better the time resolution the smaller the difference
of times t2 and t1. The estimated position of annihilation point may be
estimated as:

c · (t2 − t1)
2 (2.7)

where c is the speed of light; whereas in fact in example in Fig. 2.3, the
γ photons arrived at both detectors simultaneously. The parameter that
describes the time uncertainty of this measurement is called CRT. The
CRT is defined as the Full Width at Half-Maximum (FWHM) of the
distribution of time difference between t2 and t1.

As mentioned before, the minimal required time resolution of a PET
system has to enable a detection of two γ photons from a single anni-
hilation, i.e., times t1 and t2 need to be specified with uncertainty of at
least 3 ns. In that case two detected γ photons, registered within the
predefined time window, mark only a LOR between the two respective
detectors. The PET systems that allow for more precise location of the
position of annihilation are called time-of-flight PET (TOF-PET) scan-
ners. The schematic visualization of the uncertainties for measurement
of annihilation position in PET systems with CRT of about 500 ps and
200 ps are marked in Fig. 2.3 with grey and black Gaussian functions,
respectively. The 500 ps time resolution is sufficient to localize a tumor
with the size of about 7.5 cm. Reducing the CRT to 200 ps, improves the
spatial resolution to 3 cm. Very good time resolution of a PET system
allows to estimate the annihilation position between the two detectors
by looking at the difference in arrival times of the two photons. For
this purpose, an extremely fast scintillator, such as plastic BC-420, is
required. It was shown recently in [19] that the physical limitation for
the CRT with the J-PET system amounts to about 50 ps for the 50 cm
long scintillator.

2.3.2 Time based measurement in the J-PET scanner

In classical PET scanners based on crystal scintillators, the CRT does
not play a crucial role for the detection of two γ photons from single an-
nihilation, i.e., time resolution has to be sufficient to indicate single LOR.
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Therefore, conventional PET detectors can optionally use TOF informa-
tion to improve the quality of reconstructed images. However, in case of
the J-PET scanner, the accurate timing is mandatory to reconstruct the
position along the strip. The schematic visualisation of reconstruction of
position along z direction for the J-PET scanner is shown on the right
of Fig. 2.4.

Figure 2.4. Comparison of position reconstruction in state-of-the-art PET scanner based
on inorganic crystals (left part) and the J-PET scanner (right part). The figure is adapted
from [44].

In general, the J-PET tomograph registers the information about each
coincidence of two γ photons in the form of indices of a pair of scintil-
lator strips, and photons time of arrival on each of the photomultipliers
attached to the strips denoted with t1,L; t1,R; t2,L; t2,R, where subscripts
L and R indicate the left and the right side of the strip, respectively.
In the case of a classical PET scanner, the information about indices of
pair of crystals is sufficient to indicate correct LOR, i.e., the uncertainty
of estimated position of interaction of each γ photon with the crystal
detector is limited by the size of crystals (see left part in Fig. 2.4). On
the other hand, in the J-PET scanner, position z1 (z2) of γ photon inter-
action along the strip is determined based on time difference measured
on both sides of the scintillator strip t1,L − t1,R (t2,L − t2,R). The time
of the interaction (hit-time) of γ photon in the strip t1 (t2) is estimated
as an arithmetic mean of times at left t1,L (t2,L) and right t1,R (t2,R) side
of the plastic scintillator. Therefore, the time resolution of the J-PET
scanner determines not only the uncertainty of position reconstruction
along the LOR, as in case of the conventional PET systems, but also
has an impact on the uncertainty of position reconstruction along the
scintillator strip. For example for plastic strips with the length of 30 cm,
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the time resolution of moment of interaction amounts to about 190 ps
(FWHM) [17]. This translates to the axial position resolution of about
2.3 cm (FWHM) and resolution in the determination of the annihilation
point along LOR of about 3.2 cm (FWHM).

The unique geometry and scintillation materials applied in the J-PET
scanner require specialized electronics capable of measuring time with
extremely high precision. Current prototype electronics is based on Field-
Programmable Gate Array (FPGA) units hosting several dozen Time-to-
Digital Converter (TDC) modules [47]. Each TDC module measures the
time of arrival and the width of analog signals with a time resolution
of 12 ps [48]. Exact description of the electronics system applied in the
J-PET detector is beyond the scope of this work; the interested reader is
referred to [49,50].

The analog signals are sampled in the voltage domain at pre-specified
number of thresholds by the dedicated FPGA based Multi-Voltage
Threshold unit [51]. This results in vector of samples on the leading and
trailing edges of the analog signal and opens new perspectives of recov-
ering the original signal waveform. This problem is of main importance
in case of the J-PET as the timing information influences the accuracy
of time and position reconstruction. The topic of signal recovery and po-
sition reconstruction, denoted through this work as low-level processing,
will be discussed in detail in chapter 4. Moreover, the extremely high
precision of time measurement allows to investigate a completely new
approach to image processing. In particular, precise TOF information
enables a development of a PET image reconstruction algorithm that
operates exclusively in the image space. The novel concepts of high-level
image processing described throughout this work will be discussed in
detail in chapter 5.
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3. Algorithmic background

This chapter presents methods that constitute the theoretical background
for digital signal and image processing proposed in this work. The algo-
rithms described on the following pages are essential for formulation and
solution of subsequent steps of signal and image processing in the J-PET
detector. For clarity of the presentation, state-of-the-art data process-
ing methods are presented separately. Details of the applications and
modifications of algorithms described in this part will be introduced in
chapters 4 and 5.

The methods described in this chapter are applied to different type
of data, depending on the stage of data processing. Despite the fact
that the details of the signal and image processing in the J-PET scan-
ner will be explained and discussed in chapters 4 and 5, at this point
I would like to underline a few important aspects. First of all, it should
be stressed that Compressive Sensing (CS) theory is the key method in
the proposed signal recovery scheme. The idea of the CS approach will
be introduced in section 3.1. Moreover, one of the most important aspect
of the proposed image reconstruction is the application of Total Varia-
tion (TV) regularization. The concept of the TV regularization will be
discussed in section 3.2. Finally, the visualization of the feature space of
the information acquired by the J-PET scanner is provided by using the
Self-Organizing Maps (SOMs). The short introduction to unsupervised
learning algorithms will be given in section 3.3.

3.1 Compressive Sensing

The CS [52, 53] is a signal processing method that exploits the sparsity
of a signal to recover it from far fewer samples than required by the
Nyquist–Shannon sampling theorem. Consider the recovery of a finite
signal y0 ∈ RN in a situation where the number M of available samples,
denoted as measurement yΩ ∈ RM , is much smaller than the signal di-
mensionN (yΩ is sampled on some partial subset Ω, where the cardinality
|Ω| = M). In the CS method, a sparse expansion x0 ∈ RN of signal y0,
evaluated via linear and orthonormal transformation y0 = Ax0, is con-
sidered. In the following we assume that we are given a contaminated
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measurement yΩ and hence:

yΩ = AΩx
0 + e (3.1)

where AΩ is a M ×N matrix modeling the sampling system, constructed
fromM rows of matrix A that corresponds to the indexes of yΩ described
in the subset Ω, and e is an error term. It should be stressed that in the
case of presence of noise, represented by signal e, instead of an exact
recovery of signal x0 we will consider the solution x̂, and by analogy,
instead of signal y0 we will consider the solution ŷ. The CS method is
an attempt to recover x̂ by solving optimization problems of the form

x̂ = arg min ||x||1 such that ||yΩ − AΩx||2 ≤ ε (3.2)

where ε is the size of the error term e. The l1 minimization approach pro-
vides a powerful framework for recovering sparse signals. Moreover, the
use of l1 minimization leads to convex optimization problems for which
there exist a variety of greedy approaches like Orthogonal Matching Pur-
suit [54] or Basis Pursuit [55]. Other insights provided by CS are related
to the construction of measurement matrices (AΩ) that satisfy the Re-
stricted Isometry Property [56, 57]. For an extensive review of CS the
reader is referred to [52,53,56,57].

3.2 Total Variation regularization

The most common class of regularization methods in image processing is
based on TV approach [58]. The TV-norm of 3-dimensional image f can
be defined either as the anisotropic norm:

TV1(f) =
∑
i

(
|D(x)

i f |+ |D(y)
i f |+ |D(z)

i f |
)

(3.3)

or the isotropic norm:

TV2(f) =
∑
i

√(
D

(x)
i f

)2
+
(
D

(y)
i f

)2
+
(
D

(z)
i f

)2
(3.4)

where D(x) ∈ RN×N , D(y) ∈ RN×N and D(z) ∈ RN×N are the first-order
forward finite-difference operators, that approximate the gradient opera-
tors along the x, y, z directions, respectively. Therefore, D(u)

i f ∈ R is the
discrete gradient of the image at pixel i along the u direction (u = x, y, z).
In this work only the isotropic case, TV , TV2, will be considered, how-
ever the treatment for the anisotropic case is completely analogous. We
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define D =
(
D(x);D(y);D(z)

)
∈ R3N×N as the total first-order forward

finite-difference operator. Thus, the TV norm in Eq. (3.4) can be ex-
pressed as:

TV(f) =
∑
i

‖Dif‖2 (3.5)

where Dif ∈ R3 is the discrete gradient of the image at pixel i.
Consider a linear system of equations

b = Af . (3.6)

If the measurement b is contaminated with noise, optimization algo-
rithms find a solution f of Eq. (3.6) by solving an unconstrained problem:

min
f

TV(f) + µ

2‖Af − b‖2
2, (3.7)

or a closely related constrained problem:

min
f

TV(f) subject to ‖Af − b‖2 ≤ ε, (3.8)

where µ and ε are the regularization parameters. The computational
challenges arise from the fact that applications are invariably large-scale.
For example, the measurement matrix A for an 256 × 256 × 256 image,
stored as a vector f with 16777216 entries, is 16777216 × 16777216,
making the system far too large to solve or even store explicitly. For
a class of spatially invariant image reconstruction problems, the matrix
A is a block-circulant matrix [59]. Therefore, Fourier transforms can be
utilized to efficiently find a solution. As a result, a huge gain in speed can
be realized. In the following we will briefly introduce the unconstrained
optimization approach for block-circulant matrix A.

3.2.1 Unconstrained TV regularization problem

The TV minimization problem defined in Eq. (3.7) with definition of TV
norm given in Eq. (3.5) may be expressed as:

min
f

N∑
i=1
‖Dif‖2 + µ

2‖Af − b‖2
2. (3.9)

The problem in Eq. (3.9) is convex, but due to the nondifferentiability
and nonlinearity of the TV function, the model is computationally dif-
ficult to solve. The first step of solving the problem in Eq. (3.9) is the
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introduction of an auxiliary variable wi ∈ R3 to transfer Dif out of the
nondifferentiable term ‖ · ‖2

min
f ,w

N∑
i=1
‖wi‖2 + µ

2‖Af − b‖2
2 subject to Dif = wi (3.10)

The Lagrangian function L(f ,w, λ) of problem in Eq. (3.10) is defined
as:

L(f ,w, λ) =
∑
i

(‖wi‖2 + λi (Dif −wi)) + µ

2‖Af − b‖2
2 (3.11)

where λi is the Lagrange multiplier associated with the constraint Dif =
wi. According to the idea of the quadratic penalty method, it is likely
to penalize the violation of constraint Dif = wi. For instance, one may
solve the following problem:

LA(f ,w, λ) = L(f ,w, λ) +
∑
i

(
β

2 ‖Dif −wi‖2
2

)
(3.12)

where β is a regularization parameter associated with each quadratic
penalty term ‖Dif−wi‖2

2.Minimizing the problem in Eq. (3.12) is known
as an augmented Lagrangian method [60, 61]. When the original prob-
lem, defined in Eq. (3.9), is convex, the first-order optimality conditions
of augmented Lagrangian function become sufficient for finding optimal
solution f .

The advantage of the introduction of an auxiliary variable w is that,
while either one of the variables (f ,w) is fixed, minimizing the function
LA with respect to the other has a closed-form formula with low com-
putational complexity. To this end, the alternating direction method is
used to iteratively solve the optimization problem in Eq. (3.12).

For a fixed f , all the terms associated with L(f ,w, λ) in Eq. (3.12) are
separable with respect to wi, so minimizing for w is equivalent to solving
for i = 1, . . . , N,

min
wi
‖wi‖2 + λi (Dif −wi) + β

2 ‖Dif −wi‖2
2, (3.13)

for which the unique minimizer can be found using a shrinkage for-
mula [62]:

wi = max
(
‖Dif + λi

β
‖2 −

1
β
, 0
)

Dif + λi
β

‖Dif + λi
β
‖2
, (3.14)
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where all operations are done component-wise.
On the other hand, for a fixed w, the problem in Eq. (3.12) is quadratic

in f and the solution is given by the normal equation:(
µATA+ βDTD

)
f = µATb + βDTw +DTλ. (3.15)

Under the periodic boundary condition for f , DTD, and assuming that
the matrix A is a block-circulant, the Hessian matrix

H = µATA+ βDTD

on the left-hand side of the Eq. (3.15) is circulant and can be diagonalized
by discrete Fourier transform (DFT) matrices [59]. Therefore, Eq. (3.15)
has the following solution:

f = FΛ−1F−1
(
µATb + βDTw +DTλ

)
, (3.16)

where F denotes the DFT matrix and Λ is a diagonal matrix storing
the eigenvalues of H, i.e., Λ = F−1HF. It should be underlined that the
matrix Λ can be calculated only once, outside of the main loop.

3.3 Self-Organized Maps

The SOM is a technique that provides a way to visualize the high-
dimensional data on a two-dimensional map that preserves the most im-
portant relations and helps to see the similarity between the clusters of
data samples. The SOM is a vector quantization method which places the
prototype vectors on a regular low-dimensional grid [63]. The principal
goal of a SOM is to transform input data into a 2-dimensional discrete
map. An example of SOM is shown in Fig. 3.1. The 2-dimensional syn-
thetic, banana-shaped data set is marked with gray crosses and positions
of neurons are marked with black circles. In example in Fig. 3.1a, the
network is initialized linearly along the greatest eigenvectors of the train-
ing data. Each SOM neuron is associated with a weight vector, which is
a position in the input space. Moreover, each neuron has its own map
address, which is a fixed position on the grid. Training of the map re-
lies on moving weight vectors (black circles) toward the input data (gray
crosses) without spoiling the topology. The map of weight vectors (black
circles) is searched to find the neuron whose weight vector is most simi-
lar to the input data (x). This neuron is called the best matching unit
(BMU). The appropriate weight update equation for neuron i is

∆wi = η · T (i, j) · (x− wi) (3.17)
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where η is a monotonically decreasing learning coefficient, j is the index of
the BMU for the input data x, and T (i, j) is the neighborhood function
which gives the distance between the neuron i and the BMU. In the
simplest form, the neighbourhood function equals 1 for all neurons close
enough to BMU and 0 for others. The most common possibilities are to
apply a Gaussian, or mexican-hat functions. However, regardless of the
functional form, the neighborhood function shrinks with time.

The learning process is repeated for each input data in data set for
a large number of epochs. Trained SOM network describes a mapping
from an input space to a 2-dimensional map space (see Fig. 3.1b in this
example). Once trained, the map can classify a vector from the input
space by finding the neuron with the closest weight vector to the input
space vector.

(a) (b)

Figure 3.1. Visualization of banana-shaped data set by 2-dimensional SOM. The arrange-
ment of neurons (black circles) correspond to a situation before (a) and after (b) training of
the network.
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4. Low-level data processing in
Jagiellonian PET

This chapter describes the subsequent steps of low-level data processing
in the J-PET scanner. The goal of low-level reconstruction is an evalua-
tion of time and position of each particular event of positron emission. A
simple setup with two detection modules that permits the reconstruction
of information about an event is shown in Fig. 4.1.

Figure 4.1. Schematic view of the data registration in J-PET detector. The reconstruction
of positron emission event, marked with black star, requires the information about four
electric signals arrival to the left and right photomultipliers (PMs) of the two modules that
register in coincidence.

A single detection module consists of a long scintillator strip and a
pair of photomultipliers (PMs) attached to opposite ends of the strip (see
Fig. 4.1). The subsequent steps of the reconstruction take place in the
reverse order than the physical processes of interactions in the detector.
Light pulses produced in the strip propagate to its edges where they
are converted via photomultipliers into electric signals. Measurement of
electric signals results in timestamps from both sides of each scintilla-
tor, allowing the extraction of timing, position and energy information
for each γ photon interaction marked with gray circle in Fig. 4.1. The
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time and position of the γ photon interaction in the scintillator strip is
calculated based on times at left (t(L)) and right (t(R)) side of the strip.
In the first approximation, the time of interaction may be estimated as
an arithmetic mean of t(L) and t(R) and the position of interaction along
the strip may be calculated as (t(L) − t(R))vsc/2, where vsc denotes the
speed of light signals in the scintillator strip. The energy deposited in
the scintillator strip may be expressed in terms of the number of pho-
toelectrons registered by the photomultipliers and is proportional to the
arithmetic mean of a number of photoelectrons registered at the left and
right sides of the scintillator; the value of energy calibration factor was
evaluated in [17]. The registration of single event of positron emission,
used for the image reconstruction, is based on the detection of both γ
photons in two modules in a narrow time window. Therefore, a single
image-building event, marked with black star in Fig. 4.1, includes infor-
mation about four times of light signals arrival to the left and right ends
of the two modules that register in coincidence.

The two main features of the data acquired in the J-PET scanner
that have the greatest impact on the TOF resolution are: (i) a very
short rise-time and duration of the signals and (ii) a relation between
the shape and amplitude of the signals and the hit position. The latter
feature usually distorts the time resolution but, when the waveform of
the signal is registered, the information about a change of the shape
with the position may increase the position resolution and indirectly
improve also the resolution of the time determination [64]. However, to
probe the signals, with duration times of few nanoseconds, a sampling
time in the order of picoseconds is required.This can be done well with
the oscilloscopes during laboratory studies on the prototype, but in the
final multimodular devices with hundreds of photomultipliers, probing
with oscilloscopes is not feasible [65]. On the other hand, an application
of the typical techniques for time measurement, based on a single-level
leading-edge discriminators, is not sufficient and prevents achieving the
best timing properties of the J-PET detector. In chapter 2, a multi-
threshold sampling method to generate samples of a PET event waveform
was proposed as a solution to this problem and then implemented in the
J-PET scanner [51].

This chapter is organized as follows. In section 4.1, we will start with
the introduction of the model of signal waveform registered on photo-
multiplier output. Next, we will define the problem of signal recovery
and derive briefly the modified Tikhonov regularization method in sec-
tion 4.2. In the last part of this section we will introduce the theorem
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enabling the determination of the signal recovery error as a function of
the number of samples. In section 4.3, we will describe the method for
reconstruction of γ photon interaction position in the scintillator strip.
The method can be applied to both raw samples registered in the volt-
age domain and recovered waveforms of the signal, therefore allowing the
comparison of the spatial resolutions evaluated based on different repre-
sentation of data. The last study presented in this chapter, in section 4.4,
will concern the prediction of theoretical time resolution of the J-PET
detector.

4.1 Model of signal waveform registered on
photomultiplier

We assume that the γ photon interacts in the scintillator strip at time
Θ0 and in the position z0. The time of the photon registration at the
photomultiplier, referred to as tr, is considered as a random variable,
equal to the sum of three contributing values:

tr = te + tp + td, (4.1)

where te is the photon emission time, tp is the propagation time of the
photon along the scintillator strip and td is the photomultiplier transit
time. Assuming that the times te, tp, td, given in Eq. (4.1), are indepen-
dent random variables with probability density functions (pdfs) denoted
with fte , ftp , ftd , respectively, the distribution function of tr is given as
the convolution:

ftr(t) = (fte ∗ ftp ∗ ftd)(t), t > 0.

In case of the ternary plastic scintillators used in the J-PET detec-
tor [32], the distribution of te is well approximated by the following for-
mula [66,67]:

fte(t) = κe

∫ t

Θ0

(
e
− t−τ

τd − e−
t−τ
τr

)
e
− (τ−Θ0−2.5σe)2

2σ2
e dτ, (4.2)

where τd = 1.5 ns, τr = 0.005 ns and σe = 0.2 ns, and κe stands for
the normalization constant. The values of the parameters τd, τr, σe were
adjusted in order to describe the properties of the light pulses from the
BC-420 scintillator [19]. By definition in Eq. (4.2):

te ≥ Θ0. (4.3)
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Initial direction of flight of the photon in the scintillator is uniformly
distributed. The photon on its way along the scintillator strip from the
emission point to the photomultiplier may undergo many internal re-
flections whose number depends on the scintillator’s geometry and the
photon’s emission angle. However, the space reflection symmetries of
the cuboidal shapes, considered in this thesis, enables a significant sim-
plification of the photon transport algorithm, without following photon
propagation in a typical manner. The statistical modelling of this phe-
nomena was presented in details in Ref. [19] and the analytical function
describing the distribution function ftp may be expressed by the following
formula:

ftp(t) = κp · z0

t2
· e−µeff·vsc·t, (4.4)

where vsc is the speed of light in the scintillator strip, µeff is the effective
absorption coefficient for the scintillator material and κp the normal-
ization constant. The 0 ≤ z0 ≤ Ld is the longitudinal position of the
emission point, where Ld is the detector length. The pdf function ftp(t)
in Eq. (4.4) is nonzero only for:

tp ≥
z0

vsc
, (4.5)

where tp = z0

vsc
corresponds to the photon flying along the strip. Finally,

the time of registration tr is smeared using Gaussian distribution centered
on the mean transition time Td and variance σ2

d estimated empirically:

ftd(t) = 1√
2πσd

exp
(
−(t− Td)2

σ2
d

)
. (4.6)

In this work, we assume that the signal registered at the photomulti-
plier output has the same functional dependence on the time as the ftr
function. We assume that the signal y ∈ RN is discretized by the os-
cilloscope. It is sampled in the constant time intervals denoted with Ts.
From the conditions Eq. (4.3) and (4.5), it follows that the registration
time tr fulfils the inequality:

tr ≥ Θ0 + z0

vsc
.

It was assumed that the transition time td ≥ 0. Therefore, the nth time
sample is given by:

t(n) = nTs + Θ0 + z0

vsc
n = 1, 2, ..., N, (4.7)
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and the nth sample of the signal y is given as:

y(n) = β(E, z0) · fn, where fn = ftr(t(n)) n = 1, 2, ..., N, (4.8)

where β(E, z0) is a coefficient providing the scaling of the pdf function
ftr in order to obtain the voltage signal:

β(E, z0) = βE · βz.

The value of β(E, z0) depends on the energy deposited in the plastic scin-
tillator during the γ photon interaction (βE factor) and on the position of
the γ photon interaction along the strip (βz factor). The higher the value
of deposited energy, the higher the value of βE parameter and higher the
signal amplitude. The βz is necessary to describe absorption of photons
propagating through the scintillator strip, since ftp provides only infor-
mation about the shape of the signal (see Eq. (4.4)). Contributions of βE
to β are the same for both ends of the strip but βz are different. Hereon,
in order to simplify the notation of the parameter β(E, z0), we use only
the symbol β.

We add a random noise term v(L,R) to the signal y(L,R) at the left (L)
and right (R) end of the strip. Hence registered signals ŷ(L) and ŷ(R) may
be expressed as1:

ŷ(L)(Θ0, z0) = y(L)(Θ0, z0) + v(L). (4.9)
ŷ(R)(Θ0, z0) = y(R)(Θ0, z0) + v(R). (4.10)

We assume that the noise v(L) and v(R) are uncorrelated and obey the
same multivariate normal distribution:

v(L), v(R) ∼ N (0, S), (4.11)

where S is the covariance matrix of ŷ(L) and ŷ(R). The noise contribution
to the signals registered on the left (ŷ(L)) and right (ŷ(R)) side of the
scintillator strip is the same, and therefore we will skip the L,R indices
in further analysis. We assume that the noise signal v is defined as a sum
of two components:

v = vp + vr, (4.12)
where vp describes the perturbations of the pdf function ftr , based on
limited number of input photon signals, and vr stands for the signal
recovery noise. The latter component is introduced by the procedure

1 L. Raczyński et al., Calculation of the time resolution of the J-PET tomograph using kernel
density estimation, Phys. Med. Biol. 62 (2017) 5078−5080.



REVIEW COPY

DO NOT DISTRIBUTE

42 Digital Signal and Image Processing in Jagiellonian Positron Emission Tomography

of signal recovery based on the limited number of registered samples of
the signal in the voltage domain. The problem of signal recovery was
introduced in Ref. [2] and will be discussed in section 4.2. We assume
that the noises vp and vr are uncorrelated and normally distributed with
covariance matrices Sp and Sr, respectively. Thus, one may write that:

S = Sp + Sr. (4.13)
The exact values of vp and vr depend on the type of the photomultiplier
applied. The J-PET tomograph can be equipped with various types of
photomultiplier:
• PMT – vacuum tube photomultiplier (standard in the J-PET pro-
totype),
• SiPM – silicon photomultiplier,
• MCP – microchannel plates photomultiplier.

In case of vacuum tube or silicon photomultipliers, registration of the
whole signal is not feasible, and therefore sampling in the voltage do-
main using a predefined number of voltage levels is needed. The micro-
channel plate photomultipliers are the most promising for application in
the J-PET instrument due to the possibility of direct registration of the
timestamp of each single photon. It is worth noting that vr vanishes in
the case of MCP photomultiplier; there is no need to recover the output
signal since all arrival times of photons are registered.2

4.2 Recovery of signal waveform based on limited
number of samples

It is evident that the time and spatial resolutions of the J-PET scanner
depend on the number of threshold levels of an electronic system for
probing the signals in a voltage domain. However, the number of channels
in the electronic devices is a very important factor in determining the
cost of the PET scanner. Therefore, the question arises: is it possible
to recover the whole signal based on only a few samples? Equivalently,
how many threshold levels have to be applied to achieve a reasonable
estimation error?

In this section we propose a novel signal recovery scheme based on
ideas from the Tikhonov regularization [68, 69] and CS methods that is

2 L. Raczyński et al., Calculation of the time resolution of the J-PET tomograph using kernel
density estimation, Phys. Med. Biol. 62 (2017) 5082−5083.
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compatible with the signal processing scenario in J-PET devices. The
most important part of our investigations is to determine a dependence
of the signal recovery error on the number of samples taken in the voltage
domain. In this section the formula for calculations of the recovery error
will be introduced and proven.

As in the CS framework, we wish to recover a finite signal ŷ ∈ RN

given a contaminated measurement yΩ ∈ RM sampled on some partial
subset Ω, where the cardinality |Ω| = M (for details see section 3.1). The
evaluation of ŷ requires two steps: i) recovery of the sparse expansion x̂
and ii) calculation of ŷ based on the x̂. The first step of the procedure is
crucial. In the case discussed in this work, the matrix A transforming the
sparse expansion x̂ into the signal ŷ is evaluated based on the Principal
Component Analysis (PCA) decomposition [70] of the training set of fully
sampled signals. Under the assumption that signals in both spaces are
given with multivariate normal distributions (MVN), the solution x̂ may
be found as the minimizer of the following expression:

x̂ = arg min{(yΩ−AΩx)TR−1(yΩ−AΩx)+(x−mx)TP−1(x−mx)}. (4.14)

The formula proposed in Eq. (4.14) describes a modified Tikhonov regu-
larization (TR) method [68,69], where additionally an information about
prior distribution of the solution x is applied in second term. The param-
eters mx and P are the mean value and covariance matrix of a dataset
X that describes the prior distribution, respectively. The dataset X is
evaluated based on the PCA decomposition of training signals stored in
matrix Y, i.e.,

X = ATY. (4.15)
The matrix A in Eq. (4.15) is calculated in such a way that the projection
of the data matrix Y with successive basis vectors inherits the greatest
possible variance in the data set Y . Thus, the values on diagonal in the
covariance matrix P are sorted in non-increasing order. The parameters
AΩx and R in Eq. (4.14) are the mean value and covariance matrix of
a measured signal yΩ, respectively. The covariance matrix R is diagonal
with the values on the diagonal equal to the measurement error variances
σ2.

Beside the advantage of including the additional information from
training signals, a further benefit of the TR approach is that the problem
in Eq. (4.14) has an optimal solution which can be determined explicitly.
The derivation of the solution of a sparse solution x̂, and its covariance
matrix, denoted as Sr (see Eq. (4.13)), for a particular measurement yΩ,
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is based on Refs. [68, 69,71]:

x̂ = (P−1mx + ATΩR
−1yΩ) · (P−1 + ATΩR

−1AΩ)−1, (4.16)
Sr = (P−1 + ATΩR

−1AΩ)−1. (4.17)

It is worth noting that the solutions in Eq. (4.16) and (4.17) are analo-
gous to Kalman filter update equations (cf. Refs. [72, 73]). It should be
stressed that the parameters of PCA decomposition are calculated only
once, at the preparation stage of the procedure. Thus, the same matrices
A,P and vector mx, are used to recover a signal x̂ for each measure-
ment in Eq. (4.16). However, the evaluation of the covariance matrix
Sr, according to Eq. (4.17), does not require the information about the
measurement yΩ, and may be provided at the preparation stage. This
fact opens a possibility for an estimation of the theoretical value of the
recovery error. This idea will be presented in the next section.

4.2.1 Calculation of recovery error

One of the benefits of using the TR approach is that it provides an easy
way to obtain the error term of the recovered signal ŷ. Since the matrix
A is orthonormal, we have

||ŷ − y0||22 = ||x̂− x0||22, (4.18)

and therefore we may focus on the recovered signal x̂ error. In multi-
variate statistics, the trace of the covariance matrix is considered as the
total variance. We will denote the trace of covariance matrix Sr as σ2

x. It
is worth noting that σ2

x is the mean value of the recovery error squared
norm ||x̂ − x0||22. Let P (k) be the kth diagonal element of covariance
matrix P. We find the smallest value of D, and the largest value of τ
(with constraints D > 0 and τ > 0) such that for each 1 ≤ k ≤ N :

P (k) ≤ D · e−τk. (4.19)

From Eq. (4.19) one may see that τ controls the decrease rate of P (k): the
greater τ , the faster the decreasing of P (k) and better the compressibility
of signal x. The characteristics D and τ of the prior distribution of signal
x and a standard deviation of noise (σ) enable us to provide the formula
for average value of the recovery error σ2

x. For this purpose we formulate
the following theorem:
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Theorem. Suppose that D and τ describe the decrease rate of variances
of signal x according to Eq. (4.19). The signal x may be recovered as the
solution to Eq. (4.16) with an average value of error

σ2
x ≈

σ2N

Mτ
log

(
σ2N +MD

σ2N

)
. (4.20)

Equation (4.20) enables us to estimate the number of required samples
M of signal to achieve a preselected mean recovery error. Intuitively, the
σ2
x is also closely related to the compressibility of signal x, and from

Eq. (4.20) one may observe that an average recovery error is inversely
proportional to the constant value τ . The proof of the theorem is given
in the appendix A.1.

4.3 Reconstruction of γ photon interaction
position in scintillator

In this section we describe a concept of reconstruction of the γ photon
hit position. The method is based on the statistical model of signals [1].
The algorithm may be applied to different representations of the data:
to raw signal probed in the voltage domain and fully recovered signals
based on the idea introduced in section 4.2. The description given in this
section includes an explanation of the methods used for the test of the
normality of data and determination of the effective number of degrees
of freedom.

The method of hit-position reconstruction consists of two steps. First,
the scintillator’s volume is discretized and for each bin a high statistics
set of reference signals is created. The objective of the second part of the
procedure is to qualify the new measurement to one of the given sets of
signals and hence determine the hit position. The shapes of the signals
depend on the hit position and can be used for its reconstruction.

Consider L data sets G(i), where i = 1, ..., L. Each G(i) is a Mi × Ni

matrix of vectors representing signals gathered for the ith position; Mi is
the number of the collected signals and Ni stands for vector’s dimension
equal to the number of samples per signal. In practice, all signals have
the same dimension and Ni = N for all i. The jth signal in the ith data set
corresponds to the jth row of the matrix G(i) and is denoted by the vector
G

(i)
j . If the measured coordinates of vectors in all L data sets are normally

distributed then the mean value mi and covariance matrix Ci of the data
set G(i) describe it completely. Assuming their normality, the proposed
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reconstruction procedure qualifies a new measurement, represented by
vector u, to one of the data sets G(i) by using the Mahalanobis distances
d(i) between u and mi:

d(i) = (u−mi)C−1
i (u−mi)T i = 1, 2, ..., L. (4.21)

The measured signal u is qualified to the data set î with the smallest
distance d(i):

î = arg min d(i). (4.22)

4.3.1 Test of normality of the data

There are numerous procedures for testing whether multivariate vectors
from a given dataset have a MVN distribution [74–77]. We propose an
alternative procedure for testing a MVN distribution as an extension of
statistical test based on q-q approach [78]. In order to verify normality
of the dataset in G(i), the observations squared Mahalanobis distances
for Mi vectors from G(i) data set are calculated:

d
(i)
j = (G(i)

j −mi)C−1
i (G(i)

j −mi)T j = 1, 2, ...,Mi. (4.23)

where mi, and Ci are estimated based on the data set Si. In [79] authors
assumed that the evaluated distances in Eq. (4.23) have a χ2 distribution
with N degrees of freedom. In the following we will show that this is not
necessarily the case, and the number of effective degrees of freedom may
be smaller due to signal correlation. The discussion about the effective
number of degrees of freedom, denoted hereafter as V, will be given in
section 4.3.2.

We provide a statistical test for data set G(i) by comparing the dis-
tribution of d(i)

j defined in Eq. (4.23) with the theoretical χ2 distribution
with V degrees of freedom. The normalization of theoretical histogram
is provided to ensure that sum of counts in both histograms is the same
and equal to Mi. We apply uneven bin size, in order to store in each bin
of the theoretical χ2 histogram a constant number of counts FT . In the
calculations, we have selected FT = 30, and therefore the Poisson dis-
tribution may be approximated accurately by the normal distribution.
Hence, we compare the two histograms via statistical test r defined as
follows:

ri(V ) =
Bi∑
k=1

(F (i)
k − FT )2

FT
, (4.24)

where F (i)
k value is the number of counts in the kth bin in the experimen-

tal histogram from the ith data set, and Bi = Mi/FT is the number of
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bins in the histograms. The bin sizes were calculated from the theoretical
χ2 with V degrees of freedom. The test statistic ri is a χ2 random variable
with mean Bi and standard deviation

√
2Bi; owing to well known concen-

tration inequalities, the probability that ri exceeds its mean plus three
standard deviations is small. In the following we will find the parameter
λ that fulfills the equation:

ri(V ) = Bi + λ
√

2Bi, (4.25)
and we state that the null hypothesis that the experimental histogram
has a χ2 distribution with V degrees of freedom is true, if λ < 3.

4.3.2 Number of effective degrees of freedom

Components of the signal vector are mutually correlated in a complicated
manner so the effective V has to be determined empirically. Its upper
bound Vmax is equal to the number of independent variables N . In order
to determine the minimal Vmin, the diagonalization of the covariance
matrix Ci of each data set G(i) is performed. The diagonalized covariance
matrix, denoted with Ĉi, has values on diagonal sorted in non-increasing
order. We define the parameter ρ as a normalized sum of k variances on
the diagonal of Ĉi,

ρk = 1kĈi1
T
k (1N Ĉi1TN)−1, (4.26)

where 1k is the N -dimensional row vector with ones at positions from
1 to k, and zeros from k+1 to N . According to this definition, 1N is a
vector with all N values equal to one. The ρ is a non-decreasing function
and we assume that at least ρ > 0.95 is necessary to describe data set G(i)

properly. The minimal number of variables Vmin is equal to the smallest
k for which ρk > 0.95. After the determination of Vmin, calculations of
statistics r are repeated for different V in the range from Vmin to Vmax.
The theoretical χ2 distribution with V degrees of freedom for which the
smallest statistics r (see Eq. (4.24)) and hence smaller parameter λ (from
Eq. (4.25)) was calculated, is selected. The experimental distribution is
said to be a MVN distribution with V degrees of freedom, if λ is smaller
than 3.

4.4 Prediction of theoretical resolutions of the
J-PET scanner

The last part of the chapter describing the low-level data processing
concerns the prediction of theoretical resolutions of the J-PET detector.
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Further improvement in the time resolution of the tomograph requires de-
velopments in techniques of signal processing and effective parametriza-
tions of detector features. The estimate of the time resolution, presented
in this section, is based on statistical properties of the signals in plastic
scintillators described in section 4.1. In this section we will introduce
the formula for calculations of the time resolution based on the covari-
ance matrix S of the noise signals registered on photomultipliers (see
Eq. (4.11) for details).

The reconstructed values of time and position of γ photon interaction
are denoted with Θ̂ and ẑ, respectively. According to the definitions of
the theoretical (y) and registered (ŷ) signals given in section 4.1, the
reconstruction of Θ̂, ẑ may be pursued by minimization of the function:

W (∆Θ,∆z) = (y(L) − ŷ(L))(y(L) − ŷ(L))T + (y(R) − ŷ(R))(y(R) − ŷ(R))T ,
(4.27)

where:

∆Θ = Θ0 −Θ,
∆z = z0 − z.

The solutions Θ̂, ẑ are found as:

(∆Θ̂,∆ẑ) = arg minW (∆Θ,∆z) (4.28)

where hat denotes the estimators. From Eq. (4.27) it is seen that the
error function W is a positive-valued random variable. We assume that
∆Θ̂ has normal distribution:

∆Θ̂ ∼ N (0, σ2
Θ), (4.29)

with 0 mean value and standard deviation denoted with σΘ. Derivation
of the time resolution (CRT) based on the σΘ will be introduced in sec-
tion 4.4.2.

In order to calculate the σΘ, function W has to be analyzed near the
minimum, (0, 0). According to Eq. (4.27), the random variable W (0, 0)
may be expressed as:

W (0, 0) = v(L)v
T
(L) + v(R)v

T
(R),

=
N∑
n=1

v2
(L)(n) + v2

(R)(n). (4.30)
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The variance ofW in the minimum will be denoted hereafter as Var[Wmin].
Using Eq. (4.11) and assuming the diagonality of matrix S, yields:

Var[Wmin] = 2
N∑
n=1

2S2(n, n). (4.31)

On the other hand, we may analyse the shape of the function W in
the two-dimensional space of time (∆Θ̂) and position (∆ẑ) errors. In the
following, we will consider only the (∆Θ̂) error, and therefore analyse W
in one dimension (∆ẑ = 0). Taylor series expansion of W around (0, 0)
is given as:

W (∆Θ̂, 0) ≈ W (0, 0) + ∂W (0, 0)
∂∆Θ̂

∆Θ̂ + 1
2 ·

∂2W (0, 0)
∂∆Θ̂2

∆Θ̂2

≈ α0 + α1∆Θ̂ + α2∆Θ̂2. (4.32)
It is evident that the first two coefficients (α0, α1) are equal to zero and
the quadratic approximation simplifies to:

W (∆Θ̂, 0) ≈ α2∆Θ̂2. (4.33)
Under the assumption of normality of ∆Θ̂ distribution the random vari-
able W (∆Θ̂, 0) given in Eq. (4.33), has a χ2 distribution with the vari-
ance:

Var[Wmin] ≈ 2α2
2σΘ

4. (4.34)
The comparison of two formulas describing the Var[Wmin], in Eq. (4.34)
and (4.31), enables us to determine the standard deviation3:

σΘ = 4

√√√√2∑N
n=1 S

2(n, n)
α22 . (4.35)

The σΘ requires evaluation of covariance matrix S and in particular the
matrix Sp. Derivation of the matrix Sp will be given in section 4.4.1.
Moreover, the estimation of the CRT based on the standard deviation
σΘ will be provided in section 4.4.2.

4.4.1 Influence of limited number of photons on registered
signal error

According to the assumption proposed in section 4.1, the noise in the
measured signal contains two components: statistical fluctuations of the

3 L. Raczyński et al., Calculation of the time resolution of the J-PET tomograph using kernel
density estimation, Phys. Med. Biol. 62 (2017) 5081−5082.
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number of photoelectrons registered by the photosensor described with
covariance matrix Sp, and the effect of the limited number of samples of
the signal in the voltage domain, described with covariance matrix Sr.
In section 4.2, a formula for calculating the matrix Sr was introduced
and in the following we will determine the matrix Sp.

The registered signal y affected only by the vp noise will be denoted
with:

ỹ = y + vp.

The output signal ỹ may be evaluated by using a model of the single
photon:

ỹ =
Np∑
k=1

ỹk, (4.36)

where Np is the number of individual photoelectrons. For all types of
photomultipliers we use the Gaussian model [80] for shape of signal of
single photoelectron, with the width σp :

ỹk(n) = β√
(2π)Npσp

exp
(
−(t(n) − tkr)2

2σ2
p

)
, n = 1, 2, ..., N, (4.37)

where tkr is a random variable with ftr distribution, that denotes the kth
photon’s registration time.

We aim to calculate the diagonal elements of the covariance matrix
Sp :

Sp(n, n) = E[(ỹ(n)− y(n))2], (4.38)
= E[(ỹ(n)− E[ỹ(n)] + E[ỹ(n)]− y(n))2]
= E[(ỹ(n)− E[ỹ(n)])2] + (E[ỹ(n)]− y(n))2

= Var(ỹ(n)) + Bias2(ỹ(n)), n = 1, 2, ..., N. (4.39)

According to the Eq. (4.36):

E[ỹ(n)] = NpE[ỹk(n)], (4.40)
Var(ỹ(n)) = NpVar(ỹk(n)), n = 1, 2, ..., N. (4.41)

Estimates of the Var(ỹ(n)) and Bias(ỹ(n)) were introduced in Refs. [81,
82]. Assuming that the underlying pdf function ftr is sufficiently smooth,
and that σp → 0 withNpσp →∞ asNp →∞, the Taylor series expansion
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gives:

Bias(ỹ(n)) ≈ β
σ2
pf
′′
tr(t(n))
2 , (4.42)

Var(ỹ(n)) ≈ β2 ftr(t(n))
2
√
πNpσp

, n = 1, 2, ..., N, (4.43)

where f ′′tr(t(n)) is a second derivative of the pdf function ftr(t(n)). Above
approximations may be inaccurate for finite Np, especially in the case
discussed in this investigation, where the number of registered photo-
electrons Np is of the order of hundreds. Therefore, a new method to
evaluate the Var(ỹ(n)) and Bias(ỹ(n)) for finite Np was proposed. The
method has been described in great details in the appendix A.2 and it
was shown that the values of Var(ỹ),Bias(ỹ) may be estimated as:

Bias(ỹ(n)) ≈ β

(
2Φ(t(n), λσp)

3
√

2πσp
− ftr(t(n))

)
, (4.44)

Var(ỹ(n)) ≈ β2 9Φ(t(n), λσp) + 8Φ2(t(n), λσp)− 16Φ3(t(n), λσp)
36πNpσ2

p

, (4.45)

for n = 1, 2, ..., N, where λ is the parameter defining the range of the
second argument of function Φ:
Φ(t(n), λσp) = Ftr(t(n) +λσp)−Ftr(t(n)−λσp), n = 1, 2, ..., N, (4.46)

and Ftr(t(n)) is the cumulative distribution function of ftr(t(n)) calculated
at t(n). Discussion of Eqs (4.44, 4.45) is given in the appendix A.2.

It should be underlined that both estimation methods, proposed
(Eqs. (4.44, 4.45)) and based on Taylor series approximation (Eqs. (4.42,
4.43)), have the same asymptotic properties.4 It may be shown that for
σp → 0 with Npσp →∞ as Np →∞ :

Bias(ỹ(n)) = 0,
Var(ỹ(n)) = 0,

for n = 1, 2, ..., N.

4.4.2 Derivation of the coincidence resolving time

In the following we evaluate the CRT based on the standard deviation
(σΘ) defined in Eq. (4.35). The lower limit of the CRT is defined by

4 L. Raczyński et al., Calculation of the time resolution of the J-PET tomograph using kernel
density estimation, Phys. Med. Biol. 62 (2017) 5083−5084.
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the time spread due to the unknown depth-of-interaction (DOI) in a
single scintillator. It should be stressed that this factor gains importance
for large scintillator detectors, as in the J-PET for example. Since the
interactions may occur with nearly equal probability along the whole
thickness (D) of the plastic scintillator, time spread in a single scintillator
may be well approximated by the uniform distribution with the width
of D/c, where c denotes the γ photon speed. This implies that the
distribution of the time difference between two detected γ photons has
a triangle form with FWHM equal to D/c. The CRT may be estimated
with the formula:

CRT =
√

(2.35
√

2)2σ2
Θ + D2

c2 , (4.47)

where the first term describes the conversion of the standard deviation
of distribution of interaction time in a single strip (σΘ) to the FWHM of
annihilation event time uncertainity.5

5 L. Raczyński et al., Calculation of the time resolution of the J-PET tomograph using kernel
density estimation, Phys. Med. Biol. 62 (2017) 5082.
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5. High-level data processing in
Jagiellonian PET

This chapter describes the subsequent steps of high-level data processing
in the J-PET scanner. The goal of high-level reconstruction is an esti-
mation of radioactive tracer distribution injected to the patient’s body.
The image reconstruction is based on information on registered set of
events of positron-electron annihilations. As it was discussed in the pre-
vious chapter, a single event is derived based on the detection of both γ
photons in two scintillators in a narrow time window.

In recent years, PET data acquisition has been shifted to
list-mode [10], where each registered event is saved individually. Stor-
ing coincidence events individually, instead of accumulated counts in
sinogram, is preferred for efficient data processing for whole-body PET
scanners that additionally record TOF information. Moreover, in list-
mode data, each event may be described with additional information
such as, e.g., deposited energy in the scintillators, detection time differ-
ence. Therefore, each event may be described with preselected set of
features, creating high-dimensional feature space.

During the PET examination, an event is regarded as valid if: two
γ photons are registered within a predefined time window, and the en-
ergy deposited in the scintillator by both γ photons exceeds the selected
threshold. However, a number of events registered as having met the
above criteria are undesirable. Different types of events in PET mea-
surement are:

• true. Pair of γ photons derive from a single positron-electron an-
nihilation and reach the scintillators without interacting with the
atoms in detector volume.

• random. Pair of γ photons derive from two different positron-
electron annihilations occur at approximately the same time.

• scattered. Pair of γ photons derive from a single positron-electron
annihilation when one or both of them have undergone a Compton
interaction.
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As the true events are essential for the PET imaging, the random and
scattered events distort the reconstructed distribution of radiotracer.

This chapter is organized as follows. First, in section 5.1, the method
for classification of events will be proposed. For this purpose we apply a
self-organizing map (SOM) network to analyse the high-dimensional fea-
ture space created by a set of three types of events. In particular, we pro-
vide a visualisation of high-dimensional feature space and we investigate
the class distributions on a 2-dimensional SOM. Next, in section 5.2, we
will introduce 3-dimensional, semi-analytic image reconstruction method.
The key component of the proposed approach is the application of the
Total Variation (TV) regularization in the image space during the ana-
lytic reconstruction filtering step, that is, after the TOF data have been
TOF back-projected into the image space. The most important part of
our investigations is the evaluation of the kernel operator, corresponding
to the linear transform mapping an original radioactive tracer distribu-
tion into a TOF back-projected image. In section 5.2 the formula for
calculations of the kernel operator will be introduced and proven.

5.1 Event classification in the J-PET detector

The are variety of methods for estimation of the contribution of random,
scattered and true events during the PET examination. For instance,
the fraction of random events may be estimated using a delayed coin-
cidence window technique [83]. On the other hand, the contribution
of scattered events may be evaluated using Single Scatter Simulation, in
which scatter sinograms are simulated and appropriately scaled using the
outside-of-body scatter tail [84, 85]. Therefore, the purpose of this work
is not related to the development of novel techniques for random and
scattered events correction. Instead, we introduce the SOM network for
visualisation of high-dimensional feature space of all types of registered
events in 2-dimensional space. First, we present the set of selected fea-
tures for visualization and classification purposes in section 5.1.1. Next,
in section 5.1.2, we introduce a mathematical tool for assesement of qual-
ity of dimensionality reduction using SOM. Finally, in section 5.1.3, we
present a simple event classication scheme using probabilistic approach.
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5.1.1 Extraction of event features

We assume that each event is described by six features; thus it may be
considered as a point in 6-dimensional (6-D) space. The first feature de-
scribes the angular distance in transaxial section between two scintillator
strips that registered both γ photons in coincidence. The data are pre-
liminary selected and only events with angular distance larger than 20o
are further analysed.The second feature is the absolute value of registra-
tion time difference. The upper limit of time difference, i.e., coincidence
time window, is set to 4 ns and is related to the size of the J-PET de-
tector. The third feature describes the distance between the positions
in the scintillators of two reconstructed γ photons. The fourth and fifth
features store the information about the energy deposited by γ photons
in both scintillator strips. In particular, the fourth feature defines the
sum of energies and fifth feature defines the absolute value of difference
of energies. The last feature, extracted based on attenuation map of the
phantom, describes the attenuation coefficient along each LOR.

5.1.2 Dimensionality reduction using SOM

Consider a data set containing all three types of events reconstructed
according to the low-level signal processing described in chapter 4. Each
individual event is represented as a 6-D vector. The SOM is organized
into a 2-D rectangular grid of size Ng (total number of neurons is N2

g )
and is trained using the set of 6-D input data. Once trained, the map
can assign each event from the feature space to the neuron in the 2-
D grid with the closest weight vector to the 6-D vector. However, it is
highly likely that the input 6-D dataset is curved and cannot be mapped
adequately on a 2-D plane, even using non-linear transit functions as in
case of the SOM. Therefore, we propose a simple procedure for testing
the quality of transformation of the 6-D feature space into 2-D grid. For
this purpose we calculate the quantization error, denoted hereafter as qe,
for a trained SOM. qe is defined as the mean value of Euclidean norms
of the differences of all 6-D vectors describing event features in data set
and the BMUs in the 2-D grid.

As other quantization techniques, the SOM allows to divide an input
data set into groups, represented by their centroid point, i.e., node in
the grid. Consider a SOM stacked in a 2-D rectangular grid, defined in
the same way as described above, applied to the 2-D data set. Since the
SOM model with fixed size (Ng) is optimized in order to minimize qe,
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then for given data set we may postulate that:

qe ·Ng = const. (5.1)

Eq. (5.1) describes the fundamental property of the vector quantizations
methods [86, 87]. It should be stressed that the relation in Eq. (5.1) is
true for a given set, independently of the distribution of the original data
in the 2-D space. This is because all the vectors are on the same 2-D
plane. The specific distribution of the input 2-D vectors influence only
on the constant value on the right hand side of Eq. (5.1).

In general the property introduced in Eq. (5.1) may be applied also
to N-D data sets, where N > 2. The relation in Eq. (5.1) for N-D data
holds only if the input N-D vectors may be fitted on non-linear 2-D
surface. The main idea of learning process of the SOM neural network
is to approximate the localization of this non-linear 2-D surface. The
quality of this approximation may be evaluated based on the Eq. (5.1)
as follow. We perform bilateral logarithm of the formula in Eq. (5.1):

log(qe ·Ng) = ξ,

log(qe) + log(Ng) = ξ,

log(qe) = − log(Ng) + ξ, (5.2)

where ξ is a constant value. For a given N-D data set under investi-
gation, we conduct numerous trainings of SOM networks with different
number of neurons in the grid. For each network with N2

g neurons, a
quantization error is evaluated. With all the collection of numbers Ng

and corresponding errors qe, the linear fit according to the formula

log(qe) = −κ · log(Ng) + ξ (5.3)

is provided, in order to deliver parameters κ and ξ. As mentioned, ξ is
related to the constant value in Eq. (5.2) and is not further analyzed. On
the other hand, parameter κ describes the coplanarity of the input data,
i.e., reflects the quality of approximation of the non-linear 2-D surface
with SOM structure.From the comparison of Eq. (5.2) and Eq. (5.3) it is
seen that 0 ≤ κ ≤ 1. The value of κ close to 0 suggests very low depen-
dence of the quantization error on the size of the SOM neural network;
input N-D data set is not presented reliably by the map. However, the
value close to 1 reflects very accuarate fit of the 2-D SOM grid on N-D
space occupied by the analyzed data set.
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5.1.3 Event classification using SOM

The trained SOM neural network with N2
g nodes allows to classify the

events based on a simple probabilistic model. Consider that the proba-
bility than neuron (i, j) won is denoted as P(Wij), where i, j = 1, . . . , Ng.
The posterior pdf of the class ck conditional on position i, j of the winning
node on the map is denoted as

P(ck|Wij) = P(ck ∩Wij)
P(Wij)

k = 1, . . . , Nc (5.4)

where Nc stands for the number of event classes. Since

P(Wij) =
Nc∑
k=1

P(ck ∩Wij) (5.5)

we have
Nc∑
k=1

P(ck|Wij) = 1. (5.6)

The proposed event classification procedure consists of two steps. First,
for a new event, represented by a 6-D vector, the indexes (i, j) of the
BMU in the SOM are evaluated. Next, the event is assigned to one of
the classes (k = 1, . . . , Nc) that maximize the posterior pdf in Eq. (5.4),
i.e.,

k̂ = arg maxP(ck|Wij).
Additionally, the SOM allows to predict the classifier performance by

calculation of the information entropy. For a trained neural network, in
each node i, j, the entropy may be calculated as follows:

Eij = −
Nc∑
k=1

P(ck|Wij) · logP(ck|Wij). (5.7)

Entropy Eij takes minimal value equal to 0 when the probabilistic model
described with conditional probability P(ck|Wij) is determined, i.e.,
P(ck|Wij) = 1 for one class and for all remaining classes it is 0. On
the other hand, entropy Eij is maximum when the conditional proba-
bility P(ck|Wij) is the same for all classes, i.e., P(ck|Wij) = 1/Nc for
k = 1, . . . , Nc.
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5.2 Image reconstruction using Total Variation
regularization

Given good enough time resolution, a PET scanner using the TOF infor-
mation could reconstruct each individual event with sufficient accuracy to
measure the unknown radiotracer distribution directly. Currently how-
ever this is not the case and the measurements errors have to be incor-
porated into the reconstruction process. With the extra data dimension
brought by TOF technique, typical registered TOF data are sparse in pro-
jection space; the dimensionality of the projection space is much higher
than the number of TOF events. Therefore, processing of TOF data in
projection space is unpractical, especially for the whole-body PET scan-
ners and the most appropriate reconstruction techniques are list-mode
(LM) approaches.

In this section we introduce a semi-analytic image reconstruction al-
gorithm suited for the LM-TOF data structure. The recent results [88]
suggest that as the CRT improves, the TOF analytic algorithms become
more competitive to statistical iterative methods, e.g., TOF Maximum
Likelihood Expectation Maximization (TOF-MLEM). In spite of the lin-
ear behavior and predictability, analytic methods exhibit higher sensitiv-
ity to the data noise, as compared to the statistical iterative approaches.
This leads to more noisy images for low count data and thus affects the
quantitative precision of the imaging studies. Consequently, proper reg-
ularization of the analytic reconstruction is of a very practical interest.
The key component of the proposed method is the application of the
TV regularization in the image space after the events have been TOF
back-projected. Image space is substantially reduced in size as compared
to the TOF data space, making the TV optimization operations much
more efficient and practical. The procedure of the image reconstruction
approach is as follows:

• Data pre-correction. As required for analytic reconstruction, in the
first step LM-TOF events are pre-corrected. Pre-correction takes
into account both the multiplicative factors (detector efficiency and
attenuation factors) and the additive contamination of the data
(random and scattered events). The latter issue was discussed in
section 5.1.

• TOF back-projection. Corrected data are back-projected to the im-
age space using the TOF information. The relation between the
back-projected data and the unknown radiotracer distribution will
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be introduced in section 5.2.2.

• Reconstruction with regularization. The radiotracer distribution is
reconstructed using the back-projected image by solving the uncon-
strained TV regularization problem. The reconstruction problem
based on TV approach will be discussed in section 5.2.3.

The proposed algorithm is similar to the conventional back-projection
filter (BPF) method [89]. However, in the BPF algorithm acquired data
are first deposited into projection space. In contrast, in this approach the
incorporation of the TOF information allows for direct transformation
into the TOF back-projected image. Moreover, in the proposed work,
the TV regularization acts as a filtering step, while in standard BPF or
TOF-BPF algorithms, regularization is provided via apodizing functions.
In the following sections we describe the subsequent steps of the proposed
image reconstruction. We start with introduction of basic definitions and
notation.

5.2.1 Background and notation

The 3-D TOF-PET data can be expressed as [90,91]:

p(s, φ, zc, θ, l) =
∫ ∞
−∞

dl′f( #»x = l′ # »ω1 + s # »ω2 + zc
# »ω3)h(l − l′) (5.8)

where the function f( #»x , (x, y, z)) describes the radioactive tracer dis-
tribution, s and φ are the transaxial sinogram coordinates, zc is the axial
coordinate of the mid-point of the LOR, θ is the co-polar angle between
the LOR and transaxial plane, l is the TOF variable and h is the TOF
profile (see Fig. 5.1). Three unit vectors are defined as:

# »ω1 = (− cos θ sinφ, cos θ cosφ, sin θ) (5.9)
# »ω2 = (cosφ, sinφ, 0) (5.10)
# »ω3 = (0, 0, 1). (5.11)

The TOF profile h is often modeled as a Gaussian function [92] with
standard deviation σ = c · CRT/(4

√
2 log 2), where c denotes the speed

of light. The TOF variable l is related with the TOF time difference ∆t
between the two arrival times of the two photons by l = c∆t/2, where
l = 0 corresponds to the position of the LOR mid-point.

An image is represented by a 3-D function f( #»x ), where #»x ∈ R3 de-
notes the space coordinate. Discretized version of continuous function
f(x, y, z) is represented by fijk, where (i, j, k) = 1, ..., n corresponds to
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Figure 5.1. Schematic view of a cylindrical 3-D PET tomograph in axial cross-section (left
panel) and transaxial cross-section (right panel).

the voxels position in the image matrix. The bold symbol f ∈ RN , where
N = n3, represents the vectorized version of the matrix f. In general
n× n× n size images are stored as N length vectors.

The geometrical arrangement of discrete detectors in a scanner deter-
mines a set of samples (s, φ, zc, θ, l) ,

#»Σ ∈ R5 in the projection space.
The most common arrangement is a ring scanner: an even number of
detectors uniformly spaced along a circle and

#»Σ = {(s, φ, zc, θ, l) : |s| ≤ Rd, 0 ≤ φ ≤ π,

|zc| ≤
Ld
2 , 0 ≤ θ ≤ π

2 , |l| ≤
√
R2
d + L2

d

4 },

where Rd is the detector radius, Ld is the detector length. Discretized
TOF projection data are represented by the matrix element pijkmq, where
(i, j, k,m, q) correspond to the variables (s, φ, zc, θ, l), respectively. The
bold symbol p ∈ RP , represents the vectorized version of the matrix p.

The mathematical operator mapping a function f( #»x ) into p( #»Σ), ac-
cording to Eq. (5.8), is denoted by K :

p( #»Σ) = (Kf) ( #»Σ) (5.12)

and K ∈ RP×N is a finite-dimensional sampling of the K transform:

p = Kf (5.13)

and is often called a system matrix.
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5.2.2 TOF convolution operator

As mentioned at the beginning of this section, the acquired set of events
is deposited directly into TOF back-projected image. In the following
we derive the relation between the TOF back-projected image and the
original radioactive tracer distribution. We define a TOF back-projection
operator (K#) and we provide a linear transform of the projection data
p defined in Eq. (5.12):

(K#p)( #»x ) = (K#Kf)( #»x ) (5.14)
b( #»x ) = (K#Kf)( #»x ) (5.15)
b( #»x ) = Af( #»x ) (5.16)

where A = K#K is an overall TOF forward and back-projection operator
and b is TOF back-projected image. The images f and b have the same
sizes and one-to-one voxel correspondence. Under the assumption that
the TOF profile h is shift invariant, so that the integral in Eq. (5.8) is a
convolution, the operator A may be described as a convolution operator
with a kernel a( #»x ):

b( #»x ) = a( #»x ) ∗ f( #»x ). (5.17)
The aspect of the validity of the kernel a shift-invariance assumption will
be discussed in the last part of this section.

The kernel a( #»x ) may be easily derived for a point source δ( #»x ) placed
in the tomograph center based on Eq. (5.15), i.e.,

a( #»x ) = (K#Kδ)( #»x ). (5.18)

In the following, by convention we use subscripts o to denote exact values
as opposite to estimated quantities described with subscripts e. A mea-
sured TOF event is defined as a set #»ge = (xu,e, yu,e, zu,e, tu,e, xd,e, yd,e, zd,e,
td,e). The (xu,e, yu,e, zu,e) and (xd,e, yd,e, zd,e) denote the reconstructed po-
sition along the upper and lower strips, respectively, see Fig. 5.2 for
details. The tu,e and td,e are reconstructed hit times, such that:

le = c
td,e − tu,e

2 . (5.19)

An annihilation occurring at #»xo = (0,0,0) is measured as the point #»xe =
#»xo + #»ε , where

#»ε = le
#»ω 1,e + se

#»ω 2,e + zc,e
#»ω 3 (5.20)

= #»ε1 + #»ε2 + #»ε3 (5.21)
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based on the parametrization introduced in Eq. (5.8). As it is shown in
Fig. 5.2, the measurement error #»ε is a vector with a component #»ε1 de-
scribing TOF uncertainty, with a component #»ε2 related to the unknown
DOI in a single scintillator and with a component #»ε3 describing uncer-
tainty along axial direction (note that #»ω 3 is constant (see Eq. (5.11)) and
therefore we do not use the subscripts). From Eq. (5.20) it may be seen
that the measurement error #»ε is evaluated after TOF back-projection of
the TOF event #»ge into the image space. Hence, assuming that the #»ε is
independent of the locations and measurement errors of all other annihi-
lations, the #»ε may be considered as a random variable with pdf given by
the overall TOF forward and back-projection operator a in Eq. (5.18).

Figure 5.2. Example of reconstruction of point source placed in the detector center
presented in axial cross-section. The measurement error consists of three components: the
TOF uncertainty, the unknown DOI, and the uncertainty along the axial direction.

The proposed mathematical model of measurement errors is inspired
by the work of [93, 94]. In [93], the authors assumed that #»ε is normally
distributed and has two components: parallel and transverse to the LOR.
The parallel component error is analogous to #»ε1 in our derivation (see
Fig. 5.2). However, instead of one transverse component error we con-
sidered two error vectors #»ε2,

#»ε3 according to the parametrization given in
Eq. (5.8). This approach allows us to include more information about
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geometrical arrangement and readout specification of different PET sys-
tems, e.g., the J-PET scanner, in our calculations.

In order to simplify further calculations, the following assumption
is proposed. Note that in the most interesting case for large detec-
tor radius Rd, orientation of component error #»ε1, i.e., vector #»ω 1,e in
Eq. (5.20), is very close to the true LOR direction #»ω 1,o. Therefore, we
assume that #»ε1 ≈ le

#»ω 1,o, (see Fig. 5.2 for details) where only le is a
random variable. Furthermore, the #»ε2 and #»ε3 in Eq. (5.20) depend only
on transaxial (xu,e, yu,e, xd,e, yd,e) and axial (zu,e, zd,e) uncertainties, re-
spectively. Hence, the error #»ε may be approximated as a sum of three
independent random variables and the unknown kernel a is given as the
convolution:

a( #»x ) =
(
a(1) ∗ a(2) ∗ a(3)

)
( #»x ) (5.22)

where a(k) describes pdf of error term #»εk in Eq. (5.20) for k = 1, 2, 3. It
is shown in appendix A.3, that

a(1)( #»x ) = κ1
h(‖ #»x‖)C( #»x , θacc)
‖ #»x‖
√
x2 + y2 (5.23)

a(2)( #»x ) = κ2
h2(
√
x2 + y2)√
x2 + y2 (5.24)

a(3)( #»x ) = 1√
πσz

exp
(
− z

σ2
z

)
. (5.25)

The parameter θacc corresponds to the maximal accepted θ angle, κ1, κ2
stand for the normalization constants, h2 is the profile function given
in Eq. (A.15), function C is defined in Eq. (A.13), and σz is standard
deviation of Gaussian function describing uncertainty of the measurement
along axial position. It should be stressed that the kernel a does not have
a finite support due to the Gaussian functions in a(1) and a(3). In order to
reduce the reconstruction time, we assessed the truncation of the kernel
a and this aspect will be investigated in section 6.6.1.

In the last part of this section, we discuss the validity of the kernel
a shift-invariance assumption (see Eq. (5.17)). For this purpose we con-
sider the influence of the position of point source on the distributions a(k)
of measurement errors #»εk for k = 1, 2, 3. The pdf a(3) does not depend on
the position of point source as the uncertainty of measurement along the
axial direction (z) is assumed to be constant (see appendix A.3.3 for de-
tails).The pdf a(2) for central and shifted point sources is not stationary
since the efficient DOI changes with different angle in (x, y) cross-section
between two detectors in coincidence. Under the assumption that an-
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nihilation photons propagate isotropically, only for central point source
the angular difference in (x, y) cross-section between two detectors is
always ≈ 180o (see appendix A.3.2 for details). However, kernel a(2) con-
tributes only to the (x, y) distribution of the overall kernel a and as the
TOF uncertainty is still a major challenge of current PET scanners, the
investigation of influence of pdf a(1) on shift-invariance is of main impor-
tance. The main parameter that governs the distribution of kernel a(1)
is θacc angle. Note that the θacc angle cannot be greater than maximum
detection angle θmax for the point source placed in the tomograph center:

θmax = arctan
(
Ld

2Rd

)
. (5.26)

The solid angle covered by the tomograph is largest in the center (θmax),
but it decreases if one moves the point source from the center towards
the edge. Consequently, the function describing the kernel a depends on
the spatial location of the point source and is said to be spatially variant.

In the 1980s several 3-D analytic reconstruction approaches have been
proposed to circumvent the assumption of shift-invariance [95, 96]. This
has been done by completion of the missing regions by forward-projecting
(re-projecting) images initially reconstructed from the subset of projec-
tion data for which θ ≤ θmin. The limiting angle θmin imposes shift-
invariance everywhere within the field of view specified by the volume of
the reconstructed object.

In this work no initial image reconstruction and data re-projection
was performed, and the shift-invariance was approximated by rejecting
any events with θ ≥ θacc, where θmin ≤ θacc ≤ θmax. Increasing θacc
weakens the assumption of shift-invariance of the kernel a, however, on
the other hand ensures higher statistics. A trade-off between the number
of accepted events and the size of the area inside the tomograph for
which the shift-invariance assumption of kernel a holds is optimized by
changing the θacc parameter.

It is worth noting that the detection angle limitation is required in case
of long PET detectors. A more oblique LOR penetrates more scintillating
material than a LOR of less axial difference, which coupled with unknown
depth of interaction degrades the axial resolution. For instance, for a
200 cm long EXPLORER scanner [41,42], the maximum axial difference
between crystal pairs was limited to 115 cm. Moreover, the restriction on
maximal θ angle is beneficial due to the photons attenuation effect in the
patient’s body; the more oblique the LOR the longer the path through
the patient’s body and higher the probability of photon attenuation.
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5.2.3 TOF reconstruction with TV regularization

The problem in Eq. (5.17) may be rewritten to the matrix notation:

b = Af (5.27)

where A is finite-dimensional sampling of operator A and therefore has
a circulant structure (see Eqs (5.16)-(5.17) for details). The circulant
property of matrix A is a critical factor to speed up the algorithm as it
allows the use of Fourier transform methods.

Since the TOF back-projected image b is not a perfect noiseless image,
the inverse problem defined in Eq. (5.27) is ill-posed and the application
of some regularization technique is required. The most common class
of regularization methods in image processing is based on TV approach.
Brief description and discussion of the TV-norm of 3-D images is provided
in section 3.2.

Optimization algorithm finds a solution f̂ of Eq. (5.27) by solving an
unconstrained regularization problem:

f̂ = arg min TV(f) + µ

2‖Af − b‖2
2, (5.28)

which is known as the TV/L2 minimization. The µ is the regularization
parameter. The data fidelity term in Eq. (5.28) is a L2 norm that consti-
tutes the Gaussian noise model. Note that the image b is evaluated after
the pre-correction of the data, which are no longer described by the Pois-
son distribution and it is convenient to assume the Gaussian noise model.
The theory of penalty functions implies that the solution of Eq. (5.28)
approaches the solution of Eq. (5.27) as µ goes to infinity.The proposed
algorithm is based on the augmented Lagrangian method [60, 61] and
is presented in details in section 3.2. This algorithm will be denoted
hereafter as TOF-BPTV (TOF Back Projection Total Variation regular-
ization).

PET reconstruction using TV regularization was investigated by sev-
eral groups. The approach proposed in this dissertation is inspired by a
regularization procedure for PET first introduced in [97]. Given a noisy
projection data p, an image is reconstructed by solving:

min
f

α0 TV(Kf) + α1‖f‖1 + α2

2 ‖Kf − p‖2
2 (5.29)

where α0, α1, α2 are positive parameters. In this method TV regulariza-
tion acts only on the Kf . As an extension, in [98] an image from PET
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measurements has been reconstructed by smoothing both in projection
and in image space:

min
f

α0 TV(Kf) + α1 TV(f) +
∑
i

(Kif − pi)2

pi
(5.30)

where α0, α1 are positive parameters.
In both methods, the reconstruction problem does not include the 3-D

image space and TOF information. Instead, 2-D image space and non
TOF data are considered, which results in 2-D projection space p. Con-
sideration of additional dimensions increases significantly the size of the
system matrixK making the optimization problems in Eqs (5.29)−(5.30)
invariably large-scale. In fact, in that case storing the full 5-D system ma-
trix in memory is impossible, even in sparse format. Moreover, the matrix
K does not have a circulant structure as the matrix A in Eq. (5.28).

This implies that these methods could not be used as the reference
to the proposed technique. On the other hand, almost every current
PET image reconstruction algorithm is based on likelihood maximiza-
tion approach [99,100]. Therefore as the reference method, TOF-MLEM
algorithm has been selected. Moreover, we will provide the comparative
studies with TOF-FBP algorithm, in order to investigate the computa-
tional speed of the proposed approach.
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6. Results

6.1 Experimental and simulation scenarios

For the evaluation of the proposed data processing algorithms described
in chapters 4 and 5, both experimental and simulation data of the J-PET
scanner were used. The performance of the low-level signal processing
methods, presented in chapter 4, is investigated by using a data set of ref-
erence signals registered in a single module scintillator strip of the J-PET
detector. This experimental setup is described in section 6.1.1. The qual-
ity of the high-level data processing methods, introduced in chapter 5, is
examined by using both experimental and simulation data. The experi-
mental scenario describing the 3-layer prototype J-PET scanner is shown
in section 6.1.2 and the simulated 1-layer J-PET detector is introduced
in section 6.1.3.

6.1.1 Experimental scheme with 1 scintillator strip

In this section we introduce the scheme with single detection module of
J-PET device that allows the investigation of low-level data processing
described in chapter 4. The scheme of the experimental setup is presented
in Fig. 6.1.

Figure 6.1. Scheme of the experimental setup with single detection module.
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The single detection module is built from the BC-420 plastic scintil-
lator strip, with dimensions of 5 × 19 × 300 mm, readout at two ends
by Hamamatsu R4998 photomultipliers is denoted as PM1(2). Measure-
ments are performed using γ photon from a 22Na source placed inside
the lead collimator between the scintillator strip and the reference detec-
tor. The reference detector consists of a small scintillator strip with a
thickness of 4 mm. A collimated beam emerging through a slit 1.5 mm
wide and 20 cm long is used for irradiating desired points across the
strip. In order to detect the event, coincident registration of signals from
the PM1 and a reference detector is required. Such trigger conditions
reduce the background from the deexcitation photon (1.27 MeV) to a
negligible level [17]. The time of triggering by the reference detector is
used to estimate the event arrival time. The constant electronic time
delay between the true event time and the measured time of arrival at
the reference detector does not influence the time and spatial resolutions
and is shifted to zero. The full waveforms of signals on PM1 and PM2
are sampled using the Lecroy SDA 6000A oscilloscope with a sampling
interval of 50 ps.

The 22Na source is moved along the line parallel to the scintillator
strip from the first to the second end in steps of 6 mm. At each position,
about 5000 pairs of signals from PM1 and PM2 are registered in coin-
cidence. The length of registered signals, denoted as ỹ according to the
description in section 4.4.1, is set to 15 ns, which corresponds to N = 300
samples. Since the absolute registration time has no physical meaning,
we synchronize the signals in data set in such way that the fixed index
number 20 corresponds to the amplitude of 0.06 V on the rising slope of
each signal. An example of a signal registered at PM1 is presented in
Fig. 6.2.

6.1.2 The prototype J-PET scanner with 192 scintillator
strips

This section describes the J-PET scanner prototype, which is the first 3D
TOF-PET scanner built of plastic scintillators having axially arranged
strips forming a cylindrical diagnostic chamber. The detector constructed
at the Jagiellonian University is composed of 192 modules based on strips
of EJ-230 plastic scintillator, arranged into a barrel with 3-layers (see
Fig. 6.3). The inner and the middle layers are composed of 48 mod-
ules, whereas the third (outer) layer consists of 96 modules. Layers do
not directly overlay each other and are 85 cm, 93.5 cm and 115 cm in
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Figure 6.2. Signal observed in the photomultiplier output generated by interaction in the
center of the scintillator strip (the meaning of variable n is the same as in Eq. (4.8)).

diameter, respectively. Each scintillator strip is 50 cm long with a rect-
angular cross section of 0.7 × 1.9 cm2. Within a detection module, both
ends of the scintillator strip are optically coupled to Hamamatsu R9800
photomultipliers.

Figure 6.3. A photo of the J-PET detector consisting of 192 plastic scintillator strips
arranged in 3 concentric layers.

Experiments with J-PET prototype were performed with six point-like
sources of 22Na placed in positions suggested by the National Electrical
Manufacturers Association (NEMA) in the NEMA-NU-2-2012 norm [101].
While in the norm it is suggested to measure the source subsequently in
each position, in our study six point-like sources were measured at the
same time. Sources were placed at the following positions: (x, y, z) =
(0 cm, 1 cm, 0 cm), (0 cm, 10 cm, 0 cm), (0 cm, 20 cm, 0 cm), (0 cm,
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1 cm, -18.75 cm), (0 cm, 10 cm, -18.75 cm) and (0 cm, 20 cm, -18.75 cm).
A dedicated styrofoam panel was prepared for measurements; the sources
were attached to the panel using adhesive tape. Styrofoam was chosen
because of its low density and small probability for scattering and atten-
uation on the panel.

A coincident event is defined as a set of consecutive interactions of
photons, originating from a single annihilation and all interactions of
secondary particles. The interactions are considered to originate from the
same coincident event if they are detected within the fixed time window
of 4 ns. This number ensures that the probability that interactions from
two different events are ascribed to the same event is below 1 permille.
Based on our previous studies [17,102], only the events with exactly two
interactions registered with an energy loss above the 200 keV threshold
each are accepted. For the study with six point-like sources, a total of
70 million coincident events, fullfiling the above energy condition, are
recorded.

As was shown in [20], the resulting time resolution (CRT) of the 3-
layer prototype J-PET scanner is about 500 ps. The corresponding axial
spatial resolution of the experimental J-PET system, i.e., FWHM along
the z coordinate, is equal to about 4.5 cm.

6.1.3 The simulated J-PET scanner with 384 scintillator
strips

In the last scenario, the ideal geometry of the J-PET detector was sim-
ulated with the Geant4 application for tomographic emission (GATE)
software [103, 104]. The simulated scanner is composed of axially ori-
ented scintillator strips, arranged into a barrel with 1-layer with an inner
radius of 42.8 cm and length of 50 cm. The number of strips is calculated
as the number of edges of the regular polygon circumscribed around the
ring with the radius 42.8 cm and equals 384 (see Fig. 6.4). Each scintilla-
tor strip is assumed to have the same physical properties and dimensions
as the prototype scanner, i.e., is made of BC-420 material and has a
rectangular cross section of 0.7 × 1.9 cm2.

The simulations with single layer J-PET detector were performed with
the NEMA IEC body phantom (see Fig. 6.4). The phantom includes six
spheres and one long cylinder, and is simulated according to the specifi-
cation given in [101]. The four smallest spheres of 10, 13, 17 and 22 mm
diameter simulate hot lesions with contrast ratio of 4 : 1, with respect to
the activity concentration of the background. The two largest spheres of
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Figure 6.4. Schematic view of the one layer J-PET detector consisting of 384 plastic
scintillator strips with NEMA IEC body phantom inside. The figure was generated in GATE
software [103,104].

28 and 37 mm diameter simulate cold lesions with no radioactivity. The
centers of all six spheres are in the same transaxial plane and located
at 7 cm from the phantom lid. The 18 cm long cold cylinder of 51 mm
diameter is inserted on the central axis of the phantom. We model an
injected activity of 53 MBq of 18F-FDG dissolved in water.

For the NEMA IEC phantom simulation, a total of 50.0 million co-
incident events are recorded, corresponding approximately to a twenty-
minute scan for a real J-PET acquisition. The total number of events
includes 20.0 million trues, 9.4 million scatters and 20.6 million randoms.
Each coincidence fulfills the same conditions as in the case of experiments
with the J-PET prototype described in section 6.1.2; the coincidence is
stored only if two interactions with an energy loss above the 200 keV
threshold are captured within the time window of 4 ns.

As the MC simulation does not take into account the spatial and time
measurement uncertainties, an additional smearing using experimental
resolutions of the detector was applied. The CRT and axial spatial res-
olution are simulated for SiPM readout solution of the J-PET scanner.
The values of CRT and FWHM in the z coordinate for SiPMs were es-
timated based on simulations presented in [19] and are equal to 230 ps
and 2 cm, respectively.
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6.2 Recovery of signal waveform based on limited
number of samples

In this section, we demonstrate the results of the recovery of full signals
waveform on the photomultplier output based on few samples. We show
that the number of samples (M) required to sense the signal can be
considerably less than the total number of time samples (N). The method
is validated by using a data set of reference signals registered in single
module scintillator strip, described in section 6.1.2, of the J-PET scanner.

The complete data set of reference signals (Y ) was divided into two
disjoint subsets: training and testing parts, with a ratio of 9 : 1. The
training data set Y was transformed via PCA into a new space X accord-
ing to the Eq. (4.15). The evaluated matrix A was saved and used in the
further analysis during the signal x recovery, see Eq. (4.16) for details. In
order to find the theoretical value of mean recovery error σ2

x as a function
of the number of samples M, one needs to specify the following param-
eters: σ,D, τ (see Eq. (4.20) for details). The standard deviation of the
noise (σ) was estimated based on the training data set Y to ca. 0.015 V,
which is consistent with the oscilloscope specification. The unknown pa-
rameters D, τ were found after the analysis of diagonal elements of the
covariance matrix P of the training data set X. The smallest value D
and the largest value τ for which the condition from Eq. (4.19) was met,
are equal to 4.2 V2 and 0.33, respectively.

It should be stressed that, for a given number of samples (M), the
expected value of σ2

x in J-PET scenario would be slightly greater than
for the one described by Eq. (4.20). The reason is that the signals are
probed in the voltage domain and hence in the case when the amplitude
of the signal is smaller than the threshold level, not all the samples of
the signal are acquired. In other words, the effective number of samples
varies from measurement to measurement and is always less than or equal
to M. Therefore, in order to evaluate the theoretical function of mean
recovery error in the J-PET scenario, both the values of the threshold
levels and the distribution of signal amplitides have to be specified first.
The experimental cumulative distribution function (cdf), based on the
signals registered at all the positions along the scintillator strip, is pre-
sented in Fig. 6.5. The amplitudes of the signals are in the range from
0.3 V to 1.0 V. The signals with amplitude smaller than a 0.3 V are fil-
tered out due to the requirement on the minimal energy deposition, i.e.,
200 keV. Hence, a sharp edge on cdf for this value is observed in Fig. 6.5.

We simulate a front-end electronic device that probes the signals at
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Figure 6.5. Experimental cumulative distribution function of signal amplitudes.

preselected number of voltage levels, both on the rising and falling slopes,
based on the fully sampled signals stored in testing data set Y. We carry
out the experiments for different numbers of voltage levels from 2 to 15.
In each case, the level of 0.06 V on the rising slope is used for triggering
purposes and is common for all signals, as was mentioned in section 6.1.1.
Therefore, the effective number of simulated samples (M) is equal to
the total number of samples on the rising and falling slopes minus one.
In particular, for the measurement with four-levels, which is of most
importance since the currently developed front-end electronic allows one
to probe the signals at four fixed-voltage levels, M = 7. The remaining
thresholds are adjusted after a simple optimization process, where the
goal is to minimize the experimental mean recovery error σ2

x. In case of
the J-PET electronics, the optimal values of the four voltage levels are:
0.06, 0.20, 0.35 and 0.60 V.

For a fixed number (M) and voltage levels, signal recovery is provided
bellow. The samples at optimal thresholds are selected to simulate the
measurement yΩ based on fully sampled waveforms of signals from testing
data set Y. The measurement matrix AΩ is formed from the selected rows
of matrix A. Next, the signal x̂ is recovered using Eq. (4.16), and finally
the signal ŷ is derived.

Since the amplitude of the signal may be less than certain voltage
levels, not all samples had to be acquired, i.e. the number of samples is
≤M. In particular, for optimal values of four voltage thresholds (M = 7),
only for about 30% of signals, amplitudes are greater than 0.60 V, and all
samples are available; the experimental cdf of amplitudes of the signals,
presented in Fig. 6.5, takes the value 0.7 for the highest voltage level.
According to the theoretical calculations only for this fraction of signals,
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the average recovery error takes the smallest value σ2
x(7) ≈ 0.173 V2.

Moreover, for about 55% of signals with amplitudes between 0.35 V and
0.60 V according to Fig. 6.5, the effective number of samples is equal to
5 and the theoretical value of average recovery error is σ2

x(5) ≈ 0.228 V2.
For the rest of the considered signals, with amplitudes below 0.35 V
(about 15% of signals according to cdf distribution shown in Fig. 6.5),
the effective number of samples is equal to 3 and the theoretical value
of average recovery error is σ2

x(3) ≈ 0.346 V2. Finally, the effective
theoretical mean value of recovery error in the J-PET scenario for four
voltage levels is:

σ2
x(eff)(7) ≈ 30% · σ2

x(7) + 55% · σ2
x(5) + 15% · σ2

x(3)
≈ 30% · 0.173 + 55% · 0.228 + 15% · 0.346
≈ 0.229 V2

and is higher than the theoretical value for M = 7 samples.

Figure 6.6. Comparison of average recovery errors σ2
x as a function of the acquired samples

(M). Meaning of the curves is described in the text.

Evaluated theoretical and experimental curves describing the average
recovery error as a function of the number of samples (M) in the J-PET
experiment are shown in Fig. 6.6. An empirical mean value of σ2

x(emp) is
marked with a solid gray line in Fig. 6.6 and is very similar to the effec-
tive, theoretical characteristic (σ2

x(eff)) marked with a solid black line, that
takes into account the distribution of amplitudes presented in Fig. 6.5.
The difference between those two functions is larger for small values ofM
(about 10% of absolute value) and almost negligible for greater numbers
of samples. As explained before, both of these functions differ signifi-
cantly from the theoretical characteristic of σ2

x, calculated according to



REVIEW COPY

DO NOT DISTRIBUTE

6. Results 75

Eq. (4.20), marked with dashed black line in Fig. 6.6.
The analysis of the characteristic of average recovery error allows us to

indicate the required number of samples to signal recovery. The function
σ2
x(M) is approximately proportional to 1/M but, due to the logarithmic

factor (see Eq.(4.20)), it drops rapidly untilM reaches the value of about
10. Further increase in the number of samples does not provide any
significant improvement in the signal recovery. This is very important
information, since the currently developed front-end electronic provides
eight time values for each signal (M = 7).

Figure 6.7. Probability density function of the experimental recovery error evaluated for
four voltage levels (σ2

x(emp)(7)).

The probability density function of the recovery error ||x0− x̂||22 eval-
uated using all signals from the testing data set for four voltage levels
0.06, 0.20, 0.35 and 0.60 V is shown in Fig. 6.7. From the experimental
distribution of ||x0− x̂||22 one may observe that the recovery error is con-
centrated between 0 and 0.4 V2 with the tail reaching the value 1.5 V2.
As it was shown in Fig. 6.6, the average σ2

x(emp)(7) is about 0.264 V2.
The median of a probability distribution of a recovery error is equal to
ca. 0.192 V2.

Two signal recovery examples, with medium and large recovery error,
are shown in Fig. 6.8 and 6.9, respectively. The values of the signal re-
covery errors in Fig. 6.8 and 6.9 are 0.266 and 0.814 V2. As expected,
the worst situation occurs when the amplitude of the signal is slightly
below the threshold level (see Fig. 6.9) or when it is much larger than the
highest voltage threshold. In our sampling scheme the highest recovery
errors are observed for signals with amplitude in the range from 0.55 to
0.6 V and from 0.95 to 1 V (where 1 V corresponds to the maximum am-
plitude, see Fig. 6.5). Unfortunately, there is no possibility to overcome
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these phenomena when only a few samples of the signal are available.
On the other hand, it can be seen that the average recovery error is on
an acceptable level. In a typical situation the signal is recovered quite
accurately (see Fig. 6.8).

Figure 6.8. Example of signal recovery based on samples registered on four voltage levels;
the recovery error is about 0.266 V2.

Figure 6.9. Example of signal recovery based on samples registered on four voltage levels;
the recovery error is about 0.814 V2. Since the amplitude of the signal is smaller than 0.6 V,
samples from highest level are unavailable.

6.3 Reconstruction of γ photon interaction
position in scintillator

In the J-PET scanner a position of γ photon interaction along the scin-
tillator strip is reconstructed based on the measurement of times of light
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signals arrival to photomultipliers. In this section, we investigate the
method for hit-position reconstruction, described in section 4.3, in order
to evaluate a spatial resolution of the J-PET detector. As described in
previous section 6.2, we simulate a four-level measurement based on the
training data set of fully sampled signals acquired with the single detec-
tion module (see Fig. 6.1). We perform the analysis for both types of the
input data, raw samples registered on four voltage levels (8 samples per
signal) and of the fully recovered waveforms (300 samples per signal).

6.3.1 Hit-position reconstruction using raw samples

In the first step, we investigate the spatial resolution obtained from the
original raw samples. As mentioned in section 6.2, the optimal values
of the four voltage levels are: 0.06, 0.20, 0.35 and 0.60 V. The effective
number of acquired variables is smaller by one and equal to 15, since
only differences of times are physically meaningful. Therefore, each single
measurement is represented by a 15-dimensional real number vector.

Figure 6.10. Explained variance (parameter ρ) as a function of the assumed number of
independent variables. The horizontal line indicates the criterion for the determination of
the minimum number of degrees of freedom.

In order to estimate the number of effective degrees of freedom in
each dataset, the PCA is performed and subsequently the parameter ρ,
describing an explained variance, is determined as a function of the num-
ber of variables. Details of the procedure were presented in section 4.3.
Two curves representing signals registered in two most peripheral places
are shown in Fig. 6.10. The minimal number of degrees of freedom of
the χ2 statistics is the argument of the parameter ρ function crossing the
selected threshold level, marked with dashed black line in Fig. 6.10. To
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be sure that the condition ρ > 0.95 is fulfilled in cases of all positions
along the strip, the value equal to 8 is selected for further studies.

Figure 6.11. Parameter λ calculated for different numbers of degrees of freedom.

The hypothesis of normality was tested for numbers of degrees of free-
dom ranging from 8 to 15. The comparison of the experimental distribu-
tion with the theoretical one was performed based on the statistical test
r defined in Eq. (4.24). Figure 6.11 presents results for the data collected
by the irradiation of the edge of the scintillator strip. The λ parameter
is shown as a function of V degrees of freedom of the theoretical χ2 and
the minimum value of λ is obtained for 13 degrees of freedom. Similar
results were obtained for all positions of the irradiation. From this anal-
ysis one infers that the 15-dimensional vector in each data set may be
approximated with 13 independent and normally distributed variables.
We will follow this assumption and investigate a simple hit-position re-
construction method based on a MVN distribution of signals.

Reconstruction is equivalent to the qualification of the 15-dimensional
vector to one of the predefined data sets established for the various posi-
tions along the scintillator. Figure 6.12 shows an example of the position
reconstruction for the 15-dimensional vector created by the γ hitting
at center position (black square). The distances d to all data sets are
evaluated according to Eq. (4.21), and are marked in Fig. 6.12 as gray
circles. The reconstructed position is given as the one for which distance
d acquires a minimum (black circle). In this example the reconstruction
procedure yielded a hit-position different by 1.8 cm from the true posi-
tion. It should be noted that the reconstructed position does not have
to be limited to the 0.6 cm step that results from the number of ac-
quired data sets. For this purpose, the function of distance d around the
minimum may be approximated with parabola based on 3 positions (see
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Figure 6.12. Example of position reconstruction for a γ photon interacting in the center
of the scintillator.

Fig. 6.12). The reconstructed position may be then calculated as the ar-
gument of the minimum of evaluated square function. Knowing that the
distance d is derived from χ2 distribution with 13 degrees of freedom, the
p-value of the assignment of the vector to the best-matching data set may
be evaluated. The black dotted line in Fig. 6.12 indicates the maximum
acceptable distance, equal 27.7, corresponding to the p-value threshold
of 0.01. The statistical significance of the assignment of a given measure-
ment to the best-matching data set allows to reject distorted data, e.g.,
produced by multiple interactions of γ photons in different positions.

Figure 6.13. The spatial resolution as a function of position along the scintillator strip.

In Fig. 6.13, the resulting spatial resolution, defined as a standard de-
viation, is presented as a function of irradiated position. From Fig. 6.13,
one can infer that the spatial resolution is almost independent of the
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position of irradiation. An average resolution of the position reconstruc-
tion along the strip was determined to be 1.05 cm. In comparison, the
proposed method using the lowest threshold (0.06 V) alone, under the
same experimental conditions, gives 1.08 cm (standard deviation) spatial
resolution.

6.3.2 Hit-position reconstruction using recovered signals

The application of CS theory enables to take an advantage from fully
recovered signals and opens an area for new approaches for the recon-
struction of position along the strip in the J-PET scanner. However, our
preliminary studies reveal that direct application of the recovered wave-
forms of the signal does not improve the spatial resolution. In fact, due
to the low number of photons that reach the photomultipliers, charge,
as well as amplitude, of signals is subject to a large variations. In order
to improve the spatial resolution, a method of signal normalization that
permits to decrease the smearing of signals charge was proposed [3]. The
procedure of signal normalization is as follows.

For each training data set of fully sampled signals, mean values of
charges at PM1 and PM2 are calculated and saved as Qi(L) and Qi(R),
respectively, where i = 1, ..., L. Consider a pair of recovered signals ŷ(L)
and ŷ(R) at PM1 and PM2, respectively. The charges of the recovered
signals, denoted hereafter as Q̂(L) and Q̂(R), are evaluated as an inte-
grations of the ŷ(L) and ŷ(R), respectively. The initial classification of
the new measurement ŷ(L) and ŷ(R) to one of the data sets is based on
the analysis of distances d(i) (see Eq. (4.21)), as in previous studies in
section 6.3. Next, the index j for which the distance d acquires a min-
imum is selected and the recovered signals are normalized according to
the formula:

ŷn(L) = Qj(L)

Q̂(L)
ŷ(L) (6.1)

ŷn(R) = Qj(R)

Q̂(R)
ŷ(R). (6.2)

Experimental charge distributions of signals registered via scope are
shown in Fig. 6.14. As expected, the mean values are symmetrical with
respect to the center of the strip, i.e., position of 15 cm. The estimated
average value of charge for center position is 56 pC. The standard devia-
tion along the scintillator strip, not shown in Fig. 6.14, is almost constant
and takes the value of about 10 pC.
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Figure 6.14. Charge distributions along the scintillator strip.

The recovered and normalized signals are further processed in order to
extract the hit-position information.Unlike the previous case, when only
eight directly registered samples per signal were used, the reconstruction
based on fully recovered waveforms required more attention in the estab-
lishment of data representation. The concept of concatenation of signals
registered in coincidence is illustrated in Fig. 6.15. The signals are al-

Figure 6.15. Construction of input data for hit-position reconstruction using the recovered
pair of signals.

ligned on the timescale taking into account the absolute acquisition time
on the voltage levels on both ends of the scintillator strip. The timescale
is shifted to the beginning of the signal that arrived first to the photo-
multiplier (marked in black in Fig. 6.15), since only the relative times are
essential. As described in section 6.1.1, for each recovered signal, sam-
ple number 20 is used for triggering purposes. In case of the signal that
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arrived first, the sample at the lowest voltage level corresponds to time
1 ns. This sample indicates the start of the time frame for signal analysis
marked with dotted vertical lines in Fig. 6.15. The concatenated, out-
put signal consists of two fragments of recovered signals in selected time
frame: first half from ŷn(L) and second half from ŷn(R). In the example
shown in Fig. 6.15 the time frame lasts 4 ns and output signal has 160
samples.

The spatial resolutions derived from the recovered signals as a func-
tion of the length of the time frames are shown in Fig. 6.16. We have
conducted the experiments for time frames of different lengths and for
two types of signals: recovered ŷ(L), ŷ(R) (marked with a gray curve in
Fig. 6.16), recovered and normalized ŷn(L), ŷn(R) (marked with a black
curve in Fig. 6.16). We have carried out the test on the same data set
and under the same conditions as described previously in section 6.3,
where the average spatial resolution along the strip was about 1.05 cm
(black dotted line in Fig. 6.16).

Figure 6.16. Influence of length of the time frame on the spatial resolution using recovered
signals.

In Fig. 6.16 it is shown that the application of the recovered signals
without normalization does not improve the spatial resolution; the best
value is about 1.12 cm.On the other hand, after the signal normalization,
the spatial resolution is considerably enhanced. During the optimization
procedure, the time frame length was adjusted to 4 ns, which corresponds
to the average spatial resolution along the strip of about 0.94 cm (black
curve in Fig. 6.16). This result is about 0.1 cm better in comparison to
the one evaluated based on signals in the voltage domain alone (black
dotted line in Fig. 6.16). It should be stressed that using more than
four voltage levels does not lead to significant improvements. The spatial
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resolution derived from the original signal sampled with a scope is equal
to 0.93 cm.

6.4 Prediction of theoretical resolutions of the
J-PET scanner

In this part we investigate the accuracy of the method for prediction of
the time resolution, i.e., the CRT of the J-PET detector. The model is
validated by performing the experiment with a single detection module
of the J-PET scanner described in section 6.1.1. In our studies in previ-
ous section 6.3, it was shown that the spatial resolution, and thus time
resolution, is fairly independent of the irradiation position (see Fig. 6.13
for details). Hence, in the following we determine both experimental and
theoretical values of CRTs of the J-PET scanner in one position, at the
center of the strip (15 cm). The values of CRT are calculated based on the
data set of training signals registered in coincidence at photomultipliers
output.

The experimental value of the time resolution is evaluated in a similar
way as in the case of previously discussed spatial resolution. In the first
step, for each pair of fully sampled signals from the left and right ends of
the strip, ỹ(L) and ỹ(R), we simulate a front-end electronic device probing
signals at four voltage levels, both at the rising and falling slope. Next,
the signals ŷ(L) and ŷ(R) are recovered using eight samples of signals ỹ(L)
and ỹ(R) registered by an oscilloscope, according to the procedure descried
in section 4.2. For each pair of the recovered signals ŷ(L) and ŷ(R), the
reconstruction of time (Θ̂) and position (ẑ) of interaction in the strip is
pursued by minimization of the function W in Eq. (4.27). The standard
deviation of the empirical distribution of time (σΘ), evaluated based on
the data set of registered signals, was equal to 80 ps. The corresponding
value of CRT, calculated based on Eq. (4.47) was equal to 275 ps. This
value of CRT will be treated as the reference for the proposed, theoretical
model.

According to the description of the theoretical model in Eq. (4.35),
the evaluation of the σΘ and time resolution of the PET detector requires
determination of the parameter α2 and covariance matrix S. The values
of these parameters vary for different types of applied photomultipliers
and are also sensitive to the position of the γ photon interaction along
the scintillator strip.

In order to calculate the α2, the distribution of time of photon reg-
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istration at the photomultiplier (ftr) has to be evaluated. In particular
the parameters of three pdf functions fte , ftp and ftd , defined in Eq. (4.2),
(4.4) and (4.6), respectively, must be known. It should be stressed that
only the last pdf function, ftd , describes the unique properties of a given
type of the photomultiplier. The standard deviation σd is delivered by
the photomultiplier’s producer, for Hamamatsu R4998 photomultiplier
σd = 68 ps, and for MCP photomultiplier σd = 40 ps. The values of
τd, τr, σe of the fte pdf function were adjusted based on the experimen-
tal studies with a single BC-420 scintillator strip. The parameter β in
Eq. (4.8) was selected in such way that the amplitude of the theoretical
signal y is equal to the mean amplitude of signals registered at the center
of the strip (15 cm). The analytical solution for ftr function is difficult
to find due to the internal convolution in fte function (see Eq. (4.2)).
Therefore, the numerical evaluation of a convolution operation was ap-
plied. In this work we are interested only in derivation of the CRT of the
J-PET detector and we assume that the position of the γ photon inter-
action is known exactly (see Eq. (4.33)). Therefore, for a fixed position
of the interaction at the center of the strip, the signal y may be shifted
along the time axis due to the time uncertainty ∆Θ. In order to evaluate
α2, the parameter ∆Θ was changed in the range from -1 to 1 ns. For
each value of ∆Θ, function W (∆Θ, 0) was evaluated based on the shape
of theoretical signal y. The resulting function W (∆Θ, 0) is presented in
Fig. 6.171 with black curve (see also Eq. (4.27)).

Figure 6.17. The shape of function W (∆Θ, 0) near to the minimum.

According to Eq. (4.33), the functionW (∆Θ, 0) may be approximated
near ∆Θ = 0 with the quadratic function. The quadratic approximation

1 c© Institute of Physics and Engineering in Medicine. Reproduced by permission of IOP Publish-
ing. All rights reserved.
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of the W (∆Θ, 0) function is marked in Fig. 6.17 with the gray curve
and the coefficient of the second order polynomial function is equal to
11.2 V2

ns2 .
The signal y consists of Np Gaussian shaped signals of single pho-

toelectrons. The number Np depends on the quantum efficiency of the
photomultiplier. In the following we will briefly recall the main results
of our earlier works, enabling us to estimate properly the number Np.
The light yield of plastic scintillators amounts to about 10,000 photons
per 1 MeV of deposited energy. The 511 keV γ photon may deposit a
maximum of 341 keV via Compton scattering [30], which corresponds to
the emission of about 3,410 photons. On the other hand, in order to
decrease the noise due to scattering of a γ photon inside patient’s body,
a minimum energy deposition of about 200 keV is required [17]. There-
fore, the range of the number of emitted photons discussed hereafter in
this chapter is 2,000–3,410. Experiments conducted with Hamamatsu
R4998 photomultipliers have revealed that about 280 photoelectrons are
produced from the emission of 3,410 photons [17]. According to the pre-
selected range (2,000 to 3,410 photons), the average number of emitted
photons is about 2,700. This number corresponds to Np = 220 registered
photoelectrons. Since the CRT of the J-PET system will be determined
at the center of the strip, the numbers of photoelectrons Np contributing
to the signals induced on the left and right scintillator ends are the same,
and are equal to 110.2

Figure 6.18. An example of the signal of single photoelectron acquired with Hamamatsu
R4998 photomultiplier (black curve) and its Gaussian fit (gray curve).

2 L. Raczyński et al., Calculation of the time resolution of the J-PET tomograph using kernel
density estimation, Phys. Med. Biol. 62 (2017) 5086−5088.
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In Fig. 6.183 an example of the single photoelectron signal registered
with Hamamatsu R4998 photomultiplier and its Gaussian fit are shown.
The signals are marked with black and gray curves, respectively. In the
acquired signal (black curve) the two Gaussian are observed, however the
second one is much smaller and its influence on the calculated parameters
is negligible.The standard deviation σp of the Gaussian function is about
300 ps and this value is consistent with results presented in report [80].

6.4.1 Noise covariance prediction comparative studies

In this section, a detailed study of the approximation method of com-
ponents of the covariance matrix Sp, i.e., Var(ỹ(n)) and Bias(ỹ(n)), will
be carried out. The proposed method, see Eq. (4.44) and (4.45), will
be compared with the well known approximation technique based on the
Taylor series expansion, see Eq. (4.42) and (4.43). As the reference for the
results of both analytical approaches, the Monte Carlo (MC) simulation
will be provided.

In Fig. 6.19, the theoretical signal y at the center of the strip, eval-
uated from Eq. (4.8), is presented. Additionally, examples of signals ỹ,
calculated, according to Eq. (4.36), as sum of Np = 220 photoelectrons
are shown. In all three cases, we use Gaussian function for model of sin-
gle photoelectron signals. The three different curves are obtained with
standard deviations σp = 100, 300, 750 ps, and are marked with blue,
red and green colours, respectively.

The MC simulation was carried out for the constant number of photo-
electronsNp = 220, registered by the Hamamatsu R4998 photomultiplier.
In order to simulate the Var(ỹ(n)) and Bias(ỹ(n)), only one timestamp
of the theoretical signal y, corresponding to the maximum value of 0.6 V
(see Fig. 6.19), was used. The analysis of the maximum value in signal y
allows one to evaluate the main contribution in the covariance matrix Sp,
the location of maximum value of the signal y corresponds to the location
of maximum value on diagonal of the covariance matrix Sp. The maxi-
mum value of the theoretical signal y is observed in the sample n = 60
(see Fig. 6.19). In the first step of MC simulation the random values of
photons registration times tkr (k = 1, 2, ..., Np) were selected according
to the ftr distribution. Next, the values of all Np functions ỹk(60) were
evaluated based on the Eq. (4.37) and summed up giving ỹ(60). The ex-
amples of samples ỹ(60) calculated for three different standard deviations

3 c© Institute of Physics and Engineering in Medicine. Reproduced by permission of IOP Publish-
ing. All rights reserved.
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Figure 6.19. Signals observed on the photomultiplier output generated by interaction in
the center of the scintillator strip; theoretical signal y (see Eq. (4.8)) is marked with the
black curve, examples of signals ỹ (see Eq. (4.36)) simulated for Np = 220 photoelectrons
and three different standard deviation σp = 100, 300, 750 ps, are marked with blue, red, and
green colours, respectively.

σp = 100, 300, 750 ps, are marked with full blue, red, and green squares
in Fig. 6.19, respectively. The abovementioned procedure was repeated
106 times for different values of σp from 50 ps to 750 ps with step of
25 ps. The range of σp has been selected after preliminary calculations
taking into account the expected number of registered photoelectrons in
the J-PET scenario.

The reference values of Bias2(ỹ(60)) and Var(ỹ(60)), obtained with
MC simulation, are marked with black dotted curves in Fig. 6.20.4 An
approximation of Var(ỹ) for the proposed method and method based
on the Taylor series expansion (black and gray curves, respectively) are
very similar to the reference curve for small values and tend to differ for
larger values of σp. However, in the most interesting region, for σp equal
to about 300 ps, the proposed method is more accurate than the Taylor
series based method and the values of Var(ỹ) are equal to 6.5 × 10−3 V2

and 7.0 × 10−3 V2, respectively (the reference value of Var(ỹ) from MC
simulation is equal to 5.1 × 10−3 V2). Comparison of the Bias2(ỹ) and
Var(ỹ) curves reveals the fundamental relation between variance and bias.
The variance dominates for smaller values of σp and becomes comparable
with bias for σp at the level of about 450 ps (compare two reference dotted
curves in Fig. 6.20a and 6.20b). For σp larger than 450 ps, the total error
is mostly influenced by the bias. It is worth noting that in that case
the Taylor series based method significantly underestimates the values of

4 c© Institute of Physics and Engineering in Medicine. Reproduced by permission of IOP Publish-
ing. All rights reserved.
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(a) (b)

Figure 6.20. The comparison of estimation of Bias2[ỹ] (a) and Var[ỹ] (b) with two ana-
lytical approaches: the proposed one (black curve), and the one based on the Taylor series
expansion (gray curve). The reference characteristics was obtained with the MC simulation
(black dotted curve).

Bias2(ỹ), see Fig. 6.20a, which leads to the underestimation of the overall
error.5

6.4.2 Calculation of theoretical CRTs of different J-PET
systems

In the following we analyze the value of time resolution as a function of
the number of registered photoelectrons (Np) and standard deviation of
the single photoelectron signal (σp). As discussed in the previous section,
for each number Np it is possible to find the optimal value of σp, for which
the smallest sum of Bias2(ỹ) and Var(ỹ) is observed. For instance, for
Np = 220, the optimal σp, denoted hereafter as σp(opt), is about 430 ps
(see Fig. 6.21). In the case of Hamamatsu R4998 photomultiplier, the σp
is not a variable and has fixed value of about 300 ps. However, the MCP
photomultiplier registers timestamps of the signal instead of the complete
signal. Therefore, the value of σp(opt) of each contributing signal may be
adjusted accordingly to the number of registered timestamps (Np). In
that sense, the optimization of the σp(opt) value for MCP photomultiplier
may be provided. In general, the MCP photomultiplier is capable of
registering all the timestamps of the photons reaching the scintillator end.
In order to account for possible inefficiency of the MCP, we determine
the characteristics of the J-PET equipped with the MCP in the range

5 L. Raczyński et al., Calculation of the time resolution of the J-PET tomograph using kernel
density estimation, Phys. Med. Biol. 62 (2017) 5089−5090.
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100 6 Np 6 700. The highest number, Np = 700 indicates the maximum
number of registered photoelectrons in the experimental scenario, and
was selected in order to demonstrate the best theoretical resolution of
J-PET. The characteristics describing the optimal standard deviation
(σp(opt)) for different Np is shown in Fig. 6.21. As expected, the larger
the number of registered photoelectrons the smaller the value of σp(opt).
The theory of kernel density estimation [81, 105] implies that as the Np

goes to infinity, the σp(opt) approaches zero.

Figure 6.21. Optimal standard deviation (σp(opt)) of single photoelectron signal as a
function of number of registered photoelectrons.

The procedure for calculation of the theoretical CRT for MCP photo-
multiplier is as follows. First, for a given number Np, the optimal value of
σp(opt) was estimated based on the characteristics shown in Fig. 6.21. In
case of MCP photomultiplier, the output signal is given directly, based on
the measured timestamps and assumed model of the single photoelectron
signal. Therefore, the recovery procedure is not needed and covariance
matrix S = Sp (see Eq. (4.13) for details); the matrix Sp is calculated
based on the proposed model, described in Eqs (4.44) and (4.45). Next,
σΘ is evaluated based on Eq. (4.35) and finally the CRT is calculated
according to Eq. (4.47).

The resulting characteristic of CRT is depicted with black solid curve
in Fig. 6.226. The presented values of CRT take into account an addi-
tional smearing of the time due to the unknown depth of interaction in
a scintillator strip with a thickness of 19 mm, see Eq. (4.47) for details.
The presented results show that the best theoretical CRT of the J-PET
scanner with 30 cm long strips is estimated for the MCP photomultiplier

6 c© Institute of Physics and Engineering in Medicine. Reproduced by permission of IOP Publish-
ing. All rights reserved.
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Figure 6.22. Theoretical calculations of the CRT as a function of the number of photo-
electrons Np, of the J-PET detector equipped with MCP and Hamamatsu R4998 photomul-
tipliers.

capable of registering all timestamps of arrival for 700 photons, is at the
level of 170 ps. Additionally, the theoretical value of CRT calculated
for Hamamatsu R4998 photomultiplier for Np = 220 and σp = 300 ps,
also including the Sr matrix describing the signal recovery uncertainity,
is marked with full black circle in Fig. 6.22. Our calculation shows that
the application of the proposed prediction method can give a very similar
result to the experimental value; instead of 275 ps, the theoretical model
gave CRT = 290 ps. The obtained results demonstrate that the quantum
efficiency (equivalent to the number Np), is one of the most important
factors influencing the overall performance of the PET scanner.7

As shown in [19], the second factor influencing the time resolution is
the photomultipliers transit time spread. According to the results shown
in Fig. 6.23, there is a negligible dependence of the CRT on the transit
time spread value. For fixed value of the parameter describing the quan-
tum efficiency of Hamamatsu R4998 photomultiplier, that corresponds
to registration of Np = 220 photoelectrons on average, in the selected
range from 20 ps to 160 ps of photomultiplier’s transit time spread, the
CRT of the J-PET detector differs by 5 ps (see Fig. 6.23 for details).

7 L. Raczyński et al., Calculation of the time resolution of the J-PET tomograph using kernel
density estimation, Phys. Med. Biol. 62 (2017) 5090−5092.
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Figure 6.23. Theoretical calculations of the CRT as a function of photomultiplier transit
time spread.

6.5 Event classification in the J-PET detector

This section starts the presentation of results of high-level data processing
in the J-PET scanner. From this moment, all the information concerning
the signals acquired at the photomultipliers output is encapsuled in the
form of events. As mentioned in section 5.1, each event is described
with six features and is treated as a point in 6-D space. In this section
we will visualize and provide a simple analysis of the distribution of all
three types of events, i.e., true, scattered and random, by using SOM.
We will focus on the data from MC simulation described in section 6.1.3,
since only in this case exact information about different event types is
available.

Before the application of the SOM, the input data set of events was
reduced. The goal of this preselection step was the rejection of the events
from outside of the detector field of view. For this purpose two selection
criteria were applied. First, the field of view of the J-PET scanner in
transverse direction, i.e., (x, y) cross-section, was limited to the circle
with diameter equal to 60 cm. Secondly, reconstructed position of event
along the axial direction, i.e., z coordinate, was limited to ± 20 cm. Con-
sequently, total number of 50.0 million coincident events was reduced to
33.3 million. This number included 20.0 million trues (100% of initial
number), 9.3 million scatters (99% of initial number) and 4.0 million ran-
doms (20% of initial number). It should be stressed that only the number
of random events changed significantly after the preselection step.
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6.5.1 Dimensionality reduction using SOM

The first investigation concerns the analysis of quality of the dimension-
ality reduction using SOM network. This study is conducted according to
the description given in section 5.1.2. The data set containing 33.3 mil-
lion events is divided into two disjoint subsets: training and testing parts,
with a ratio 4:1, respectively. The 6-D training data set is subjected to
the input of the SOM network. The Gaussian neighbourhood function,
with initial standard deviation equal 2, is applied (see Eq. (3.17) for de-
tails). During the learning process, the standard deviation shrinks with
time, to achieve finally the value of 0.4 after 1000 epochs. We conduct
trainings of the SOM maps with different number of neurons (N2

g ) in the
square grid, with Ng in range from 16 to 112 in steps of 16. For each
trained network with N2

g neurons, a quantization error (qe) is evaluated.
An empirical dependence of the log2(qe) on the log2(Ng) is marked with
a dark gray curve in Fig. 6.24 and may be accurately approximated with
linear function according to Eq. (5.3).

Figure 6.24. Dependence of the quantization error (qe) on the size of the neural network
map (Ng) for three data sets in loglog scale.

The parameter κ defined in Eq. (5.3), describing the slope factor of
the dark gray line, is about 0.41. In order to provide the parameter κ
for data sets that can be visualized, we perform additionally the experi-
ments with two synthetic data sets presented in Fig. 6.25. In both cases,
the 3-D input synthetic data are marked with small, gray circles and po-
sitions of the neurons in the trained SOM are marked with black circles.



REVIEW COPY

DO NOT DISTRIBUTE

6. Results 93

(a) (b)

Figure 6.25. Example of visualization of 2-D non-linear surface (a) and 3-D cuboid (b) by
2-D SOM.

The data set in Fig. 6.25a describes the non-linear surface z(x, y)

z(x, y) = max(2(x+ y) · exp
(
(−x2 − y2)/10), 0

)
(6.3)

while the data set in Fig. 6.25b is a cuboid of size 10 × 10 × 2 (the units
in both cases are arbitrary). During the learning process the Gaussian
neighbourhood function with the same parameters as for J-PET data
was applied. In both instances the number of neurons in the grid in each
direction was changed from 8 to 32 (see Fig. 6.24). The dependencies
of the log2(qe) on the log2(Ng) for synthetic data sets from Figs 6.25a
and 6.25b are marked with a light gray and black curves in Fig. 6.24,
respectively. In case of non-linear surface z(x, y), the parameter κ eval-
uated based on linear fit of the empirical values in Fig. 6.24 is about
0.99. The value of κ almost equal 1 corresponds to very accuarate fit
of the SOM grid on 3-D space occupied by the data set (see Fig. 6.25a
for details). On the other hand, the κ calculated for the cuboid data set
is about 0.82. However, still quite reasonable presentation of the input
3-D data on the 2-D SOM grid is obtained. It is clear that the quality
of this fit is highly associated with the thickness of the cuboid (which in
our example is 2). The greater the thickness of the cuboid, the smaller
the value of κ. Since the parameter κ describing the coplanarity of the
6-D J-PET data is about 0.41, the results presented in the next section
are only indicative.
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6.5.2 Event classification using SOM

As mentioned, coincidence events are classified into three types: true,
scattered and random. While the true events are desirable, the scattered
and random coincidences contribute to the background and hinder the
reconstruction process, degrading image quality. In the following, we
consider true events as positive cases (P), and both scattered and ran-
dom events as negative (N) cases. In order to measure the quality of
classification, we calculate two parameters: true positive rate (TPR) and
positive predictive value (PPV). The TPR and PPV measure sensitiv-
ity and precision of the classification, respectively, and are defined as in
statistical classification, i.e.,

TPR = TP
TP + FN (6.4)

PPV = TP
TP + FP . (6.5)

The goal of the event selection is to maximize the classification precision
(PPV) for assumed sensitivity (TPR) close to 1. In futher analysis, we
agree to discard 5% of total number of true events (TPR = 95%) and we
investigate the value of PPV parameter for different classifiers.

Figure 6.26. Influence of the size of the SOM map grid (Ng) on the classification precision
(PPV). The parameter PPV is evaluated for fixed value of TPR = 95%.

In Fig. 6.26 the influence of the size of the SOM on the precision of
event classification is presented. As described in the previous section,
we conduct trainings of different SOMs with square grid, where Ng was
changed in range from 16 to 112 in steps of 16. The results shown in
Fig. 6.26 indicate that the optimal classification conditions occur for
Ng = 96, where the PPV reaches the maximal value of about 0.777.
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Figure 6.27. Comparison of performance of SOM classifier and Linear Discriminant
Analysis.

In Fig. 6.27 the performance of the best SOM classifier with 96 × 96
neurons and the reference Linear Discriminant Analysis (LDA)
method [106] is compared. It should be stressed that if no classification
is provided, all true events are considered (TPR = 1), while the initial
precision (PPV) is about 0.60, since the total number of 33.3 million coin-
cident events includes 20.0 million trues. This point is common for curves
describing both methods, and is marked with an arrow in Fig. 6.27. The
analysis of the characteristics of TPRs as functions of PPVs shows that
the SOM classifier achieves slightly better results than the reference LDA
algorithm in wide range of parameter variability. For selected threshold
of TPR = 95%, indicated with black dotted line in Fig. 6.27, the PPV is
about 0.762 and 0.777 for LDA and SOM, respectively.

As mentioned, the SOM enables visualization of high-dimensional fea-
ture space, 6-D in case of J-PET events, by creating low-dimensional 2-D
views. Fig. 6.28 illustrates the pdfs in form of images in all three event
classes. The images have the size of the optimal SOM map, i.e., 96 × 96
neurons. Higher values of intensity in images in Fig. 6.28 indicate the
areas of concentration of each class. For instance, it may be seen that
true and random events are located in different parts of the map and it
is much easier to distinguish between true and random events than true
and scattered events.

As described in section 5.1.3, the SOM map allows the events classifi-
cation based on maximal conditional probability. Hence, in each position
on the map (i, j), the class with maximal P(ck|Wij) (see Eq. (5.4)) may
be indicated. The division of the 2-D SOM map based on maximal prob-
ability P(ck|Wij) for three event classes is shown in Fig. 6.29 (left). The
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Figure 6.28. Visualization of pdfs of 3 event classes on 2-D SOM with 96 × 96 neurons.

Figure 6.29. Division of three event classes (left) and corresponding information entropy
(right) on SOM map with 96 × 96 neurons.

largest area in the center of the map is covered by the true events (blue
colour). Moreover, a specific two colour mosaic of green and red colours
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(scattered and random events) is observed at the top of the map. How-
ever, taking into account the information entropy from Fig. 6.29 (right),
the best classification conditions occur for random events marked with
red colour in Fig. 6.29 (left). In this case, most of pixels in corresponding
area in the entropy map in Fig. 6.29 (right) have values close to 0. On
the other hand, the entropy takes maximal value for pixel (i, j), where
the conditional probability P(ck|Wij) = 1/3 for each class is 1.099. The
highest values of entropy are observed on the borders between different
event types.

6.6 Image reconstruction using Total Variation
regularization

In this section the last part of high-level data processing in the J-PET
scanner, namely the image reconstruction, will be discussed. The recon-
struction method, introduced in section 5.2, is validated using the stan-
dards for medical diagnostic imaging equipment published by the NEMA,
the association of electrical equipment and medical imaging manufactur-
ers in the United States. In the view of presented studies, the most im-
portant NEMA standard is NEMA-NU-2-2012 [101], which pertains to
PET devices. This norm comprehensively defines the characteristics of
PET scanners, e.g., the spatial resolution, the image quality. The NEMA
characteristics will be delivered to both experimental and MC simulation
data. In the first step, in section 6.6.1, we provide a detailed study of
the performance and optimization of the proposed image reconstruction
algorithm using simulation data from the NEMA IEC body phantom.
Next, in sections 6.6.2 and 6.6.3 we investigate the reconstruction of the
experimental data acquired with the prototype 3-layer J-PET detector.
In particular, in section 6.6.2, we demonstrate that the proposed imag-
ing technique allows the estimation of the CRT of the prototype J-PET
system.

6.6.1 Reconstruction of NEMA IEC body phantom

Processing using simulation data allows flexibility in selection of the event
types considered in image reconstruction. As mentioned in section 6.1.3,
a total number of registered events for the NEMA IEC simulation study
equals 50.0 million coincident events and includes 20.0 million trues. Dur-
ing the investigation shown in this section, only true coincidence events
are considered in the reconstruction process and the other two types
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of events, namely scattered and random, are excluded from the event
list. Therefore, only multiplicative factors, i.e., attenuation and detec-
tor geometric sensitivity, are considered at the pre-correction step. The
attenuation correction is performed using the attenuation map used for
the GATE simulation.

Reconstructions of simulated data are performed in MATLAB 7.14.0
(R2012a) with the use of chosen procedures from the Image Processing
Toolbox. The proposed reconstruction algorithm based on TV minimiza-
tion was implemented based on the work of [61], details of this approach
are presented in section 3.2.1. The reconstructed images are represented
as 3-D matrices with the voxel size of 0.25 × 0.25 × 0.25 cm3.

The performance of the reconstruction was evaluated using two im-
age quality assessments defined in the NEMA-NU-2-2012 standard: con-
trast recovery coefficient (CRC) and background variability (BV). In the
transaxial slice through the centers of hot and cold spheres, a circular re-
gion of interest (ROI) was defined on each sphere. Twelve circular ROIs
of appropriate diameter were then defined on the phantom background.
These background ROIs were automatically replicated to four transaxial
slices ±10 mm and ±20 mm on either side of the central slice. Thus, in
total, 60 ROIs were defined on the phantom background for each sphere.
The CRC for each hot sphere with diameter d was calculated as:

CRCH = CH,d/CB,d − 1
4− 1 , (6.6)

where CH,d was the average count in the hot sphere, CB,d was the average
of the background ROI counts and 4 was the true activity ratio between
the hot spheres and the warm background. The CRC for each cold sphere
with diameter d was calculated as:

CRCC = 1− CC,d/CB,d, (6.7)

where CC,d was the average count in the cold sphere. The BV for each
sphere with diameter d was calculated as:

BV = Sd
CB,d

, (6.8)

where Sd was the standard deviation of the background ROI counts.
Additionally, a root mean square error (RMSE) between the full 3-D
reconstructed image (f̂) and the true phantom activity image (f 0) was
calculated as a global quality criterion taking into account both bias and
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variance of the reconstruction algorithms:

RMSE =

√√√√ 1
N

N∑
i=1

(
f̂i − f0

i

)2
. (6.9)

Shift-invariance violation investigation

In the first step of the analysis the influence of the θacc angle value on the
performance of the proposed algorithm was investigated. For assumed
size of cylindrical J-PET detector θmax ≈ 30.3o. Additionally, taking into
account the axial (90 mm) and transaxial (150 mm) extent of the NEMA
IEC body phantom, θmin that satisfies shift-invariance equals 15.5o [96].
θacc was changed in the range from 15o to 30o with 2.5o step. Table 6.1
lists in the second column the percentage of total counts as a function of
θacc for a total of 20.0 million true events.

Table 6.1. Performance of the proposed method for different values of θacc angle.

θacc [o] % of total min(RMSE)
15.0 63.1 0.028
17.5 74.2 0.026
20.0 83.4 0.025
22.5 90.6 0.024
25.0 95.7 0.026
27.5 98.8 0.028
30.0 100.0 0.030

Figure 6.30 compares the trends in CRC and BV of the 13-mm hot
sphere (Fig. 6.30a) and the 22-mm hot sphere (Fig. 6.30b) for three dif-
ferent θacc values: smallest one (light gray curves), highest one (dark gray
curves) and middle one (black curves). The error bars indicate standard
deviations and are estimated from the five realizations of event smearing
with assumed J-PET resolutions. The resulting curves for the remaining
four cases (see Tab. 6.1) were not shown in Fig. 6.30 for the clarity of
presentation. Each particular CRC versus BV curve was obtained after
applying different regularization parameter µ (see Eq. 5.28). More de-
tails about the influence of the parameter µ on the reconstructed image
will be discussed in the next section.

For a quantitative comparison of the results for different θacc angles, for
each CRC versus BV curve a minimal RMSE between reconstructed and
true image of activity is calculated. The resulting values of min(RMSE)
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(a) (b)

Figure 6.30. CRC versus BV in the reconstructed images of 13 mm hot sphere (a) and 22
mm hot sphere (b) computed for different θacc values.

are listed in Tab. 6.1 in third column. We observe that the best results
are obtained for the θacc = 22.5o (see black curves in Fig. 6.30 and fourth
row of Tab. 6.1). Hence, during the comparative studies presented in the
next section, we applied θacc = 22.5o. This requirement imposes that the
proposed TOF-BPTV algorithm uses 90.6% of acquired data (fourth row
of Tab. 6.1) that corresponds to about 18.1 million true events.

PET reconstruction comparative studies

To perform the comparative studies of the proposed TOF-BPTV method,
the TOF-MLEM algorithm, implemented in CASToR software [107], was
applied. CASToR offers several reconstruction algorithms for LM data as
well as several data correction techniques such as attenuation correction,
normalization and point spread function (PSF) modeling. An iterative
TOF-MLEM optimization algorithm using 60 iterations with no sub-
sets division was selected. The TOF-MLEM cost function in CASToR
software does not include any prior distribution and therefore the algo-
rithm converges to the noisy image. A few approaches can be applied to
remedy this problem and improve the quality of reconstructed images.
First possibility is to stop the reconstruction method after given num-
ber of iterations and use current image estimate as a solution. Moreover,
CASToR applies PSF filters. Our preliminary investigations showed that
spatial resolution of the J-PET scanner can be approximated with 3-D
Gaussian of 6 mm transaxial FWHM and 12 mm axial FWHM and this
kernel was applied to model a shift-invariant PSF in CASToR.
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(a) (b)

(c) (d)

Figure 6.31. CRC versus BV in the reconstructed images of 10 mm hot sphere (a), 13 mm
hot sphere (b), 17 mm hot sphere (c) and 28 mm cold sphere (d) computed for TOF-BPTV
algorithm (black curves) and TOF-MLEM algorithm (gray curves). Values of µ and iteration
number are indicated with black and gray colours, respectively.

Figure 6.31 compares the averages CRC and BV of the hot and cold
spheres for both TOF-MLEM and TOF-BPTV image reconstruction.
The error bars indicate standard deviations and are estimated from the
five realizations of event smearing with assumed J-PET resolutions. In
case of TOF-BPTV method the curves were obtained after applying var-
ious regularization parameter µ values in a range from 10 to 5000. In
case of the TOF-MLEM algorithm the curves were obtained after apply-
ing different iterations in the range from 1 to 60. In all cases shown in
Fig. 6.31, we observe the typical trade-off between the contrast (CRC)
and the noise (BV). The regularization parameter µ trades-off the TV
norm and the fidelity term (see Eq. 5.28). Small values of regulariza-
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tion parameter favor TV penalty and give less noisy images, but the
result may be smoothed with large bias. In that case both CRC and BV
have small values (see Fig. 6.31 for µ = 10 or 25). Increasing value of
µ tends to give sharper images, but noise is also amplified (both CRC
and BV increase). For each sphere the optimal µ was determined where
the CRC reached 95% of its maximum value. In all cases µ was in the
range from 200 to 300, and finally the smallest µ = 200 was selected for
further studies with TOF-BPTV algorithm. Similarly, for TOF-MLEM
algorithm, for each sphere the iteration number was extracted where the
CRC reached 95% of its maximum value. For 10-, 13-, 17- and 28-mm
spheres the 16th, 15th, 11th and 14th iterations were indicated, respec-
tively. Finally, the 15th iteration was selected for further presentations.

(a) (b)

Figure 6.32. Biases and standard deviations of the hot sources with 10 mm and 17 mm
diameter for TOF-MLEM algorithm (a) and TOF-BPTV algorithm (b).

Figure 6.32 illustrates bias in the region of the two hot spheres of 10
and 17 mm diameter and the background standard deviation values. The
bias is defined as the difference between the true and reconstructed mean
value in the ROIs. We normalized the image of true phantom activity to
the range from 0 to 1, where 0 means no radioactivity, 1 corresponds to
the hot regions and value 0.25 corresponds to the warm background (true
activity ratio between the hot spheres and the background is 4). Each
reconstructed image was normalized off-line to have the same total sum as
the true phantom activity image. It is worth to note that the background
standard deviations are approximately the same with TOF-BPTV for
selected µ = 200 (see Fig. 6.32b), while differ with TOF-MLEM for the
15th iteration (see Fig. 6.32a). The bias of the smallest source is almost
the same for both algorithms, while the bias of the 17 mm diameter



REVIEW COPY

DO NOT DISTRIBUTE

6. Results 103

sphere is smaller in case of TOF-BPTV algorithm.
In Fig. 6.33 the two exemplary images in the transaxial (top) and coro-

nal (bottom) slices through the centers of all spheres for 15th iteration
for TOF-MLEM algorithm (left) and µ = 200 for TOF-BPTV approach
(right), are shown. The RMSE between the reconstructed image and the
true phantom activity image is equal to 0.024 for TOF-BPTV method
and 0.032 for TOF-MLEM algorithm. It can be seen that the structure
of the warm phantom background differs and TOF-BPTV image (right)
exhibits less intensity variability than the TOF-MLEM image (left). In
both images the smallest hot sphere can be distinguished from the warm
phantom background.

(a) (b)

(c) (d)

Figure 6.33. Transaxial (top) and coronal (bottom) slices through the centers of spheres
inside the NEMA IEC body phantom. Images shown for 15th iteration of TOF-MLEM
algorithm (a, c) and reconstructed using TOF-BPTV algorithm with µ = 200 (b, d).
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The reduced intensity variability of the TOF-BPTV image can also be
clearly seen in the profiles through the images in transaxial slices shown
in Fig. 6.34. In case of TOF-MLEM both cold spheres, observed on 90o
and 150o in circular profile, have not reached value 0. The circular profiles
further indicate that intensities in the TOF-BPTV image in hot spheres
are more flat in comparison to the TOF-MLEM image. Therefore, despite
the fact that maximal values for two smallest hot spheres, observed on
30o and 330o in circular profile, are higher for TOF-MLEM images, the
mean values and CRCs are slightly better for TOF-BPTV algorithm.

(a) (b)

Figure 6.34. Emission density profiles through the reconstructed images in transaxial slices
of Fig. 6.33: line profile for y = 0 cm (a), circular profile over centers of all spheres for r =
5.72 cm (b).

The studies presented in this section do not cover the comparison
of computational speed of the TOF-BPTV and TOF-MLEM methods.
Since both algorithms are created with different programming languages,
namely C++ in case of TOF-MLEM (CASToR) and MATLAB in case
of TOF-BPTV, the estimate of efficiency could be only indicative. Ad-
ditionally, most of the PET reconstruction software does not support
multilayer geometry and therefore cannot be applied directly to the ex-
perimental data acquired with the 3-layer prototype J-PET detector pre-
sented in the next sections. Therefore, in order to perform the compar-
ative studies, including computational speed, of the proposed method,
we implemented the TOF-FBP algorithm in MATLAB environment.We
start the investigation of the proposed image reconstruction using exper-
imental data acquired with the 3-layer J-PET detector, with estimation
of the time resolution of the prototype system.
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6.6.2 Estimation of CRT of the prototype J-PET scanner

According to the description of the reconstruction algorithm in section 5.2,
the processing starts with deposition of the acquired set of events into the
TOF back-projected image. Given an experimental data with point-like
source placed in the center of the tomograph, the convolution opera-
tor a may be derived directly based on TOF back-projected image (see
Eq. (5.18) for details). On the other hand, the operator a holds the
information about the CRT (operator a(1) see Eq. (5.23)) and the axial
spatial resolution (operator a(3) see Eq. (5.25)). Therefore, given an ex-
perimentally derived operator a, it is possible to estimate the time and
axial spatial resolutions.

It should be stressed that the time and axial spatial resolutions are
related via linear equation [17]:

σz = vsc · σΘ (6.10)

where σz is standard deviation of Gaussian function describing uncer-
tainty of the measurement along axial position, σΘ is standard deviation
of Gaussian function describing uncertainty of the measurement of inter-
action moment, and vsc denotes the effective velocity of the light signal
inside the scintillator. Combining Eq. (6.10) with the formula for deter-
mining the CRT in Eq. (4.47), we obtain finally:

σz = (2.35
√

2)−1vsc

√
CRT2 − D2

c2 . (6.11)

The procedure of estimation of the CRT of the prototype J-PET scan-
ner with 192 scintillator strips was as follows. In the first step, the overall
data set with 70 million coincident events was TOF back-projected into
the image space. In order to compare the empirical operator a with theo-
retical model described in Eq. (5.22) only one out of six point-like sources,
located the nearest to the tomograph center, i.e., in position (0, 1, 0),
was retrieved from the data set. For this purpose, the field of view of the
J-PET scanner in all three directions was limited to 10 cm and centered
at position (0, 1, 0). The resulting image was a 3-D matrice with the
voxel size of 0.4 × 0.4 × 0.4 cm3 and was built of 25 × 25 × 25 voxels.
The overall number of events in the resulting cube was about 0.5 million.

We carried out the experiments for different theoretical models of op-
erator a with values of the CRT (operator a(1)) from 300 to 700 ps with
20 ps steps. In each case, the standard deviation σz in operator a(3) was
adjusted according to Eq. (6.11). The overall operator a was calculated
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as the 3-D image with the same size as the just mentioned empirical TOF
back-projected image. In Fig. 6.35, cross-correlation coefficient between

Figure 6.35. Correlation coefficient between the experimental back-projected image of
point source and operators a evaluated for different values of CRT.

empirical and theoretical operators a is plotted as the function of the se-
lected CRT. Cross-correlation coefficient is a similarity measure between
two images and its values are in the range from -1 to 1, where 1 corre-
sponds to fully correlated images. From Fig. 6.35 it may be seen that
highest cross-correlation value is achieved for the CRT = 520 ps and is
about 0.92. It should be stressed that the function is not symmetrical
with respect to the estimated value of correct CRT. For smaller CRT the
cross-correlation values drop down faster, while for higher CRT the func-
tion is more flat. The theoretical CRT of the prototype J-PET scanner
derived from this analysis agrees with the experimental CRT value, re-
ported to be about 500 ps [20]. The corresponding standard deviation σz
of the uncertainty of the measurement of position along the scintillator
strip is found based on Eq. (6.11) and is 1.96 cm, where the thickness
(D) of the plastic scintillator is 1.9 cm and the speed of light signals in
the scintillator (vsc) is 12.6 cm ns−1 [17].

6.6.3 Reconstruction of six point-like sources

With the estimated values of the CRT and σz of the operator a describ-
ing the prototype J-PET detector in hand, the reconstruction of the 3-D
image of six point-like sources is provided. Before the reconstruction
process, similarly as in the previous study with experimental data, de-
scribed in section 6.6.2, the total number of 70 million coincident events
was TOF back-projected into the image space. The reconstruction vol-
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ume was limited to the cube centered at position (0, 0, 0) with the size of
50 × 50 × 50 cm3, and comprising 125 × 125 × 125 voxels. The number
of coincident events in the imaging area was 11.2 million. Hence, after
limiting the field of view, 58.8 million events were classified as random
coincidences and were excluded from further analysis. Since the point-
like sources were attached to the styrofoam panel, which has low density,
the probability for scattering and attenuation on the panel was negligi-
ble. Therefore, only detector geometric sensitivity of the 3-layer J-PET
scanner was taken into account for the correction of the reconstructed
images.

The performance of the reconstruction of point-like sources was eval-
uated using the spatial resolution parameter described in the NEMA-
NU-2-2012 standard. The spatial resolution of a PET system represents
its ability to distinguish between two points after image reconstruction.
This parameter characterizes the widths of the reconstructed PSF im-
age of point-like sources. The spatial resolution of the 3-layer prototype
J-PET scanner is determined by estimation of the FWHM in the trans-
verse and axial directions of PSF images at six positions inside the de-
tector volume. At each position of the reconstructed image, a voxel with
the maximum intensity is found and the 1-D profiles along transverse
and axial directions are determined.

PET reconstruction comparative studies

As a reference reconstruction method, TOF-FBP was employed. The
TOF-FBP method was implemented in MATLAB according to the de-
scription given in [108]. Since the choice of the apodizing function is
not unique [109], during our preliminary studies we tested different fil-
ters. We observed that the best results are obtained for the Hamming
window:

W (vs) =

|vs| (1 + cos(πvs/vc)) /2 |vs| ≤ vc
0 otherwise

(6.12)

where vs is the frequency space coordinate associated with s variable
(see Eq. 5.8), and vc is the cut-off frequency which plays the role of
regularization parameter. Note that since W (vs) 6= 1, reconstruction
yields a biased estimate. It should be stressed that in case of the TOF-
FBP method, a trade-off between variance and bias in reconstructed
images is optimized by changing the vc parameter.

The two image reconstruction examples, based on the TOF-FBP al-
gorithm with regularization via apodizing functions and the proposed



REVIEW COPY

DO NOT DISTRIBUTE

108 Digital Signal and Image Processing in Jagiellonian Positron Emission Tomography

TOF-BPTV method, are shown in Fig. 6.36 on the left and right panels,
respectively. The TOF-FBP image was obtained for optimal regulariza-

(a) (b)

Figure 6.36. Sagittal slices through the centers of six point-like sources (x = 0 cm). Images
shown for vc = 1 of TOF-FBP algorithm (a), and reconstructed using TOF-BPTV algorithm
with µ = 200 (b).

tion parameter vc = 1, i.e., the parameter that minimizes the spatial
resolution. In case of the TOF-BPTV algorithm, regularization parame-
ter µ = 200 was selected according to the optimization studies presented
in section 6.6.1. It can be seen that the widths of the reconstructed
images differ and TOF-BPTV image (right) exhibits better spatial res-
olution along axial (z) direction than the TOF-FBP image (left). On
the other hand, in both images the spatial resolution along y direction is
similar. For clarity of presentation the activities of six point-like sources
in Fig. 6.36 are normalized to 1.

The estimated PSF values for 3-D reconstruction of point-sources lo-
cated in six positions for both methods: TOF-FBP (gray solid and dot-
ted line) and TOF-BPTV (black solid and dotted line) are presented in
Fig. 6.37. It may be seen that the TOF-BPTV algorithm achieved slightly
better PSF values in transverse direction (see Fig. 6.37 left panel), result-
ing in effective spatial resolution of ∼ 0.5 ÷ 0.8 cm; PSF values provided
by the TOF-FBP method are ∼ 0.7 ÷ 1.0 cm. On the other hand, the es-
timated longitudinal resolution differs significantly for both methods (see
Fig. 6.37 right panel). In this case, the TOF-BPTV algorithm provides
almost twofold reduction in the PSF values compared to the TOF-FBP
method.

In the last part of this study the computational speed of TOF-FBP
and TOF-BPTV methods will be compared. For comparison purposes,
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(a) (b)

Figure 6.37. Estimated spatial resolution (FWHM) of the 3-layer prototype J-PET scanner
calculated from experimental data, reconstructed by TOF-FBP and TOF-BPTV algorithms.

the number of coincident events from the experimental data considered
during the reconstruction process was changed from 0.4 to 10.0 million.
As in the previous studies with six point-like sources, the reconstruction
volume was 50 × 50 × 50 cm3, comprising 125 × 125 × 125 voxels. The
results of comparative studies are summarized in Fig. 6.38. Note that
the TOF-BPTV reconstruction encompasses two stages: calculation of
TOF-backprojected image (see section 5.2.2 for details) and solving of the
TV regularization problem (see section 5.2.3 for details). It should be
stressed that the evaluation time of the latter stage is independent of the
number of acquired coincident events (see black dotted line in Fig. 6.38
for details). The execution time of this stage depends on the overall num-

Figure 6.38. Comparison of the computational speed of TOF-FBP and TOF-BPTV
methods using experimental data from the 3-layer J-PET detector.
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ber of iterations required to solve the TV/L2 minimization problem. We
found empirically that the rate of convergence using different values of
regularization parameter µ is approximately the same and that seventeen
iterations are sufficient in most of the cases. On a single CPU (Intel Core
i5-5200U @ 2.20 GHz), the computing time of solving the TV/L2 prob-
lem was 133 seconds on average (see Fig. 6.38). On the other hand, the
computing time of the calculation of the TOF-backprojected image and
the overall reconstruction time of TOF-FBP image scale linearly with
the number of considered events. However, the characteristic describing
the computational speed of the TOF-FBP algorithm, marked with gray
colour, is steeper than the line obtained for TOF-BPTV method, marked
with black colour. The reason is that the TOF-backprojection stage re-
lies exclusively on calculating the positions of the events in 3-D image
space, the filtration using the operator a is performed during the lat-
ter stage. In contrast, the TOF-FBP algorithm applies three additional
kernels, i.e., along LOR and its perpendicular direction and along axial
direction, to each event [108]. From Fig. 6.38 it may be seen that the
overall computing time is the same for both methods for about 3.9 mil-
lion coincidence events. For a larger data set, the TOF-BPTV method is
more computationally efficient than the TOF-FBP reconstruction. For
instance, on the same CPU, the overall computing time for 10.0 million
coincidence events was approximately 2.1 times shorter for TOF-BPTV
method than required by TOF-FBP reconstruction, i.e., in the first case
the time was 195 s and in the second case was 408 s on average.

It should be stressed that the computing time of the TOF-BPTV
method strongly depends on the operator a size. During preliminary
studies an investigation for the potential introduction of error due to
truncation on different distances from the center of the kernel a along
(x, y, z) directions, from 2.0σ to 4.0σ, was performed. Our tests revealed
that 3.0σ seemed to be the optimal option for balance between quality
degradation and acceleration of the reconstruction process. This value
was used throughout the studies described in this work.
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The J-PET collaboration brings together scientists from different disci-
plines in order to develop a more affordable whole-body PET scanner.
The application of the plastic scintillators entails the desing of unique
detector geometry, dedicated electronics and reconstruction algorithms.
Studies presented in this dissertation cover the analysis of the data pro-
cessing in the J-PET scanner.

The operational principles of the J-PET scanner are similar to state-
of-the-art PET detectors, except that the extremely precise time infor-
mation is of paramount importance. In the J-PET, the time resolution
influences not only the uncertainty of position reconstruction along the
LOR, as in case of the conventional PET systems, but also has an impact
on the uncertainty of position reconstruction along the scintillator strip.
Therefore, the J-PET detector requires a development of novel methods
at each step of data processing. The problem of data processing has been
split into two separate parts in order to distinguish the low-level signal
recovery and reconstruction from the high-level image processing. The
goal of the low-level data processing is an evaluation of the information
about each event of positron-electron annihilation based on the raw sig-
nals acquired during the PET examination. This information includes
the estimated values of position and time of annihilation and deposited
energy by two γ photons in the scintillators. In the next stage, denoted in
this work as high-level data processing, the list of reconstructed events of
positron-electron annihilations is subjected to further analysis with the
primary goal of estimating the radioactive tracer distribution after injec-
tion into the patient’s body. Main achievements related to both stages
of data processing in the J-PET tomography are shortly summarized in
the next two sections.

7.1 Summary of low-level data processing

In this dissertation a novel scheme of signal recovery in plastic scintilla-
tors in the J-PET scanner was introduced. The idea of signal recovery
is based on the Tikhonov regularization theory, which uses the training
data set of signals. The compact representation of these signals was pro-
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vided by the PCA decomposition. One of the most important aspects
of this part of research is the statistical analysis of the error level of
recovered signals. The dependence of the signal recovery error on the
number of samples taken in the voltage domain was determined and it
has been proven that an average recovery error is approximately inversely
proportional to the number of samples acquired in the voltage domain.
It was shown that the PCA decomposition offers high levels of informa-
tion compression and an accurate recovery may be provided with just
eight samples for each signal waveform. It should be underlined that the
developed recovery scheme is general and may be incorporated in any
other investigation where prior knowledge about the signals of interest
may be utilized.

In the experimental section, it was demonstrated that using the recov-
ered signals improves the hit-position reconstruction. The experiments
with the data set of signals from a single plastic scintillator strip show
that the application of information from four voltage levels to the recov-
ery of the signal waveform can improve the spatial resolution along the
strip to about 0.94 cm. This result is about 0.1 cm better in comparison
to the one estimated based on the eight samples per signal alone. It is
worth noting that using more than four voltage levels does not provide
significant improvements of spatial resolution. Future work will address
development of more sophisticated methods to define the position and
time of interaction of γ photon in the scintillator based on the recovered
signal waveform. We believe that with fully recovered signals, there is
still scope for improvement in the time and position resolution of the
J-PET system.

Moreover, in this dissertation we introduced a new method for esti-
mating the CRT of the J-PET detector. The basic idea of the prediction
of time resolution is the use of the statistical nature of the acquisition
process of the electric signals. The acqusition of the signals at the pho-
tomultipliers output is preceded by three main statistical phenomena:
the emission of light photons in the scintillation material, the propaga-
tion of light pulses along the strip, and transition of the photoelectrons
through the photomultiplier. One of the most important aspect of this
part of work concerns the statistical analysis of a reconstruction error of
the probability density function based on the set of single photoelectron
signals. The dependences of the overall variance and bias on the number
and width (standard deviation) of the single photoelectron signals were
evaluated. The proposed estimation method was validated using the MC
simulation and it was shown that the obtained results are consistent.
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Furthermore, the developed estimation scheme was demonstrated to be
more accurate than the approach described in literature. It should be
stressed that the proposed method is general and may be incorporated
elsewhere.

It was demonstrated that the CRT obtained with the experimental
scheme with vacuum tube photomultipliers, reported to about 275 ps,
was very similar to the calculations with the proposed method which
results in time resolution of about 290 ps. The consistency of the experi-
mental and theoretical results obtained for the J-PET detector equipped
with vacuum tube photomultipliers suggests that the estimated CRTs for
other photomultipliers are reliable. This aspect is of fundamental impor-
tance, as the accurate simulation tools are very useful for the design of
expensive devices such as the PET systems; in case of the J-PET scanner
the most expensive part of the system are the photomultipliers. Future
work will investigate other aspects of the signal acquisition process by
using the proposed statistical model, e.g., the influence of the parameters
describing the distribution of the photon emission time on the CRT. This
task is of main importance, since our group has developed a novel type of
plastic scintillator, similar to BC-420 used in this study, and provided the
examinations of the influence of the chemical composition of the plastic
scintillator on the overall performance of the J-PET system [110–112].

7.2 Summary of high-level data processing

In this dissertation a 3-dimensional image reconstruction algorithm ded-
icated for the TOF-PET scanners was introduced. The method takes
advantage of the TOF information, and the reconstruction problem is for-
mulated entirely in the image space, i.e., it includes TOF back-projected
data. This idea allowed us to convert the reconstruction problem of
the image to a regularization problem and, consequently, more advanced
techniques such as the TV method could be applied. In contrast to a
more traditional application of the TV regularization for PET data in
the projection space, the efficiency of our approach comes from the one-
time TOF back-projection step. The simulation study demonstrated that
the proposed reconstruction algorithm was faster than the TOF-FBP for
typical size of the data set with more than 4 million coincidence events.
Simultaneously, it was shown that the proposed method can perform
better in PET imaging than the TOF-MLEM algorithm.

The proposed approach requires the calculation of the kernel operator
(a( #»x )) of the linear transform mapping an original radioactive tracer dis-
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tribution into a TOF back-projected image. In this dissertation, it was
shown that the function a( #»x ) may be approximated as the convolution of
the three distributions describing the measurement imperfections: time
measurement errors related to TOF resolution, non-zero size of the scin-
tillator in (x, y) cross-section, and measurement errors along the strip.
The operator a( #»x ) was derived for a spatially invariant system based on
a point source placed in the center of the PET detector. Future work
will address an incorporation of the shift variance technique in the im-
age reconstruction process. Since the TV optimization in image space
is very efficient it is advisable to incorporate the shift variance by eval-
uation of a set of operators a( #»x , #»xp) for set of point sources #»xp placed
inside the detector volume. The operators a( #»x , #»xp) may be simulated
only for points #»xp in 2-dimensional space, i.e., for point sources along the
radial and axial directions, assuming that two points with the same axial
and radial distance to the detector center share the same kernel a( #»x , #»xp)
after rotation in the transaxial plane. The regularization problem may
be then modified so that for each operator a( #»x , #»xp) a small sub-image
centered at position #»xp could be calculated independently. The final out-
put image could be reconstructed as a weighted sum of the overlapping
sub-images. This approach will require specifications of both spacing of
the point sources #»xp and percentage of the sub-images overlapping. This
topic is related to existing work on non-stationary image PSF and on
TOF spatial inhomogeneity [113] and will be investigated during further
studies. We believe that the incorporation of the shift variance technique
in the image reconstruction process will further improve the performance
of the proposed method.
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A. Appendix

A.1 Derivation of error resulting from signal
recovery procedure

In the following we prove the theorem for average value of the recovery
error (σ2

x) introduced in section 4.2, in Eq. (4.20). We assume, for the
sake of simplicity, that the matrix A, transforming the sparse expantion
x into the signal y, has normally distributed elements with zero means
and 1/N variances.These values of the parameters of normal distribution
ensure that the matrix A is orthonormal.Hence, based on Eq. (4.17), the
covariance matrix Sr is given by:

Sr =
(
P−1 + σ2M

N
1

)−1
(A.1)

where M is the number of acquired samples, N is the number of samples
in complete signal, σ is standard deviation of noise in signal and P de-
notes the covariance matrix of a prior distribution of sparse expantion x.
The σ2

x is equal to the trace of the matrix Sr and hence:

σ2
x =

N∑
k=1

σ2NPk,k
σ2N +MPk,k

= σ2N2

M

(
1− σ2

N∑
k=1

1
σ2N +MPk,k

)
. (A.2)

The sum in the last term in Eq. (A.2) may be approximated by a definite
integral. In the following we will use for the calculations a basic rectangle
rule, and:

N∑
k=1

1
σ2N +MPk,k

≈
∫ N+h

1−h

1
σ2N +MP (k)dk = I (A.3)

where h = 1/2. At the very beginning, see Eq. (4.19), we assumed that
the function P (k) has the form:

P (k) = D · e−τk. (A.4)



REVIEW COPY

DO NOT DISTRIBUTE

116 Digital Signal and Image Processing in Jagiellonian Positron Emission Tomography

We will perform the integration using the substitution t = e−τk. Without
any significant loss of precision, we change the integration limits from
[1 − h, N + h] to [0, N ]. The calculations of the integral I will be as
follows:

I =
∫ 1

e−τN

1
(σ2N +MDt) τtdt

=
∫ 1

e−τN

1
σ2Nτt

dt−
∫ 1

e−τN

MD

σ2Nτ (σ2N +MDt)dt

= 1
σ2Nτ

(
log(t)|1e−τN − log(σ2N +MDt)|1e−τN

)
≈ 1
σ2Nτ

(
Nτ + log

(
σ2N

σ2N +MD

))
. (A.5)

Finally, substituting the integral I in Eq. (A.5) into formula in Eq. (A.2),
gives the average value of the recovery error:

σ2
x ≈

σ2N2

M

(
1− σ2I

)
≈ σ2N

Mτ
· log

(
σ2N +MD

σ2N

)
.

A.2 Derivation of error resulting from limited
number of photoelectrons

As mentioned in section 4.4.1, the function ỹk, describing the kth sig-
nal from a single photoelectron is assumed to be a Gaussian function
with standard deviation σp. The function ỹk, given in Eq. (4.37), may be
approximated with:

ỹk(n) ≈


β√

(2π)Npσp

(
1− (t(n)−tkr )2

λ2σ2
p

)
tkr ∈ (t(n) − λσp, t(n) + λσp)

0 otherwise
(A.6)

where tkr is a random variable with ftr distribution, which denotes the
kth photon’s registration time, λ contributes to the signal width and
n = 1, 2, ..., N. The probability that the random variable ỹk(n) is equal to
the specified value may be calculated based on the previously introduced
function Φ

Φ(t(n), λσp) = Ftr(t(n) + λσp)− Ftr(t(n) − λσp), n = 1, 2, ..., N,
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see Eq. (4.46). In particular, the probability that the random variable
ỹk(n) = 0 is equal to 1−Φ(t(n), λσp); the kth registration time tkr is out of
range (t(n) − λσp, t(n) + λσp), see the second case in Eq. (A.6). Denoting
the first case in Eq. (A.6) with uk :

uk(n) = β√
(2π)Npσp

(
1− (t(n) − tkr)2

λ2σ2
p

)
, n = 1, 2, ..., N, (A.7)

we may write that for n = 1, 2, ..., N, the expected value of ỹk(n) is equal:
E[ỹk(n)] = E[uk(n)]Φ(t(n), λσp) + E[0](1− Φ(t(n), λσp))

= E[uk(n)]Φ(t(n), λσp), (A.8)
and the variance of ỹk(n) is equal:

Var(ỹk(n)) =E[(uk(n)− E[uk(n)])2]Φ(t(n), λσp)+
E[(0− E[uk(n)])2](1− Φ(t(n), λσp))

=Var(ũk(n))Φ(t(n), λσp) + E[uk(n)]2(1− Φ(t(n), λσp)).
(A.9)

In order to simplify the further calculations the following assumption is
proposed. Note that in most interesting cases the range (t(n)−λσp, t(n) +
λσp), is narrow in comparison to the estimated pdf function ftr domain.
Therefore, the pdf function ftr is considered to be uniform in the range
(t(n) − λσp, t(n) + λσp) :

ftr(ε) ' const. ε ∈ (t(n) − λσp, t(n) + λσp). (A.10)
It is worth noting that the smaller the ratio of the single to overall signal
width is, the better is the performance of the proposed approximation
method.

Under the assumption in Eq. (A.10), required moments in Eqs. (A.8)
and (A.9), E[uk(n)], E[uk(n)]2 and Var(ũk(n)), can be easily derived.
After some simple calculations the equations for the expected value and
the variance of the random variable ỹk(n) are given by formulas1:

E(ỹ(n)) ≈ β
2Φ(t(n), λσp)

3
√

2πσp
,

Var(ỹ(n)) ≈ β2 9Φ(t(n), λσp) + 8Φ2(t(n), λσp)− 16Φ3(t(n), λσp)
36πNpσ2

p

,

for n = 1, 2, ..., N .

1 L. Raczyński et al., Calculation of the time resolution of the J-PET tomograph using kernel
density estimation, Phys. Med. Biol. 62 (2017) 5095.
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A.3 Derivation of convolution operator a

In the following we will show a derivation of pdfs a(1), a(2), a(3) describing
the operator a mapping an original radioactive tracer distribution into a
TOF back-projected image.

The proposed image reconstruction method was introduced in sec-
tion 5.2. The functions a(1), a(2), a(3) describe the pds of measurement
errors #»ε1,

#»ε2,
#»ε3, respectively. In most cases it is convenient to model the

error distributions in projection space, and pδ(k) describes the pdf of pro-
jection data of a point source δ( #»x ) affected with errors introduced only
by kth components in Eq. (5.20).

A.3.1 Calculation of operator a(1)

As described in section 5.2.2 we assume that the #»ε1 depends only on
time uncertainties (tu,e, td,e). Therefore, the pdf of projection data pδ(1)
considers only the TOF variable and according to Eq. (5.8):

pδ(1)(
#»Σ) =

∫ ∞
−∞

dl′δ( #»x = l′ # »ω1)h(l − l′) = h(l # »ω1) (A.11)

where function h describes the TOF profile. The back-projection of the
projection data pδ(1) onto the image space is given as:

a(1)( #»x ) = (K#pδ(1))( #»x ) =
∫ θacc

0
dθ
∫ π

0
dφ
∫ ∞
−∞

dlh(l # »ω1). (A.12)

It is convenient to convert the spherical coordinates in the above integral
to Cartesian coordinates #»u = (u, v, w). The equations to convert between
Cartesian and spherical coordinates are:

l =
√
u2 + v2 + w2

φ = arctan
(
u

v

)
θ = arccos

(
w√

u2 + v2 + w2

)
.

The transformation between coordinate systems is given by:

dldφdθ =

∣∣∣∣∣∣∣
dl
du

dl
dv

dl
dw

dφ
du

dφ
dv

dφ
dw

dθ
du

dθ
dv

dθ
dw

∣∣∣∣∣∣∣ dudvdw = d #»u

‖ #»u‖
√
u2 + v2
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and finally:
a(1)( #»x ) = κ1

h(‖ #»x‖)C( #»x , θacc)
‖ #»x‖
√
x2 + y2

where κ1 stands for the normalization constant and the function C( #»x , θacc)
is defined as:

C( #»x , θacc) =

1 z
‖ #»x ‖ ≤ cos θacc

0 otherwise.
(A.13)

The function C( #»x , θacc) originates from the integration limit θacc of the θ
angle in Eq. (A.12).

A.3.2 Calculation of operator a(2)

As described in section 5.2.2 the #»ε2 depends only on transaxial uncertain-
ties (xu,e, yu,e, xd,e, yd,e). Therefore, the pdf of projection data pδ(2) may
be described as:

pδ(2)(
#»Σ) =

∫ ∞
−∞

dl′δ( #»x = l′ # »ω2
⊥)h2(l − l′) = h2(l # »ω2

⊥) (A.14)

where the profile function h2(l) has a triangle distribution:

h2(l) =


2D−4|l|
D2 |l| ≤ D

2
0 otherwise

(A.15)

where D is the thickness of the plastic scintillator. The function h2(l)
originates from the fact that the depth of interaction is unknown and
we assume the midpoint of the strip as the measured position in (x, y)
cross-section (see estimates xd,e, xu,e in Fig. 5.2).

The back-projection of the projection data pδ(2) onto the image space
is given as:

a(2)( #»x ) = (K#pδ(2))( #»x ) =
∫ θacc

0
dθ
∫ π

0
dφ
∫ ∞
−∞

dlh2(l # »ω2
⊥)

=
∫ π

0
dφ
∫ ∞
−∞

dlh2(l # »ω2
⊥) (A.16)

and does not depend on the θ angle. It is convenient to convert the polar
coordinates in the above integral to Cartesian coordinates.The equations
to convert between Cartesian and polar coordinates are:

l =
√
u2 + v2

φ = arctan
(
u

v

)
.
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The transformation between coordinate systems is:

dldφ =
∣∣∣∣∣ dldu dl

dv
dφ
du

dφ
dv

∣∣∣∣∣ dudv = dudv√
u2 + v2

and finally:

a(2)( #»x ) = κ2
h2(
√
x2 + y2)√
x2 + y2

where κ2 stands for the normalization constant.

A.3.3 Calculation of operator a(3)

As described in section 5.2.2 the #»ε3 depends only on axial uncertainties
(zu,e, zd,e). In this case the calculations do not involve the analysis of pdf
of errors in projection space. Note that:

#»ε3 = zd,e + zu,e
2 (A.17)

and under the assumption that the uncertainty of the measurement of
axial positions zu,e, zd,e are a Gaussian function with standard deviation
σz that does not depend on the position along the strip, the pdf a(3) is
given as:

a(3)( #»x ) = 1√
πσz

exp
(
− z

σ2
z

)
. (A.18)
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Dissertation of Lech Raczyński is devoted to the presentation of data processing 
algorithms in the Jagiellonian PET (J-PET) scanner. The work describes original 
and inventive methods of signal and image reconstruction. I consider their de-
velopment a great achievement due to the complex methodology of determining 
the position in the J-PET scanner based on measurement of the light pulses pro-
pagation time in long plastic scintillators. The author applies modern methods of 
data processing, like compressive sensing theory and total variation regularization 
technique. For their evaluation both experimental and simulation data of the J-PET 
scanner were used. This work is an important contribution to the field of PET. The 
presented results are crucial to the success of the J-PET project.
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