
Faculty of Physics, Astronomy and Applied Computer Science

Sławomir Konrad Tadeja
album number: 1019735

Application of 3D computer graphics techniques used
in video games for Monte Carlo calculations

of multi-particle transport code

Magister’s Thesis
Major: Applied Computer Science (general)

Supervised by
Prof. dr hab. Paweł Moskal

Marian Smoluchowski Institute of Physics
Nuclear Physics Division

Kraków, 2016

version corrected on 18.07.2016 and 26.02.2018

Oświadczenie autora pracy

Świadom odpowiedzialności prawnej oświadczam, że niniejsza praca
dyplomowa została napisana przeze mnie samodzielnie i nie zawiera
treści uzyskanych w sposób niezgodny z obowiązującymi przepisami.

Oświadczam również, że przedstawiona praca nie była wcześniej przed-
miotem procedur związanych z uzyskaniem tytułu zawodowego w wyż-
szej uczelni.

Kraków, dnia Podpis autora pracy

Oświadczenie kierującego pracą

Potwierdzam, że niniejsza praca została przygotowana pod moim kie-
runkiem i kwalifikuje się do przedstawienia jej w postępowaniu o nada-
nie tytułu zawodowego.

Kraków, dnia Podpis kierującego pracą

Podziękowania

Chciałbym wyrazić najgłębsze podziękowania wobec mojego promotora prof. dr-a hab.
Pawła Moskala, który otworzył przede mną drzwi do świata nauki. Dziekuje mu również
za jego cierpliwośc oraz bycie moim przewodnikiem w trakcie pisania tej pracy. Jestem
bardzo wdzięcznym moim kolegom: dr. Michałowi Silarskiemu, mgr Dominice Hunik oraz
mgr. Michałowi Smolisowi, z którymi miałem przyjemność pracować przy projekcie SA-
BAT - ta praca nie mogłaby powstać bez Was. Niektóre części tej pracy zostały napisane
podczas mojego stażu w Europejskiej Agencji Kosmicznej (ESA). Chciałbym podziękowac
mojemu mentorowi panu Quirienowi Wijnandsowi oraz panu Robertowi Blommestijnowi,
za to, że dzięki nim mogłem pracowac w tak stymulującym środowisku. Chciałbym również
podziękować paniom mgr Annie Czeluśniak i Ewie Łanoszce z Sekretariatu Dydaktycznego
oraz kierownikowi studiów, panu dr. hab. Pawłowi Górze, za wszelką pomoc okazaną mi
na przestrzeni lat. Na końcu, chciałbym podziękować moim rodzicom, którzy nieustat-
nie mnie wspierali w trakcie mojej edukacyjnej przygody. Zawsze okazywali mi wsparcie,
nieważne jak błędne podejmowałem decyzje.

Acknowledgements

I would like to express my deepest gratitude toward my supervisor, Prof. Dr Hab. Paweł
Moskal for introducing me to the world of science at the academic level. I would also like
to thank him for his patients and guidance. I am grateful to my colleagues: Dr Michał
Silarski, Mgr Dominika Hunik and Mgr Michał Smolis, with whom I had the pleasure to
work in the SABAT Collaboration - this work could not have been accomplished without
all of you. Some parts of this work were developed during my traineeship period at the
European Space Agency (ESA). I would like to thank my mentor Mr. Quirien Wijnands
for his tutorship and Mr. Robert Blommestijn for allowing me to work in such stimulating
environment. I would also like to thank Mgr Anna Czeluśniak and Ewa Łanoszka from
the Didactic Secretariat and to the course coordinator, dr hab. Paweł Góra, for all the
help and enthusiasm that I received from them over the years. Last but not least, I would
like to thank my parents, who encourage me throughout my educational endeavours. No
matter how wrong I was in my decisions, they always supported me.

”Thank goodness we don’t have only serious
problems, but ridiculous ones as well.”
— E. Dijkstra, A Letter to My Old Friend Jonathan

Streszczenie

Materiały niebezpieczne, takie jak: narkotyki, broń biologiczna czy materiały
wybuchowe, posiadają bardzo charakterystyczny skład chemiczny. Są zbudowane
głównie z węgla, azotu, tlenu i wodoru. Ta specyficzna budowa czyni jest bardzo
podatnymi na wykrycie przy użyciu nowej metody detekcji zwanej atometrią, która
pozwala na nieinwazyjną analizę chemiczną dowolnej substancji w czasie rzeczy-
wistym. Technologia ta opiera się na badaniu stechiometrycznym danego obiektu
przy użyciu wiązek neutronów.

Grupa eksperymentu SABAT (Stoichiometry Analysis by Activation Techni-
ques), złożona z doświadczonych naukowców i studentów, prowadzi na Uniwersy-
tecie Jagiellońskim badania nad tymi nowatorskimi, bazującymi na atometrii, sys-
temami detekcji zagrożeń chemicznych. Aby wspomóc tę pracę został opracowany
i zaimplementowany pakiet symulacyjny, który umożliwia bardzo dokładne mode-
lowanie emisji neutronów, stanowiących podstawę opisanej powyżej metody. Z po-
wodu skomplikowania i znacznej złożoności obliczeniowej rzeczonej symulacji wiele
technik optymalizujących zużycie zasobów komputerowych musi zostać wykorzy-
stane. Jedną z możliwości jest zastosowanie technologii zaczerpniętych z dziedziny
grafiki komputerowej i gier video m.in śledzenia promieni (ang. ray tracing) oraz
implementacji specjalistycznych struktur danych, takich jak drzewa k-wymiarowe
(ang. k-d trees). W poniższej pracy zostanie omówiona motywacja stojąca za wy-
borem w/w algorytmów i technologii, jak również ich adaptacja na potrzeby rze-
czonego pakietu symulacyjnego.

Abstract

Hazardous materials such us drugs, biological weapons and explosives posses a
very distinctive chemical composition. They consist mainly from carbon, nitrogen,
oxygen and hydrogen elements. This unique characteristics makes them an ideal
target for the novel detection method called atometry, which allows non-invasive,
real-time, chemical analysis of any kind of substance. The basis of this technology
is stoichiometry analysis of a given object conducted with the neutron beams.

The StoichiometryAnalysis byActivationTechniques (SABAT) Collaboration
is a team of experienced scientists and students from the Jagiellonian University,
working on these novel, atometry-based, systems for chemical threat detection. To
support this research, a sophisticated Monte Carlo simulation package was devel-
oped to model in detail the neutron emissions. Due to the computational complexity
of this simulation, plenty of optimization techniques needs to be used. One of them
is an application of the technologies borrowed from the field of computer graph-
ics and video games, such as the ray tracing or the specialized acceleration data
structures such as the k-d trees. This thesis will describe the motivation behind
the selection of this particular algorithms and data structures, and also the direct
application of them in the simulation package.

Contents

1 Introduction 1
1.1 Principle of Atometry . 1
1.2 Stoichiometry Analysis by Activation Techniques 1
1.3 Contents of the Chapters . 3

1.3.1 Main Content . 3
1.3.2 Appendix A . 3

2 Existing Transport Codes 4
2.1 Geant4 . 4
2.2 FLUKA . 4
2.3 MARS . 4

3 Scene Representation 5
3.1 Basic 3D Geometry Concepts and Implementation 5

3.1.1 Point in R3 . 5
3.1.2 Vector in R3 . 6
3.1.3 Line in R3 . 7
3.1.4 Plane in R3 . 7

3.2 Polygon Meshes . 9
3.2.1 Convex Polygon . 9
3.2.2 Triangle Mesh . 9

3.3 Constructive Solid Geometry . 10
3.4 Space Partitioning Data Structures . 10

3.4.1 Bounding Volumes . 10
3.4.2 K-D Tree . 11

3.5 Geometry Input File . 14
3.6 Geometry Visual Validation Tool . 15

4 Particle Tracking 19
4.1 Non-Flexible Solution . 19
4.2 Ray Tracing Algorithm . 22

4.2.1 Möller–Trumbore intersection algorithm 23
4.3 Non-Flexible and Ray Tracing Solutions Comparison 24

5 SABAT Simulation Package 25
5.1 Coding Style . 25

5.1.1 Comparison of the Floating-Point Numbers 25
5.1.2 Used Constants and Calculation Precision 25
5.1.3 Coding Style Guideline and the Coding Conventions 26
5.1.4 Commenting Style: Doxygen . 28

5.2 Obtaining and Installation . 28
5.2.1 Obtaining the SABAT package 28

5.2.2 Installation of the SABAT Package 29
5.2.3 Output Data Format . 30

5.3 Source Code Testing . 30
5.4 Software Profiling . 31

6 Example of the SABAT Package Applications 36
6.1 Underwater Threat Detection System 36
6.2 Background Study . 37

7 Summary and Perspectives 39
7.1 Findings and Conclusions . 39
7.2 Ideas for Further Research . 39

A SABAT Database 41
A.1 Description of the Selected Data Storage 41

A.1.1 SQLite . 41
A.1.2 Database Schema . 42

A.2 SQLite Database C++ Wrapper . 43

B DVD with the SABAT package source code and documentation 49

Listings 50

List of Figures 51

Bibliography 54

Chapter 1

Introduction

1.1 Principle of Atometry

Hazardous materials such us drugs (e.g. cocaine: C17H21NO4), biological weapons
and explosives (e.g. TNT: C7H5N3O6) posses a very distinctive chemical composition.
They consist mainly from carbon, hydrogen, nitrogen and oxygen elements.

substance stoichiometric formula ratio C:H:N:O
Trinitrotoluene (TNT) C7H5N3O6 1.2 : 0.8 : 0.5 : 1

Hexogen (RDX) C3H6N6O6 0.5 : 1 : 1 : 1
Nitroglycerine C3H5N3O9 0.33 : 0.56 : 0.33 : 1

Cocaine C17H21NO4 4.25 : 5.25 : 0.25 : 1
Heroine C21H23NO5 4.2 : 4.6 : 0.2 : 1

Amphetamine C9H21NO4 4.25 : 5.25 : 0.25 : 1

Table 1.1: Molecular content of few selected hazardous substances
(table adopted from [5]).

This unique characteristics makes them an ideal target for the novel detection method
called atometry, which allows non-invasive, real-time, chemical analysis of any kind of
substance. The basis of this technology is stoichiometry analysis of a given object con-
ducted with the neutron beams. Neutrons penetrating tested substance causes excita-
tion of the atomic nuclei to the higher energy states. These nuclei emit gamma quanta
when they return to the ground state. The energy of each quantum is characteristic for
the type of the element, thus it can be used to detect relative content of the different
elements’ atoms in the irradiated substance [3, 6, 9].

1.2 Stoichiometry Analysis by Activation Techniques

The Stoichiometry Analysis by Activation Techniques (SABAT) Collaboration is
a team of experienced scientists and students from the Jagiellonian University, work-
ing on these novel, atometry-based, systems for chemical threat detection. To support
this research, a sophisticated Monte Carlo simulation package was developed to model
in detail the neutron emissions. Modern neutron generators are able to emit about
0.6 × 1011 neutrons per second [8]. During the simulation all of these particles have

1

Figure 1.1: Scheme of the neutron interaction with nucleus of a given substance
(diagram adopted from [2]).

to be tracked separately. Moreover, neutrons can interact with the matter’s nuclei in
several processes which may include neutron capture or inelastic and elastic scatter-
ing, et cetera [5]. This makes the entire simulation very resource- & time consuming.
Furthermore, all the secondary particles such as gamma quanta are also being tracked.
Due to computational complexity, plenty of optimization techniques needs to be used.
There are mainly two approaches used for the purpose of speeding up the simulation
execution time. Both of them have certain trade-offs.

First one relies on the hardware environment in which the simulation is running.
Improving it may require additional resources such as the new memory chips or new,
more powerful central processing unit (CPU), or even exchanging of the whole hardware
system, what can be very costly. The second optimization method can be done at the
software level. It can be achieved either with the help of multi-threading technologies
or by the minimalization in the number of the needed computations. Multi-threading
is currently supported by almost all computer platforms, however it still requires third-
party libraries, which makes it platform-dependent. Another software-level solution is
an application of the technologies borrowed from the field of computer graphics and
video games, such as the ray tracing or the specialized acceleration data structures
such as the k-d trees. This thesis describes the motivation behind the selection of this
particular algorithms and data structures, and also the direct application of them in
the SABAT simulation package.

2

1.3 Contents of the Chapters

1.3.1 Main Content

The second chapter will briefly describe three most widely used particle transport
code packages, including FLUKA, MARS and Geant4. This information is provided to
present the difference in terms of the geometry/simulation scene description used by
all of them and the one supported by the SABAT package.

The third chapter will very briefly describe basic mathematical concepts, tools and
numerical methods, that are needed for understanding of the atometry Monte Carlo
simulation. These building blocks are later used to develop the simulation 3D scene.
Furthermore, an introduction to the algorithms and technologies from the field of com-
puter graphics and video games such as the polygon meshes will be given. Third chapter
contains also description of the specialized acceleration data structures, such as the k-d
trees and the bounding boxes.

The fourth chapter describes the particle tracking algorithm and discusses advan-
tages and disadvantages of the two approaches: the non-flexible solution and the more
sophisticated one, based on the ray tracing technique. Moreover, the Möller–Trumbore
intersection algorithm will be presented as an example of the ray tracing implementa-
tion.

The fifth chapter will describe the SABAT simulation package including adapted
coding style conventions for the purpose to maintain the source code readability. Fur-
thermore, this chapter will include installation instruction of the SABAT framework in
the Ubuntu 12.04.5 LTS (Precise Pangolin) operating system.

The sixth chapter will present and briefly discuss some of the results obtained with the
SABAT package. An example of the simulation performed for the purpose of underwater
threat detection system will be given.

The seventh and final chapter will describe achieved results, findings and conclusions
with regards to application of the 3D computer graphics techniques used in the video
games for the Monte Carlo calculations of multi-particle transport code. It will also
present ideas for further research, that could not be covered due to the scope of this
thesis and the time constraints.

1.3.2 Appendix A

Additionally, appendix A contains description of the SQLite database engine used to
store the data crucial for the simulation. Furthermore, it outlines the reasons behind
the selection of these particular Relational Database Management System (RDBMS).
Appendix A provides insides to the C++ wrapper that was written for the purpose
of speeding up the execution of the database queries, and to ease up dealing with the
retrieved results.

3

Chapter 2

Existing Transport Codes

Quite a few particle transport code packages exists. They were developed throughout
the years, mostly within the nuclear physics scientific community. In this chapter a brief
description of the three most widely used such packages will be given. Only aspects
relevant for this thesis are mentioned.

2.1 Geant4

Geant4 is one of the most widely used, multi-particle transport code packages. Its
application spans over fields such as space exploration, high-energy, nuclear and medical
physics. Geant4 is able to handle large, complex geometries defined with the help of
boolean operations, Constructed Solid Geometry (CSG) and tessellated solids. The
package is also capable to deal with ”moving objects” [12, 13].

2.2 FLUKA

FLUKA is a Monte Carlo simulation package for calculations of particle trajectories
and interactions with matter. FLUKA is able to simulate around 60 different particles.
Combinatorial Geometry (CG) is defined by two fundamental concepts: bodies, and
regions which are Boolean combination of bodies. Each region has to have the same
material compositions. FLUKA Fortran source code is written and maintained by the
team of scientists from the European Organization for Nuclear Research (CERN) and
from the Istituto Nazionale di Fisica Nucleare (INFN) [10, 11].

2.3 MARS

MARS Code System is another, Monte Carlo based, particle transport code package.
Simulated particles are tracked throughout user defined simple or complex geometry.
MARS models scene use so called zones which are contiguous array of volumes, that
can have any shape. Additionally, MARS recognize geometry description generated by
FLUKA. More detail reading can be found in the official manual [14].

4

Chapter 3

Scene Representation

3.1 Basic 3D Geometry Concepts and Implementation

This chapter will very briefly describe basic mathematical concepts and tools, that
are needed for understanding of the SABAT Monte Carlo simulation. These building
blocks will be later use to develop a model of the objects in physical universe and for
modelling of the interactions between them using numerical methods implemented with
the help of C++ programming language. More mathematical details can be found in a
number of publications on analytical geometry, such as [17]. Some operations such as
the calculation of a line-plane intersection or finding of the distance between a point
and a plane were implemented using formulas found in references [17, 18, 19].

3.1.1 Point in R3

Cartesian coordinate system specifies each point uniquely in the R3 by an ordered
triplet of signed numerical coordinates P = (x, y, z). This components are the positions
of the perpendicular projections of the point onto the three mutually perpendicular
planes.

Figure 3.1: Point in R3 (diagram adapted from [15]).

Given two points P1 = (x1, y1, z1) and P2 = (x2, y2, z2), the distance between them
can be calculated using Pythagorean Theorem [17]:

|P1P2| =
√

∆x2 + ∆y2 + ∆z2 =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2 (3.1)

5

All the basics operations with regards to the points in R3 where implemented in the
class Point3D with an additional operation Point3D::Translate() (List. 3.1), which
adds two points summing up their coordinates accordingly. This method is later on used
by the kd-tree to find the middle point of all triangles based on theirs centroids. The
C++ source code of this class is kept in two files: the /Geometry3D/geo point 3d.h
which contains the class declaration and the /Geometry3D/geo point 3d.cpp with its
definition.

Listing 3.1: Declaration of the Point3D::Translate() method.
1 void Point3D :: Translate(Point3D& point) {
2 this ->x_ += point.x_;
3 this ->y_ += point.y_;
4 this ->z_ += point.z_;
5 }

3.1.2 Vector in R3

An Euclidean vector in R3, is an ordered triplet of numbers, denoted as a letter
with an arrow −→v = 〈x, y, z〉 and has direction and length (magnitude). Vector can be
thought of as an displacement of point P1 = (x1, y1, z1) to point P2 = (x2, y2, z2) and
marked as

−−−→
P1P2 = 〈(x2− x1), (y2− y1), (z2− z1)〉 where P1 is an initial point and P2 is

a terminal point. Vectors can be added and subtracted according to the vector algebra.
Length of the vector can be obtained using formula: ‖−→v ‖ =

√
x2 + y2 + z2. If s is a

scalar and −→v = 〈x, y, z〉, then −→v s = 〈sx, sy, sz〉 and
−→v
s = 〈xs ,

y
s ,
z
s 〉 [17, 19].

The standard basis for R3 is a set of three specific, so called unit vectors -
−→
i =

〈1, 0, 0〉, −→j = 〈0, 1, 0〉,
−→
k = 〈0, 0, 1〉 - pointing in the direction of the axes of the

Cartesian coordinate system. Any vector in R3 can be expressed as a linear combination
of these three vectors [17].

Figure 3.2: The Standard Basis for R3 (diagram adapted from [16]) under the GFDL).

Additionally we can define two operations on vectors: the dot product and the cross
product. Dot product of two vectors −→v1 and −→v2 is defined as Eq. 3.2:

−→v1 · −→v2 = ‖−→v1‖‖−→v2‖ cosφ = x1x2 + y1y2 + z1z2 (3.2)

6

where φ is an angle between the vectors [17]. Cross product of two (linearly independent)
vectors −→v1 = x1

−→
i + y1

−→
j + z1

−→
k and −→v2 = x2

−→
i + y2

−→
j + z2

−→
k is a vector perpendicular

to both of them defined as [17]:

−→v1 ×−→v2 = ‖−→v1‖‖−→v2‖ sin (φ)−→n = (y1z2 − z1y2)
−→
i + (x1z2 − z1x2)

−→
j + (x1y2 − y1x2)

−→
k

= 〈(y1z2 − z1y2), (x1z2 − z1x2), (x1y2 − y1x2)〉
(3.3)

where φ is an angle between the vectors and −→n is a unit vector perpendicular to the
plane spanned over the −→v1 and −→v2 vectors with the direction provided by the right-hand
rule. If −→v1 ×−→v2 = 0, then −→v1 and −→v2 are parallel to each other. All the basics operations
with regards to the vectors in R3 where implemented in the class Vector3D. The
C++ source code of this class is kept in two files: the /Geometry3D/geo vector 3d.h
which contains the class declaration and the /Geometry3D/geo vector 3d.cpp with
its definition.

3.1.3 Line in R3

The line in the 3D space can be described with the help of its direction vector and a
point lying on the line. The line parallel to the vector −→v =< xv, yv, zv > that is passing
trough the point P = (x0, y0, z0) has a parametric equation [17]:

x = x0 + txv

y = y0 + tyv

z = z0 + tzv

−∞ < t < +∞

(3.4)

t =
x− xo
xv

=
y − yo
yv

=
z − zo
zv

(3.5)

where the last equation Eq. 3.5 is the symmetric form of Eq. 3.4 and t−→v describes the
distance from the P = (x0, y0, z0) [17]. In case of the line passing trough two points
P0 = (x0, y0, z0) and P1 = (x1, y1, z1) the parametric equations looks as follows [19]:

x = x0 + t(x1 − x0)
y = y0 + t(y1 − y0)
z = z0 + t(z1 − z0)
−∞ < t < +∞

(3.6)

−→v =< vx, vy, vz >=< x1 − x0, y1 − y0, z1 − z0 > (3.7)

The above equations were implemented in the class Line3D. The C++ source code
of this class is kept in two files: the /Geometry3D/geo line 3d.h which contains the
class declaration and the /Geometry3D/geo line 3d.cpp with contains its definition.

3.1.4 Plane in R3

The plane in R3 with its normal vector −→n =< A,B,C > has a following general
form:

Ax+By + Cz +D = 0. (3.8)

7

The plane can be also described with the help of the three non-collinear points
P0 = (x0, y0, z0), P1 = (x1, y1, z1), P2 = (x2, y2, z2) lying on it [17]:

−→r =
−−−→
P1P0 =< x1 − x0, y1 − y0, z1 − z0 >

−→s =
−−−→
P2P0 =< x2 − x0, y2 − y0, z2 − z0 >

−→n = −→r ×−→s =< xn, yn, zn >=< A,B,C >

D = −(Ax0 +By0 + Cz0)

(3.9)

or in a similar way with the help of three vectors −→v0 =< x0, y0, z0 >, −→v1 =< x1, y1, z1 >,
−→v2 =< x2, y2, z2 > using a following equations [17]:

−→r = −→v1 −−→v0 =< x1 − x0, y1 − y0, z1 − z0 >
−→s = −→v2 −−→v0 =< x2 − x0, y2 − y0, z2 − z0 >
−→n = −→r ×−→s =< xn, yn, zn >=< A,B,C >

D = −(Ax0 +By0 + Cz0)

(3.10)

To make the values of the −→n components smaller the vector can be normalized using
the Eq. 3.11:

−→n
‖−→n ‖

=
< xn, yn, zn >√
x2n + y2n + z2n

=
< A,B,C >√
A2 +B2 + C2

(3.11)

The distance l between any given point P = (x, y, z) and the plane described as
Ax+By+Cz +D = 0 can be calculated with the help of Eq. 3.12 [18]. The point lies
on the plane ⇔ l = 0.

l =
|Ax+By + Cz +D|√

A2 +B2 + C2
(3.12)

The point Pi = (xi, yi, zi) of intersection between a line with the direction vector
−→v =< xv, yv, zv > and passing trough point P0 = (x0, y0, z0) and a plane with the
normal vector −→n =< xn, yn, zn > can be calculated as follows [18, 19]:

t =
D −Ax0 −By0 − Cz0

−→n · −→v
=
D −Ax0 −By0 − Cz0
Axv +Byv + Czv

(3.13)

xi = x0 + txv

yi = y0 + tyv

zi = z0 + tzv

(3.14)

The correctness of the calculations can be verified by checking if the distance l between
the point Pi = (xi, yi, zi) and the plane (Eq. 3.12) is equal to zero l = 0 or by checking
if the dot product of the line direction vector and the plane normal is different than
zero −→v · −→n 6= 0 [19].

The above equations were implemented in the class Plane3D. The C++ source code
of this class is kept in two files: the /Geometry3D/geo plane 3d.h which contains
the class declaration and in the file /Geometry3D/geo plane 3d.cpp with contains its
definition.

8

3.2 Polygon Meshes

3.2.1 Convex Polygon

A convex polygon is a two-dimensional, not self-intersecting figure in which all of
the interior angles are ¬ 180◦. Every such polygon can be triangulated, which means
it can be divided into a set of non-overlapping triangles [25]. In the case of the SABAT
package the triangulation is done automatically when the description of the 3D objects
from which the simulation scene is constructed of are read from the XML file.

3.2.2 Triangle Mesh

One of the simplest example of the 3D polygon meshes is the mesh that uses triangles
to describe the faces (i.e. triangle mesh).

Figure 3.3: An example of a triangle mesh (adapted from [22]).

Due to the small number of possible 3D objects that can be used in the SABAT
package, there can be at most three triangles meeting in a single vertex. Also, no special
data structure for the mesh storage was implemented. The informations are kept on the
different description layers. For instance, the 3D object (e.g. Cuboid3D) can be build
from a six rectangular faces (Rectangle3D). Each of these rectangles is constructed
from two non-overlapping triangles 4ABC and 4CDA (Triangle3D). Fig. 3.4 presents
the typical elements from which the mesh can be build from. Other example can be
found in Fig. 4.5. Furthermore, the 3D plots of the generated meshes used during the
simulations can be found in Fig. 3.9 and in Fig. 3.10.

Figure 3.4: Mesh modelling overview (adapted from [21] under the WP:CC BY-SA).

9

3.3 Constructive Solid Geometry

In the CSG a more complex object or a surface is build with the help of a set
of basic 3D objects and shapes such as, for instance, cubids, spheres, tubes or cons
that are joined together using Boolean logical operators for sets: intersection, union,
difference [25]. This method is used in the FLUKA software [10].

Figure 3.5: Binary tree of a CSG object constructed with the help of two union ∪,
single intersection ∩ and a single difference − operations

(adapted from [20] under the WP:CC BY-SA).

3.4 Space Partitioning Data Structures

There are two main data structures used in the scene partitioning algorithms: kd-
trees (short for the k-dimensional tree) and the bounding volumes. In this chapter, a
short description of both of them will be given. If the space partitioning data structure
is correctly balanced, the time complexity can be on average logarithmic O(log2(n))
and O(3

√
n) in the worst case scenario, where n is the number of rays [25]. The SABAT

package uses a mixture of both structures listed above.

3.4.1 Bounding Volumes

A bounding volume for a collection of 3D objects is another object containing the
entire collection completely within itself. If the ray cannot intersect with the bounding
volume it is also not possible for the ray to interact with any of the items surrounded
by it [25]. The bounding volume can take any shape such as, for example, a pyramid
or cone. However, due to the computational cost associated with the computing of it
and the necessary update calculations in case the object surrounded by the bounding
volume changes or moves, the most widely used are shapes of axis-aligned bounding
box (cuboid) and sphere [25]. Fig. 3.6 shows a bounding box containing a single triangle
with its centroid C given by Eq. 3.15:

C = (
∑3
i=1 xi
3

,

∑3
i=1 yi
3

,

∑3
i=1 zi
3

) (3.15)

10

Figure 3.6: Rectangular cuboid (hexahedron) as a bounding box with all facets
parallel to the origin axes surrounding a triangle with its centroid.

3.4.2 K-D Tree

A k-d tree, or in case of the SABAT package 3-d tree since the simulation take place in
the R3, is a binary search tree of which every node cuts space into two subspaces using
a plane parallel to one of the origin axes [25]. The computational cost of generating
the tree is high; insert operation can have linear time complexity for the worst case
scenario O(n) with an average O(log n). This yields O(n log(n)) on average for the
construction of the tree. However, the scene used by the SABAT software is static,
thus the tree has to be build only once at the beginning of the simulation. There is a
few ways for selection of the splitting position. Implemented method is based on the
spatial median splitting. The subdivision of the space stops when certain threshold is
reached by the number of triangles in the single node [25]. The implementation used
in the SABAT is largely based on the code from [26] and it was developed during the
author’s traineeship period with the ESA.

The particle tracking with the k-d tree will not be efficient for the scene with many
objects contained completely within other object. For instance, in the case of the
scene/A2.xml geometry shown in Fig. 3.9 all the detector parts and the irradiated
substance are immersed in the biggest object containing sea water (the black hexahe-
dron). The tree nodes contain many overlapping triangles, and since we need to calculate
points in & out (i.e. the points in which the particle would enter and leave the object if
it would go straight trough it without any physical interaction), intersections with all
of the remaining triangles that belong to a single figure and can be stored in a differ-
ent leafs have to be checked either way. Thus the use of the k-d tree is not beneficial,
especially since the building of the tree requires some initial computation in the first
place. Tables Tab. 3.1 and Tab. 3.3 shows overall times of the package execution as a
function of the number of initially emitted neutrons for the geometries scene/G2.xml
and scene/H2.xml, respectively. Assuming that the measured time follows the Poisson
probability distribution the average time needed to simulate a single neutron can be
found in Tab. 3.2 and Tab. 3.4 for the scenes scene/G2.xml and scene/H2.xml, re-

11

spectively. The constant time required to build the data structure has no direct impact
on the comparison since the tree was build in all of the cases, but in some of them it
was not used in the tracking.

sample size 100 1000 10000
kd-tree 46.66 [s] 454.29 [s] 4283.98 [s]
without kd-tree 47.35 [s] 444.27 [s] 4364.31 [s]

Table 3.1: Overall execution times with and without the k-d tree used for tracking
(scene/G2.xml).

sample size 100 1000 10000
kd-tree 0.47± 0.07 [s] 0.45± 0.02 [s] 0.43± 0.01 [s]
without kd-tree 0.47± 0.07 [s] 0.44± 0.02 [s] 0.44± 0.01 [s]

Table 3.2: Average time of a single neutron simulation with and without the k-d tree
(scene/G2.xml).

sample size 100 1000 10000
kd-tree 1.58 [s] 14.96 [s] 136.08 [s]
without kd-tree 5.02 [s] 33.03 [s] 320.48 [s]

Table 3.3: Overall execution times with and without the k-d tree used for tracking
(scene/H2.xml).

sample size 100 1000 10000
kd-tree 0.02± 0.01 [s] 0.15± 0.01 [s] 0.14± 0.01 [s]
without kd-tree 0.05± 0.02 [s] 0.33± 0.01 [s] 0.32± 0.01 [s]

Table 3.4: Average time of a single neutron simulation with and without the k-d tree
(scene/H2.xml).

If the constant time needed to build the tree for a given scene is neglected, than
the average time needed to simulate a single neutron is almost the same for tracking
algorithm with and without the k-d tree implemented. Fig. 3.7 shows the geometry of
the scene/G2.xml scene and Fig. 3.8 shows the scene/H2.xml scene.

Tables 3.3 and 3.4 contains data generated with the scene scene/H2.xml which is
similar to the scene/G2.xml. The only difference is that the black cuboid containing
sea water was removed thus the vacuum space was created and the remaining objects
are no longer contained within another object. This lead to a different depth and split
of triangles in the k-d tree (i.e. removal of triangles belonging to the object with whom
most of the particle’s trajectories would intersect with) which in turn cut the average
execution time roughly by half. The statistical uncertainty is very high for the small
sample size (n = 100), therefore there are high fluctuations in the first columns of all
the tables. Unfortunately, this type of the scene is not used in the simulations performed
for the SABAT experiment where the background due to the neutron interactions with
water has to be carefully studied. However, the k-d tree can be used for the purpose of
geometry testing and in the experiments where the background can be neglected.

12

Figure 3.7: The left hand figure shows the scene/G2.xml geometry in which the detector
contour is magenta, the neutron guide is green, the γ guide is red, the hazardous
substance (sulphur mustard) is blue, the sea bottom is cyan and the whole setup is
immersed in the sea water marked with the black contour. The figure of the right
presents the k-d tree build on top of this scene’s triangle mesh with the blue bounding
boxes (i.e. subspaces). Both of the figures were generated with the geo check.py script
presented in the Sec. 3.6.

Figure 3.8: The left hand figure shows the scene/H2.xml geometry in which the detec-
tor contour is magenta, the neutron guide is green, the γ guide is red, the hazardous
substance (sulphur mustard) is blue and the sea bottom is cyan. The only difference be-
tween this scene and the scene/G2.xml is the sea water removal. The figure of the right
presents the k-d tree build on top of this scene’s triangle mesh with the blue bounding
boxes (i.e. subspaces). Both of the figures were generated with the geo check.py script
presented in the Sec. 3.6.

13

3.5 Geometry Input File

In the earliest versions of the SABAT package, the geometry description has to be
hard-coded into the C++ source code. In the current software version (June 2016), the
scene has to be defined in an input file. The XML structure (i.e. tags) of this file and
the portion of the code responsible for the geometry readout and parsing was written
by Michał Smolis. The details of the scene description XML will be discussed to give
a holistic view of the whole geometry handling within the SABAT software. List. 3.2
show partial description of the possible scene kept in the scene/A2.xml file. Some parts
were removed for clarity, however, every object within the scene is declared in exactly
the same way, thus all the other 3D shapes can be defined accordingly.

Listing 3.2: Part of the geometry description XML file: scene/A2.xml.
1 <?xml version="1.0" encoding="utf -8"?>
2
3 <PARAMETERS >
4 <NEUTRON_BUNCH_COUNT >1</NEUTRON_BUNCH_COUNT >
5 <NEUTRON_BUNCH_SIZE >100</NEUTRON_BUNCH_SIZE >
6 <SCENE> <!-- scene A2 -->
7 <!-- sulfur mustard -->
8 <OBJECT detector="0">
9 <SHAPE sorted="0">
10 -97, -150, 22.5, 97, -150, 22.5,
11 97, -100, 22.5, -97, -100, 22.5,
12 -97, -150, -22.5, 97, -150, -22.5,
13 97, -100, -22.5, -97, -100, -22.5
14 </SHAPE>
15 <SUBSTANCE density="1.2" type="MOST_ABUNDANT">
16 <COMPOUND formula="(ClCH2CH2)2S" fraction="1"/>
17 </SUBSTANCE >
18 </OBJECT >
19
20 <!-- edited -->
21
22 <!-- detector air tube -->
23 <OBJECT detector="0">
24 <SHAPE sorted="1">
25 20, -100, -20, 20, -100, 20,
26 83, -49, -20, 83, -49, 20,
27 20, -70, -20, 20, -70, 20,
28 69, -35, -20, 69, -35, 20
29 </SHAPE>
30 <SUBSTANCE density="0.0012" type="MOST_ABUNDANT">
31 <COMPOUND formula="N2" fraction="0.7547"/>
32 <COMPOUND formula="O2" fraction="0.232"/>
33 </SUBSTANCE >
34 </OBJECT >
35
36 <!-- edited -->
37
38 </SCENE>
39 </PARAMETERS >

The description of the XML input file will be given with regards to the above listing
(List. 3.2). First, all of the scene description has to be contained between the overall
<PARAMETERS></PARAMETERS> tags. The tags from the lines 4 and 5 specifies the number
of neutrons emitted from the source and they have to be provided as an integer numbers.
If these values are not given the simulation run is going to fail with an error message.
They can be placed everywhere within the parameters, but it is worth to note that
the XML structure is strictly hierarchical, so, for instance, they cannot be kept within
the <SCENE></SCENE> tags which are describing the scene’s geometry (i.e. all the 3D
objects within the scene). This hierarchy is clearly visible on the XML example.

14

Each object has to be specified within the <OBJECT detector="0"></OBJECT> tags.
Attribute detector if set to 1 marks the object as a detector, thus it will be treated
differently in the simulation. There has to be at least one object specified on the scene
or the simulation run is going to fail with an error message. Every object is defined by
the two things, its chemical composition and 3D shape/volume. The object’s chem-
ical compositions has to be provided between the <SUBSTANCE></SUBSTANCE> tags
and it is given by the substance density, type and the list of compounds from which
the substance is composed of with their overall fraction. The substance has to have
at least one compound specified with the <COMPOUND></COMPOUND> tags. The <SHAPE
sorted="1"><SHAPE> tags contains the list of eight vertices of the only available 3D
shape (e.g. Fig. 4.5). The software is able to automatically sort the vertices using the
selection sort algorithm (O(n2)) if they are constructing cuboid that has all of its faces
axis-aligned. If the objects has a different shape, the attribute sorted should be marked
as 1 and the vertices should be listed in the order given below. Each of the four points
should be a face (quadrilateral) of the object. Fig. 4.3 and Fig. 4.5 give the correct
vertices number labelling.

1 3 7 5
0 2 6 4
0 1 5 4
3 2 6 7
5 7 6 4
1 3 2 0

Once the changes were made to the XML file, the SABAT source code has to be
re-compiled and re-run on one or multiple processes. Details of how to do it can be
found at Subsec. 5.2.2.

3.6 Geometry Visual Validation Tool

The simulation scene used by the SABAT software can be build from many 3D objects
such as cubes (Fig. 4.3) or truncated pyramids (Fig. 4.5). Furthermore, the package
does not have any GUI so each of the objects has to be specified independently with all
its vertices listed in the XML input file. The scene is also static i.e. it cannot be altered
during the simulation execution. The latter allows to visually inspect the scene descrip-
tion prior to the complex, time consuming software run. Thus, the visual validation can
potentially save a lot of time and computing power spent on the simulation that would
most likely produce wrong results. For these reasons a Python script was written. This
script uses Matplotlib library [27] to generate an interactive 3D environment in which
the 3D object can be rotated with the help of the computer mouse. Moreover, the plot
can be exported to a number of formats such as PNG, JPEG or SVG. An example of
the output obtained with this script can be found in Fig. 3.9. The first version of this
software was implemented during author’s stay at the ESA.

The script invoked without parameters will plot the generated mesh, hence the sim-
ulation has to be executed first to generate the script input file mesh.txt with the
triangle mesh description.

Listing 3.3: Triangle mesh plotting.
1 $ python geo_check.py

15

To visualize the scene geometry, the script has to be executed with the additional
command line arguments: a flag --geo and a path to the XML file with the geometry
description.

Listing 3.4: Geometry visualization.
1 $ python geo_check.py --geo scenes/SCENE_FILE.xml

Figure 3.9: The figure on the left side shows the scene geometry extracted directly
from the XML file scenes/A2.xml. On the right hand side is the triangle mesh gen-
erated at the beginning of the simulation. Both of the figures were generated with the
geo check.py script.

Figure 3.10: The figure on the left side shows the scene geometry extracted directly
from the XML file scenes/C2.xml, which is the version of the geometry shown on the
previous Fig. 3.9 without the γ quanta guides. On the right hand side is the triangle
mesh generated at the beginning of the simulation. Both of the figures were generated
with the geo check.py script.

16

The output data generated with the SABAT executable (./Atometry) is initially
stored in two temporary files Subsec. 5.2.3. This data includes entrances with the
position (e.g. point in R3) in which the particle was generated (via the emitter in case of
neutron or in the reaction in case of γ quanta) or place where the given particle changed
its trajectory due to the certain process (i.e. in elastic or inelastic scattering). Since the
particles are distinguishable by their ID, once the data is aggregated (Subsec. 5.2.3)
the entire particle flying path can be tracked and plotted in the form of the sharply
curve. Next listing List. 3.5 shows the arguments that has to be passed to the script in
order to plot the total flying path of the selected particle within the given geometry.

Listing 3.5: Visualization of the particle flying path.
1 $ python geo_check.py --geo scenes/SCENE_FILE.xml --track PARTICLE_ID

Figure 3.11: The thick orange curved line is a trajectory of the neutron passing through
the scene/A2.xml scene. As it was expected, neutron path was quickly ended in the
sea water. Every change in direction marks the place of the particle interaction with
matter. The small green triangle marks the place of neutron emission and the red one
the point of its disappearance (e.g. if the particle’s energy falls down below certain
threshold) or where neutron was captured by some nucleus (Fig. 4.1).

To print in terminal the list of all the possible execution arguments, the script has
to be executed with the option --help or in short version -h.

Listing 3.6: Visualization script output.
1 $ python geo_check.py --help
2 Script plots the geometry directly from the XML file ,
3 or the mesh from the mesh.txt file generated during the
4 Atometry execution , or plots trajectory of a particle
5 within the given geometry (XML file).
6 Script requires:
7 Python 2.7.x, (2, 7, x)
8 Matplotlib , version 1.1.1rc
9 NumPy , version 1.8.0
10
11 Usage: python geo_check.py [option] [long option]

17

12 Option:
13 -h
14 -u
15 -m
16 Long option:
17 --help
18 --usage
19 --man
20 --geo [path/SCENE.xml]
21 --geo [path/SCENE.xml] --track [particle_id]
22 --list

The script also allows to find the particles which took part in the highest/lowest
number of reactions by using an additional command --list.

Listing 3.7: Visualization script output.
1 $ python geo_check.py --list
2 gamma particles:
3 [ID] [entrances]
4 maximum [1783] [22]
5 minimum [5035] [1]
6 neutron particles:
7 [ID] [entrances]
8 maximum [3111] [53]
9 minimum [3077] [2]

18

Chapter 4

Particle Tracking

3D particle tracking is the calculation of the trajectory of a single particle within
certain 3D scene. This scene is build from a solid objects and a space between them.
Every object and the space possess certain volume, shape and chemical composition (or
contains vacuum). In this description, subatomic particle is essentially, a mathematical
point in 3D Cartesian space (x, y, z) that have a certain characteristic i.e. type (e.g.
photon, electron), position, mass, energy and momentum.

To find the point within the object where the reaction occurred (e.g. the neutron
interaction with matter) or if at all, the three key elements are required:

1. The particle’s trajectory within the given object.

(a) The point in which the particle would enter the object (point in).

(b) The point in which the particle would leave the object if it would go straight
trough it without any physical interaction (point out).

(c) The line determined by the two points in & out used in the calculations of
the possible reaction point.

2. The physical characteristic of the particle (e.g. type, position, mass, energy, mo-
mentum etc.) with its current position within the simulation scene (x, y, z).

3. The chemical composition (compound) of which the object was made from with
its chemical characteristic used in the calculations of the possible reaction point.

All the steps presented above are written with assumption that it was determined in
the earlier simulation stage, that the particle will hit the given object. The description
of the two latter points is not within the scope of this thesis, thus it is not going to cover
more that it is absolutely necessarily. Their details can be found in the publications [6]
and in Fig. 4.1 and Fig. 4.2 on the next page.

4.1 Non-Flexible Solution

Every object in the scene is modelled as a 3D primitive (solid) object. No two objects
can occupy the same space. The 3D scene of the simulation is static, which means that
the geometry and the beam center point has to be defined before the simulations starts.
Also the information regarding compound from which the object is build has to be
predefined and available in the database. In the current version of the software (June
2016) the object and scene description has to be provided in the form of the XML file.

19

Figure 4.1: Neutron tracking algorithm used (diagram adapted from [6]).

Figure 4.2: Neutron reaction place (diagram adapted from [6]).

20

In the first implementation of the SABAT package only one, single type of the prim-
itive was available: the cuboid (hexahedron) implemented in the class Cuboid3D. The
C++ source code of this class is kept in two files: the /Geometry3D/geo cuboid 3d.h
which contains the class declaration and the /Geometry3D/geo cuboid 3d.cpp with
its definition. All the faces of the cuboid had to be parallel to the coordinate axes.
Each of such an objects is uniquely determined by its vertices (3D points), so only the
information about them is stored in the computer memory. These vertices should be
given in correct order, so the program can determine which ones belongs to the correct
faces. Fig. 4.3 shows the correct ordering in which the vertices should be listed in the
XML config file. These vertices are also used to determine the equations of the planes
on which the cuboid sides lies upon.

Figure 4.3: An example of the cuboid (left side) and the cube (right side) with the
required vertices ordering listed (adapted from [23]).

The points of intersection between the given line (ray) and the cuboid was calculated
in the two simple steps:

1. Check if the line is intersecting with any of the six planes given by the faces of
the cuboid.

(a) Iterate over all the planes.

(b) If the line intersects with the plane calculate the point of intersection.

2. Check if the point lies inside of the rectangle given by the subset of coordinates
of its vertices.

In the second step, since all the rectangle’s edges are parallel to the origin axes,
the check if the point is inside 2D figure becomes trivial. The older method used in
the earlier versions of the SABAT package shown in the List. 4.1 is based on a simple
coordinate range checks.

Listing 4.1: Method of determination if the point is inside of the rectangle: range check.
1 bool Rectangle3D :: IsPointInside(const Point3D& P, const int i) const {
2 // i argument is a number of the planes on which the cuboid faces lay upon.
3 switch (i) {
4 case 0:
5 case 1:
6 // plane XY
7 if(fcmp(P.x_,A_.x_,EPSILON) != -1 && fcmp(P.x_,C_.x_ ,EPSILON) != 1) {
8 if(fcmp(P.y_ ,A_.y_,EPSILON) != -1 && fcmp(P.y_,C_.y_ ,EPSILON) != 1) {
9 return true;
10 } else return false;
11 } else return false;
12 case 2:
13 case 3:

21

14 // plane YZ
15 if(fcmp(P.y_,A_.y_,EPSILON) != -1 && fcmp(P.y_,C_.y_ ,EPSILON) != 1) {
16 if(fcmp(P.z_,A_.z_,EPSILON) != -1 && fcmp(P.z_,C_.z_ ,EPSILON) != 1) {
17 return true;
18 } else return false;
19 } else return false;
20 case 4:
21 case 5:
22 // plane XZ
23 if(fcmp(P.x_,A_.x_,EPSILON) != -1 && fcmp(P.x_,C_.x_ ,EPSILON) != 1) {
24 if(fcmp(P.z_,A_.z_,EPSILON) != -1 && fcmp(P.z_,C_.z_ ,EPSILON) != 1) {
25 return true;
26 } else return false;
27 } else return false;
28 }
29 }

It is possible that the method used to determine the points of ray-cuboid intersection
described above will return more than just two points of intersection (hits) between
the line and the cuboid. If the intersection occurs in the cuboid vertex, there would
be a three identical points of intersection calculated since there is at most three planes
adjacent in the vertex. If the intersection take place on the cuboid edge, there would
be a two identical points of intersection determined. There maybe be more points of
intersection found if two vertices or edges would be hit. Some of these special cases may
arise due to the calculation precision. There is an eight possibilities in total presented
in Tab. 4.1.

hits description
0 no intersections occurred
1 single intersection with one side of the cuboid (1 point)
2 exactly two intersection points: in & out
3 a vertex of the cuboid was hit (3 identical points), or

an edge was hit (2 identical points) and a one, single plane (1 point)
4 two edges were hit (2 sets of a 2 identical points), or

a vertex was hit (3 identical points) and a one, single plane (1 point)
5 a vertex was hit (3 identical points) and a one, single edge was hit

(2 identical points)
6 two vertices were hit (2 sets of a 3 identical points)

Table 4.1: The eight possibilities of the line-plane intersection calculation outcome.

In the newest version of the SABAT package distributed with this thesis, the cuboid
differs from the original one due to the application of the ray-tracing algorithm for the
line-object intersection check. The details of this new approach are shown in the next
chapter. A similar kind of an object is also used to generate the bounding boxes in the
Sec. 3.4.1.

4.2 Ray Tracing Algorithm

Ray tracing algorithm is a rendering technique used in 3D computer graphics for
simulation of the optical effects. Algorithm casts rays onto the scene through the image
pixels and tracks the reflected light [25]. The method is described by the Fig. 4.4. Ray
tracing algorithm on itself is very computationally demanding since all the rays have to
be traced independently. However, the amount of calculations can be vastly minimalize

22

by combination with other techniques such as the acceleration data structures like the
kd-trees. Moreover, use of the parallel and distributed processing can be greatly beneficial
for improving the speed of the calculations [9].

Figure 4.4: The ray tracing algorithm extends rays from the light source into a scene
(diagram adapted from [33] under the GFDL).

4.2.1 Möller–Trumbore intersection algorithm

The main goal of using this method are correctness, speed of calculations in the terms
of complexity and the flexibility in the 3D object shape. Thus, the parts of the code
responsible for the calculation of the ray reflection angle were omitted, since they are not
used in later simulation’s steps. The original C code of this method can be found here
[34]. The implementation shown in the List. 4.2 is heavily based on the code from [35]
under the WP:CC BY-SA license. Since in the further calculations, the coordinates of
the intersection point are needed, the method seems to be lacking of its most important
advantage which was the relatively low complexity of the original method described by
Möller and Trumbore [34]. However, the 3D simulation scene remains static, hence the
calculations of the plane equation on which the triangle lies are made only once at the
beginning of the simulation. One additional step of finding the point in which the ray is
crossing the plane is needed (List. 4.2:26). Also, the centroid (Eq. 3.15) of each triangle
has to be calculated only once.

Listing 4.2: Method Triangle3D::IsIntersecting().
1 bool Triangle3D :: IsIntersecting(const Line3D& line ,
2 Point3D& intersec) const {
3
4 Vector3D P = (line.direction_vector_).CrossProduct(vecCB_);
5 ATDouble det = P.DotProduct(vecAB_);
6
7 if (fcmp(det , 0.0, EPSILON) == 0) return false;
8 ATDouble invDet = 1 / det;
9
10 Vector3D T(line.P_, B_);
11 ATDouble u = T.DotProduct(P) * invDet;
12 // The intersection lies outside of the triangle.
13 if (fcmp(u, 0.0, EPSILON) == -1 ||
14 fcmp(u, 1.0, EPSILON) == 1) return false;
15

23

16 // Prepare to test the v parameter.
17 Vector3D Q = T.CrossProduct(vecAB_);
18 ATDouble v = Q.DotProduct(line.direction_vector_) * invDet;
19 // The intersection lies outside of the triangle.
20 if (fcmp(v, 0.0, EPSILON) == -1 ||
21 fcmp(u + v, 1.0, EPSILON) == 1) return false;
22
23 ATDouble t = vecCB_.DotProduct(Q) * invDet;
24 if (fcmp(t, 0.0, EPSILON) != 0) {
25 return plane_.IsIntersecting(line , intersec , t);
26 }
27
28 return false;
29 }

4.3 Non-Flexible and Ray Tracing Solutions Comparison

The cuboid is made from eight vertices and the six rectangular faces. By the definition
all of the adjacent faces should remain perpendicular to each other. The non-flexible
solution requires four fcmp() function calls and a calculation of the line-plane inter-
section for each of the six cuboid faces. The ray-tracing solution requires six fcmp()
function calls, a calculation of the line-plane intersection and three DotProduct() and
two CrossProduct() operations for two triangles (i.e.4ABC and4CDA) for each of the
six cuboid faces. It is clearly visible that the latter needs much more calculations than
the former. However, the main strength given by the the Möller–Trumbore intersection
algorithm is the possibility to use of a new type of a 3D objects. For instance, the sim-
ulation scene could be described with the help of the cuboid rotated to any orientation
in the 3D space, the rhombohedron or any other 3D figure that has eight vertices and
six faces. An example of such figure, the truncated pyramid, with the correct vertices
listing order, can be found in Fig. 4.5. This approach was easiest to implement and test,
since only the code of the class Rectangle3D had to be alter. All the other layers of code
on top of it (e.g. parts responsible for the input handling and the scene description,
etc.) remained unchanged. In the future there will be pure virtual base class Shape3D
added, after which all the other shapes will be inheriting. A skeleton of this class is
already included in the SABAT package.

Figure 4.5: Truncated square pyramid (adapted from [24] under the GFDL). The figure
on the left have the vertices listed in the order of an input required for the package. The
figure on the right shows the triangles 4ABC and 4CDA that will be extracted from
one of the faces (quadrangular figure) of the pyramid. The strict and correct order of
the 3D figure vertices is needed so the automatically generated mesh triangles will not
overlap with each other.

24

Chapter 5

SABAT Simulation Package

The SABAT package is a simulation software developed by one of the teams working
within the Prof. Paweł Moskal Research Group [1] at the Jagiellonian University. The
very first version of this software was designed and implemented by Michał Smolis and
by the author of this thesis, during the Summer School at the M. Smoluchowski Insitute
of Physics in July 2012. The School was organized and supervised by prof. dr hab.
Paweł Moskal. The current version of the software (June 2016) is somewhat limited,
and can be mostly use to study the neutrons interactions with matter. The reason
behind this, is the package’s main purpose: the Monte Carlo simulation of the novel
neutron-based method for chemical threat detection. The software is under ongoing
development and improvements in both of the key area: information technology and
physics. The latter includes, for instance, the new types of possible reactions. The first
one, consists of the implementation and testing of a new approaches to the particle
tracking (e.g. ray-tracing and kd-trees), data storage (SQL query optimization), GUI
and the parallel & distributed computing [9].

5.1 Coding Style

5.1.1 Comparison of the Floating-Point Numbers

Across the entire SABAT source code, the fcmp() function has been used to compare
two floating-point values. The fcmp package implements the Kunth’s idea for more
faultless floating-point comparison. The latest release of this code provided by T. C.
Belding can be found here [30]. The fcmp() function takes exactly three arguments:
first two are the values to be compared (x1 & x2 respectively) and the third one is to
specify comparison precision (epislon). As typical for C-like code, the functions returns:

fcmp() =

−1 if x1 < x2

0 if x1 = x2

1 if x1 > x2

(5.1)

Listing 5.1: The fcmp() function header.
1 int fcmp(double x1, double x2 , double epsilon);

5.1.2 Used Constants and Calculation Precision

Throughout the code some constant values such as EPSILON, EPSILON 5, DOUBLE PI
and PI, were used. They were put into a single header file geo consts 3d.h. Ad-
ditionally, this file contains also the definition of the type ATDobule and the value

25

AT INFINITY which marks the infinity. All the real numbers in the SABAT source code
are declared to be of the ATDobule data type.

Listing 5.2: Global constant values used in the SABAT simulation package.
1 #ifndef GEO_CONSTS_3D_H
2 #define GEO_CONSTS_3D_H
3
4 #include <limits >
5
6 namespace {
7 // A floating point range for all the calculations.
8 typedef long double ATDouble;
9
10 const ATDouble EPSILON = 0.0000000001; // 10^ -10
11 const ATDouble EPSILON_5 = 0.00001; // 10^-5
12
13 // Each of the below values has a 25 digits after the decimal point.
14 const ATDouble PI = 3.141592653589793238462643;
15 const ATDouble DOUBLE_PI = 6.283185307179586476925287;
16 const ATDouble HALF_PI = 1.570796326794896619231321;
17
18 // Marks the "infinity" value in the system.
19 const ATDouble AT_INFINITY = std:: numeric_limits <long double >::max();
20 }
21
22 #endif // GEO_CONSTS_3D_H

5.1.3 Coding Style Guideline and the Coding Conventions

Source code of the SABAT package currently (June 2016) counts over 16000 lines of
code and consists from over 100 files (CPP and H).

Listing 5.3: List of all the SABAT package files with their lengths.
1 $ find . -name ’*.cpp ’ -o -name ’*.h’ | xargs wc -l
2 44 ./ ParticleGenerator3D/particle_generator_3d.h
3 61 ./ ParticleGenerator3D/particle_generator_3d.cpp
4 151 ./ sabatfunkcje5_1.cpp
5 33 ./ ConfigurationStorage/configuration_storage.h
6 124 ./ ConfigurationStorage/configuration_storage.cpp
7 27 ./ Utilities/timer.h
8 47 ./ Utilities/timer.cpp
9 26 ./ DataBase/sql_no_insert.cpp
10 138 ./ DataBase/sqlite3_wrapper.cpp
11 96 ./ DataBase/sqlite3_wrapper.h
12 52 ./ DataBase/sqlite3_row.cpp
13 73 ./ DataBase/sqlite3_row.h
14 108 ./ DataBase/data_base_test.h
15 17 ./ Geometry3D/geo_shape_3d.cpp
16 33 ./ Geometry3D/geo_triplet_3d.cpp
17 97 ./ Geometry3D/geo_point_3d.cpp
18 40 ./ Geometry3D/geo_consts_3d.h
19 355 ./ Geometry3D/geo_bounding_box_3d.cpp
20 46 ./ Geometry3D/geo_shape_3d.h
21 83 ./ Geometry3D/geo_rectangle_3d.h
22 250 ./ Geometry3D/geo_cuboid_3d.cpp
23 163 ./ Geometry3D/geo_bounding_box_3d.h
24 240 ./ Geometry3D/geo_vector_3d.cpp
25 46 ./ Geometry3D/geo_forward_dec_3d.h
26 101 ./ Geometry3D/geo_triangle_3d.h
27 194 ./ Geometry3D/geo_plane_3d.cpp
28 106 ./ Geometry3D/geo_plane_3d.h
29 53 ./ Geometry3D/geo_line_3d.cpp
30 119 ./ Geometry3D/geo_kdtree_3d.h
31 55 ./ Geometry3D/geo_fcmp_3d.h
32 74 ./ Geometry3D/geo_triplet_3d.h
33 61 ./ Geometry3D/geo_line_3d.h
34 284 ./ Geometry3D/geo_kdtree_3d.cpp
35 87 ./ Geometry3D/geo_rectangle_3d.cpp
36 137 ./ Geometry3D/geo_cuboid_3d.h

26

37 62 ./ Geometry3D/geo_point_3d.h
38 128 ./ Geometry3D/geo_vector_3d.h
39 166 ./ Geometry3D/geo_triangle_3d.cpp
40 288 ./ simulation.cpp
41 60 ./ Random/exp_generator.h
42 86 ./ Random/random.h
43 65 ./ Random/exp_generator.cpp
44 71 ./ Random/random.cpp
45 83 ./debug.h
46 56 ./ Physics3D/test_physics_3d.h
47 786 ./ Physics3D/phy_substance.cpp
48 83 ./ Physics3D/phy_particle_3d.h
49 74 ./ Physics3D/phy_consts_3d.h
50 23 ./ Physics3D/phy_object_3d.h
51 20 ./ Physics3D/phy_object_3d.cpp
52 234 ./ Physics3D/phy_substance.h
53 20 ./ Physics3D/phy_detector_3d.h
54 61 ./ Physics3D/phy_consts_3d.cpp
55 17 ./ Physics3D/phy_detector_3d.cpp
56 186 ./ Physics3D/phy_particle_3d.cpp
57 56 ./ profiling/flat_profile_2_CSV.cpp
58 97 ./ simulation.h
59 237 ./ ConfigurationFile/configurationfile.cpp
60 120 ./ ConfigurationFile/test_configuration_file.h
61 2112 ./ ConfigurationFile/tinyxml2/tinyxml2.h
62 2444 ./ ConfigurationFile/tinyxml2/tinyxml2.cpp
63 62 ./ ConfigurationFile/configurationfile.h
64 312 ./main.cpp
65 25 ./ Factories/sceneafactory.h
66 21 ./ Factories/scenedfactory.h
67 181 ./ Factories/sceneafactory.cpp
68 18 ./ Factories/scenegammatestfactory.h
69 20 ./ Factories/sceneffactory.h
70 19 ./ Factories/scene02factory.h
71 119 ./ Factories/scenedfactory.cpp
72 148 ./ Factories/scenebfactory.cpp
73 23 ./ Factories/scenecfactory.h
74 22 ./ Factories/scenebfactory.h
75 20 ./ Factories/scene03factory.h
76 86 ./ Factories/sceneffactory.cpp
77 21 ./ Factories/sceneefactory.h
78 31 ./ Factories/scenegammatestfactory.cpp
79 87 ./ Factories/scene03factory.cpp
80 141 ./ Factories/scenecfactory.cpp
81 87 ./ Factories/scene02factory.cpp
82 14 ./ Factories/simple_scene_factory.h
83 108 ./ Factories/sceneefactory.cpp
84 0 ./ Factories/simple_scene_factory.cpp
85 14 ./ master_test.h
86 82 ./ DataManagement/data_file.cpp
87 31 ./ DataManagement/data_files_manager.h
88 71 ./ DataManagement/neutron_data_file.h
89 20 ./ DataManagement/data_files_manager.cpp
90 38 ./ DataManagement/data_file.h
91 48 ./ DataManagement/neutron_data_file.cpp
92 50 ./ DataManagement/gamma_data_file.cpp
93 74 ./ DataManagement/gamma_data_file.h
94 215 ./ CMakeFiles/CompilerIdCXX/CMakeCXXCompilerId.cpp
95 28 ./ SourceGenerator/source_generator.h
96 31 ./ SourceGenerator/source_generator.cpp
97 1377 ./ AuxiliaryFunctions/tracker_functions.cpp
98 107 ./ AuxiliaryFunctions/data_management_functions.h
99 376 ./ AuxiliaryFunctions/tracker_functions.h
100 508 ./ AuxiliaryFunctions/data_management_functions.cpp
101 1100 ./ AuxiliaryFunctions/test_aux_functions.h
102 16991 total

To mange such a complex project and maintain the source code readability, it was
decided to adapt the coding style proposed in the online resource: Google C++ Style
Guide [31].

27

5.1.4 Commenting Style: Doxygen

The Doxygen [32] is a user-friendly tool for automatic generation of documentation
from the annotated C++ source code. It can generate the documentation among others,
in the HTML, PDF or LATEX format. To make a full use of the Doxygen, specific
comment style has to be used in the entire source code. For clarity of the examples,
the Doxygen-style comments were omitted or slightly changed in the listings presented
in this thesis. Furthermore, the documentation shows only the comments made in the
H files (e.g. mostly class definitions). The comments in the CPP files are not used
to generate the documentation, however there is a copy of the methods’ comments
kept before the methods’ declarations. A copy of the SABAT package documentation
generated with the help of Doxygen will be provided as a DVD appendix to this thesis.

Figure 5.1: The local browsable HTML version of the SABAT package documentation
generated with the help of Doxygen.

5.2 Obtaining and Installation

5.2.1 Obtaining the SABAT package

In the current development state, the SABAT package has to be downloaded from
the BitBucket.org website, which is a Git [44] remote repository. Git is one of the most
widely used software version control system. For now, the access to the source code

28

is restricted only to the package developers and available upon request. A copy of the
newest SABAT package version will be provided as a DVD appendix to this thesis.

Listing 5.4: Cloning of the SABAT repository (USER: user’s account name).
1 $ mkdir sabat
2 $ cd sabat
3 $ git clone https :// USER@bitbucket.org/msmolis/sabat.git
4 $ git checkout master

Figure 5.2: The Bitbucket web-based GUI with some of the SABAT package commits.

5.2.2 Installation of the SABAT Package

The installation instructions presented in this paragraph are written with the assump-
tion that the reader has an access to the remote repository of the SABAT package with
at least the read privileges. Instructions shown below were executed and tested in the
Ubuntu 12.04.5 LTS (Precise Pangolin) operating system.

Required Third-Party Libraries

First, the required third-party libraries and dependences have to be installed into
the user’s system. This includes: SQLite [37], OpenMPI [45] and CMake [46]. Some of
them are standard on almost all of the Linux platforms, others are not.

Listing 5.5: Installation of the libraries required by the SABAT package.
1 $ sudo apt -get update && sudo apt -get dist -upgrade
2 $ sudo apt -get install openmpi -bin openmpi -common openssh -client \
3 openssh -server libopenmpi1 .3 libopenmpi -dbg libopenmpi -dev
4 $ sudo apt -get install libsqlite3 -dev
5 $ sudo apt -get install cmake

29

Source Code Compilation

To build the solution, CMake tool is required. The CMakeLists.txt file should be
located in the the main project directory.

Listing 5.6: Cloning the SABAT repository (USER: user’s account name).
1 $ cd sabat
2 $ make
3 $ cmake CMakeLists.txt

Program Execution

To run the program, user has to specify the SCENE FILE which is an XML file contain-
ing the selected scene description. An example of the geometry input file scenes/A2.xml
with its description can be found in the Subsec. 3.5. The visualization of the same scene
in the two forms, read directly from the XML files and as the generated triangle mesh
respectively, can be found in Fig. 3.9. Moreover, Fig. 3.10 shows the geometry described
in the scenes/C2.xml file.

Listing 5.7: Source code compilation and execution on a single process.
1 $./ Atometry scenes/SCENE_FILE.xml

In case of running on multiple processes user has to also specify the total number of
them:

Listing 5.8: Source code compilation and execution on multiple processes.
1 $ make
2 $ mpirun -np NO_OF_PROCESSES ./ Atometry scenes/SCENE_FILE.xml

5.2.3 Output Data Format

All the data gathered during the simulations is saved into text files in the subdi-
rectory temp output files under the main simulation folder. This includes, amongst
others, particle direction, reactions, the number and the type of the particles created
in the reactions, the place of the reaction and material in which the reaction occurred.
To aggregate the data, the user has to execute the simulation with the additional pa-
rameter --join-data. The simulation will be skipped, and the output files directory
containing the final data will be created.

Listing 5.9: Aggregation of the data.
1 $./ Atometry --join -data

5.3 Source Code Testing

To test some essential parts of the source code (e.g. database connection, particle
tracking, etc.), unit test were implemented. These tests are used to find out if the errors
occurred in, for example, the particle tracking or the 3D scene geometry description.
The vast majority of them are executed before the simulation starts and in case of
failure the simulations is going to be terminated, since the obtained results will more
likely be faulty. The tests are printed in the terminal with the help of macros presented
in the List. 5.10.

30

Listing 5.10: Format of the tests output in terminal.
1 #ifndef MASTER_TEST_H
2 #define MASTER_TEST_H
3
4 #define CPASS std::cout << " ["<< "\033[1;32m"<<"passed"<<"\033[0;m"<< "] "
5 #define CFAIL std::cout << " ["<< "\033[1;31m"<<"failed"<<"\033[0;m"<< "] "
6 #define OFFSET " "
7
8 #endif // MASTER_TEST_H

Figure 5.3: An example of the output generated by the unit tests.

Moreover, it is possible to spot the errors in the calculations when the data is plotted
in the form of the histograms or power spectra, however in this particular case, the
knowledge from the field of particle physics is required. Hence, the validation of the
data produced in the simulation was initially done by Dr. Michał Silarski and Dominika
Hunik. The substantial errors in the geometry and particle tracking methods can be
spotted on the large distributions of gamma quanta interaction points in any of the
x − y, x − z, z − y views. An example of such an error is shown in Fig. 5.4. In this
particular case, the error occurred due to the use of the old method of the solid object
geometry description which did not allowed the use of the skewed cuboids.

Section 4.1 contains the details regarding the initially available 3D objects (e.g.
cuboids) that could be used to create the simulation scene. Moreover, the Sec. 4.3
points out the main difference between the new and old way of the geometry descrip-
tion and explains why the new approach gives much more flexibility to the user.

5.4 Software Profiling

A software profiler is a tool that tracks running times of all the functions and methods
in the executed program. This information can be very helpful in identifying possible

31

Figure 5.4: An example of the error in the geometry description clearly visible on the
x− y view plot of the γ quanta interactions.

bugs and bottlenecks in the source code. To profile the SABAT package the GNU gprof
[36] profiler was used. The version of the source code which was profiled had only the
ray-tracing implemented (i.e. without the kd-trees).

To enable profiling the program has to be complied with additional -pg flag which
has to be added into the CMakeLists.txt file located in the main project directory.
After the files was edited, the software has to be re-complied normally with the make
command.

Listing 5.11: Compilation flags in the CMakeLists.txt file.
1 set (CMAKE_CXX_FLAGS "-std=c++0x -lsqlite3 -Wall -O3 -g3 -pg")

After the compilation the package has to be executed as usual to produce the profiling
data that will be saved into the gmon.out file. Next this file has to be pass to the gprof
to analyse and generate the profiling outcome.

Listing 5.12: GNU gprof execution.
1 $ gprof Atometry gmon.out > profile.txt

The profile will be a text file containing the execution times of all the called functions
and methods. For the purpose of identifying possible bottlenecks the most interesting
seems to be the columns % time, self seconds, calls and self ms/called from the flat
profile. First one describes the total running time of the function/method. The sec-
ond contains the total execution time of the function/method. The third one shows

32

the number of the function/method calls. And finally, the last one presents the total
execution time of the function/method on average per call. An example profile file may
look as the one on the List. 5.13.

Listing 5.13: A part of the analysis file made by the GNU gprof (edited for clarity).
1 % self self
2 time seconds calls ms/call name
3 12.56 0.49 3807287 0.00 Vector3D :: CrossProduct(Vector3D const&) const
4 4.62 0.18 6500364 0.00 Point3D :: Point3D(Point3D const&)
5 4.36 0.17 7557740 0.00 Vector3D :: DotProduct(Vector3D const&) const

33

Figure 5.5: The plots shows the total percentage [%] of time used by the given func-
tion/method for the six different simulation samples of increasing size. The full names
of the functions/methods were edited (e.g. removed parameters and arguments) for
the graph clarity. There are differences between the profile samples in both, the order
of the items with regards to the total time, and in the listed top entries. The detail
information can be found in the profile files profileSAMPLESIZEsceneA2.txt. The
floating-number comparison and the vector cross product operation are taking most of
the simulation time. Furthermore, the operations related to the retrieving data from
the database (including both std::Rb tree and std::Rb tree iterator of the STL’s
std::map container used by the Row class) are accounted for roughly 33% of total
simulation time. Hence the way of the data handling maybe a good point for the fu-
ture optimization. The simulations were conducted in the single process mode on the
Intel(R) Core(TM) i3 CPU M 330 @ 2.13GHz (2 cores, 4 threads), under the Ubuntu
12.04.5 LTS (Precise Pangolin) operating system.

34

F
ig

ur
e

5.
6:

T
he

pl
ot

s
sh

ow
s

th
e

to
ta

l
nu

m
b

er
of

ca
lls

(l
og

sc
al

e)
of

th
e

gi
ve

n
fu

nc
ti

on
/m

et
ho

d
fo

r
th

e
si

x
di

ff
er

en
t

si
m

ul
at

io
n

sa
m

pl
es

of
in

cr
ea

si
ng

si
ze

.
T

he
fu

ll
na

m
es

of
th

e
fu

nc
ti

on
s/

m
et

ho
ds

w
er

e
ed

it
ed

(e
.g

.
re

m
ov

ed
pa

ra
m

et
er

s
an

d
ar

gu
m

en
ts

)
fo

r
th

e
gr

ap
h

cl
ar

it
y.

T
he

re
ar

e
di

ff
er

en
ce

s
b

et
w

ee
n

th
e

pr
ofi

le
sa

m
pl

es
in

b
ot

h,
th

e
or

de
r

of
th

e
it

em
s

w
it

h
re

ga
rd

s
to

th
e

to
ta

l
nu

m
b

er
of

ca
lls

,
an

d
in

th
e

lis
te

d
to

p
en

tr
ie

s.
T

he
de

ta
il

in
fo

rm
at

io
n

ca
n

b
e

fo
un

d
in

th
e

pr
ofi

le
fil

es
pr
of
il
eS
AM
PL
ES
IZ
Es
ce
ne
A2
.t
xt

.
T

he
nu

m
b

er
of

ca
ll

fo
r

th
e
fc
mp

an
d
Da
ta
Ba
se
::
Ca
ll
ba
ck

sh
ow

n
in

F
ig

.5
.5

w
er

e
no

t
ca

lc
ul

at
ed

by
th

e
gp

ro
f

to
ol

,
m

os
t

lik
el

y
du

e
to

th
e

fa
ct

th
at

th
ey

ar
e

w
ri

tt
en

in
C

la
ng

ua
ge

an
d

no
t

C
+

+
lik

e
th

e
re

st
of

th
e

co
de

.
T

he
si

m
ul

at
io

ns
w

er
e

co
nd

uc
te

d
in

th
e

si
ng

le
pr

oc
es

s
m

od
e

on
th

e
In

te
l(

R
)

C
or

e(
T

M
)

i3
C

P
U

M
33

0
@

2.
13

G
H

z
(2

co
re

s,
4

th
re

ad
s)

,
un

de
r

th
e

U
bu

nt
u

12
.0

4.
5

LT
S

(P
re

ci
se

P
an

go
lin

)
op

er
at

in
g

sy
st

em
.

35

Chapter 6

Example of the SABAT Package
Applications

Hazardous materials such as the drugs or explosives posses a very distinctive chemical
composition (Tab. 1.1). One of the very promising, non-invasive detection method of
such substances is the Neutron Activation Analysis [7]. More detail description of this
technique can be found in section Sec. 1.1.

6.1 Underwater Threat Detection System

After the Second World War most of the German chemical weapons, including for
instance, rusted tanks with mustard gas, were sunk in the Baltic Sea shortly after the
War was over. Some research estimates that if so much as 1/6 of the chemical agents
would be spread at the Sea, the Baltic marina life could be destroyed for the next 100
years [7]. The SABAT packages is being used to study of the novel, atometry-based,
underwater threat detection system that can help to find the exact placement of these
dangerous chemicals [6, 7], so they can be excavated and safely utilized. The Monte
Carlo study is conducted to simulate a different versions of the underwater detection
device with the emphasis put on the special guides (tubes) for gamma quanta and
neutrons beams [7]. Fig. 6.1 shows how the prototype of such detector could look like.

Figure 6.1: Schematics of the underwater detector (adapted from [6]).

36

6.2 Background Study

After so many years from the end of the Second World War the sunken munition shells
and tanks have to be covered with the sea mud layer. Also the neutron rays have to
travel through the sea water. Neutron particles that react with the water and mud will
create an intense environmental background noise [6]. To overcome this problems, the
idea of the neutron guides was introduced [4, 6]. The details of the particle interactions
are not part of this thesis and can be found in any of the [4, 6, 7] papers. The Monte
Carlo simulation is used to determine most effective and optimal design of the detector
geometry which includes its shape (e.g. guides, detector), types of the neutron emitter
& gamma detector and the device construction materials.

Figure 6.2: An example of the Monte Carlo simulation of the γ quanta interactions
presented in the x − y views. On all the plots, the detector contour is yellow, the
neutron guides are blue, the γ guides are magenta, the hazardous substance (sulphur
mustard) is red and the sea bottom is cyan. The a) and b) shows two different setups
with the gamma quanta guides of a different shape, size and angle with respect to the sea
bottom. Also the detector occupies a different position. The same setup but without
the γ quanta guides is shown on the c) and d) respectively. For both of setups, the
neutron emitter is a point-like source placed on the top of the neutron guides (adapted
from [7]).

37

In conclusion, based on the example shown above, presented method and the SABAT
software can successfully be used to design the device for the underwater threat detec-
tion. The Monte Carlo study can be applied to optimize the tentative 3D spatial setup
of the apparatus elements, which includes the neutron emitter and the γ quanta detec-
tor positions with respect to each other and to the irradiated substance (e.g. chemical
munition shells). Moreover, the most favourable shapes and sizes of the guides and
the other elements of the device can be determined with the reasonable high accuracy.
Furthermore, the package can be helpful with the selection and testing of the possible
construction materials which can be very expensive. Thus, it maybe not possible or
feasible to test them all in the laboratory due to their cost, needed equipment and the
safety regulations with regards to the neutron irradiation of the given material, and
later transportation and utilization of it.

38

Chapter 7

Summary and Perspectives

7.1 Findings and Conclusions

The main goal of this thesis was an implementation and application of 3D computer
graphics technologies used in video games for Monte Carlo calculations of multi-particle
transport code. A brief description of the geometrical primitives such as the point, vec-
tor, line, plane and cuboidal objects in the 3D space was given. Furthermore, optimiza-
tion techniques borrowed from the field of computer graphics such as the acceleration
data structures (e.g. the kd-trees and the bounding volumes) and ray-tracing algorithm
for the purpose of the particle-object detection were presented. Based on these studies,
a particle tracking algorithm for the Monte Carlo simulation of the neutron interaction
with matter was designed and implemented in the C++ programming language as the
SABAT software package.

The Monte Carlo research conducted with the help of the SABAT package lead to
three publications [5, 6, 7] that will be a basis for construction of the novel atometry-
based underwater threat detection system described in more detail in the previous
Chap. 6.

7.2 Ideas for Further Research

Due to the computational complexity of the SABAT simulation, plenty of optimiza-
tion techniques needs to be used. This thesis presented a few of them, like the usage of
the ray tracing or the kd-tree algorithms.

As it was mentioned in the Subsec. 1.3.2 and proven by the source code profiling
(Fig. 5.6), communication with the database has a substantial impact on the overall
simulation execution time. One idea that could possibly eliminate this bottleneck is to
copy the whole database in the RAM memory when the simulation starts. It could be
reasonable solutions, especially since currently the elemnts.db is roughly of the size of
49 MB.

The raw results obtained during the simulation must be properly analysed. This task
require the help of additional tools. One of them is the ROOT package [47], which is one
of the most widely used analysis frameworks in the field of particle physics. It can deal
and manage even massive data sets spread over multiple files. Output files generated

39

during the SABAT simulation could be adjusted to implement of the so-called trees
structures that can be immediately read and process by the ROOT.

The SABAT package is also missing user-friendly GUI. Even though, the geometry
description has to be provided in a simple-structured XML file (Subsec. 3.5), thus this
method seems to not be efficient enough, especially for the user who is not accustomed
to the software. Such interface should not only be portable between the different envi-
ronments, but also provide a possibility to interactive modelling of the scene with the
additional automatic error checking ability. Such GUI would inevitably widen the pool
of possible users. Since the geometry can be very complicated and the Monte Carlo
simulation may require a very large sample, it maybe feasible to design an online in-
terface in one of the available most popular technologies like HTML/CSS/JavaScript,
Python/CGI or JavaFX that would allow to model the input files and run the simula-
tion on a specialized computer farms on many CPUs at once.

Another idea of improvement can be made in the scene geometry modelling area.
Since the 3D objects (e.g. cuboids) are essentially described with the help of the triangle
meshes, it maybe feasible to use of a computer-aided design (CAD) tools such as the
AutoCAD [28], Blender [29] or any other software that can model 3D simulation scene
and export it into the required format. If needed, a custom made plugins for the SABAT
package can be made to adjust the output of the CAD applications. To the best of the
author’s knowledge, all of the listed programs are able to triangulate of the polygons
faces and are widely used, in both, the industrial and in the academic environment.
Implementation of this idea could make the package more flexible for the users, and may
lead to the spread of the application in other areas than the nuclear physics research.

With regards to accelerating data structures like the kd-trees it maybe feasible to
test a different split function such as the surface area heuristic which may yield a better
results. Furthermore, other partitioning data structures such as the bounding interval
hierarchy or the binary space partitioning can give a better results.

Further ideas, such as the parallel and distributed processing or advanced random
number generators, were discussed in the theses [9] of the other SABAT Collaboration
members.

40

Appendix A

SABAT Database

A.1 Description of the Selected Data Storage

Development of the physical phenomena simulation requires three main components:
a geometrical description of the simulation scene, a mathematical description of the
laws of physics and a lots of initial information. Depending on the simulation type
and scope, this data includes experimentally measured or carefully calculated values
such as particles’ cross sections, elements’ atomic mass and number, physical constants
and the chemical composition of the objects from which the simulation scene is build.
Thus, volume of these data set can decrease or grow. Most likely, during the simulation
execution all this data cannot be stored in the process operation memory. Also, the
decision has to be made whether or not to allow the users to made changes in this
database in order to enrich user’s experience and to extend the application’s Graphical
User Interface (GUI).

Taking all the points enlisted above under consideration, the decision was made, to
use SQLite [37] database engine. This allows to distribute SABAT package with all
the necessary data in a form of a single, additional file. Due to the elasticity provided
by the SQL, it was possible to adjust the database schema throughout the simulation
development process whenever support of the new physical effects was needed.

A.1.1 SQLite

Nearly all of the modern, most widely used database management systems, imple-
ments the Relational Database Management System (RDBMS), that was designed by
E. F. Codd in 1970 and it is based on the mathematical concept of relations [38].
Data stored in the RDBMS is manage through the queries written in the Structured
Query Language (SQL). SQLite is an open source software library that implements SQL
database engine [37]. SQLite was chosen due to certain advantages over all the others,
commercially or freely available database engines such as MySQL [39] or MariaDB [40].
First and foremost the source code for SQLite is in the public domain, which means
that can be used for any purpose without any charge. Also, a full, complete SQLite
database has a form of a single, cross-platform file, that can be copied between differ-
ent 32/64-bit systems. Additionally SQLite provides very elastic, clear, yet powerful
C/C++ API and a detail documentation available online.

Source code and precompiled binaries for Linux, Windows, Max OS X (x86), Win-
dows Runtime, Windows Phone 8, .NET, can be downloaded from the SQLite official
website [37]. Various management tools and packages for variety of Unix-like systems,

41

such as RPMs & DEBs, exists. SQLite official homepage [37] claims that SQLite is
likely used more than all other database engines combined. Since from the very begin-
ning we planned to distribute SABAT package as a cross-platform, free software, these
unique features, was above all, the reason for selection of the SQLite database engine.

A.1.2 Database Schema

Initial database scheme named elemnts.db was designed and implemented in SQL
by the author of these thesis, and populated with the data by Dominika Hunik. Later
adjustments and changes in the scheme (e.g. addition of the database triggers) were
done by Michał Smolis and Dominika Hunik. All the data regarding particle energy
spectra, photon cross sections, etc. were obtained by Dominika Hunik and by Dr. Michał
Silarski from [41] and with the help of the web program XCOM [42].

The extended entity–relationship (EER) model of the database was generated in two
steps. First, the SQL code was extracted from the database using the dump command.
Secondly, the schema diagram was generated automatically from the dump file with
the help of MySQL Workbench [43]. To show the relations between the entities, the
diagram is using the Crow’s foot notation explained in the Fig. A.1:

Figure A.1: Crow’s foot notation with an example.

On Fig. A.1 one can see that the Symbol from the entity Elemnt is referenced by the
Isotope(Elemnt symbol) and by the Isotope in substance(Elemnt symbol). These
relationships are one-to-many (1 : n), which means that each row (tuple) is referenced
by zero, one or more rows (tuples) in the relating tables. This allows to store in the
single place the informations frequently used by the other entities. Furthermore, this
approach helps to preserve the consistency of the data kept in the database.

Dumped SQL schema is also used as a backup in case the database would become
corrupted. This way, restoration of the SQLite database becomes trivial and can be
completed within minutes.

42

Listing A.1: Generating the database dump and restoring the database from it.
1 $ sqlite3 elements.db .dump > dump.sql
2 $ sqlite3 elements.db < dump.sql

A.2 SQLite Database C++ Wrapper

In every step of the simulation a variety of different information is being retrieved
from the database. Thus, database queries are one of the simulation’s bottlenecks.
Trade-offs has to be made between the code readability and the query execution time.
Also, the extracted data (table rows, so-called tuples, in case of RDBMS) has to be
provided in the form that is easy to manipulate. For these purposes, a C++ wrapper
for the SQLite API was written. To ease up the usage of the database query results, a
set of preprocessor macros doing automatic type casting was prepared.

Two different types of the queries were recognized. Both are taking as an argument
SQL statement in the form of the std::string and a reference to the Row collection
which will be populated with the retrieved results. Normally, query can result in an
empty set if no row was found in the database matching exactly specified parame-
ters. Cross-section query is a special case of the SELECT operation. If there is no entry
in the database, the row with the energy closest in the terms of absolute value is go-
ing to be retrieved. Additionally, returned value marks the state of the query execution.

Listing A.2: Queries types and possible results.
1 enum OperationResult {
2 CONNECT_FAIL , // connection - failed
3 CONNECT_OK , // connection - succeeded
4 CLOSING_OK , // closing connection - succeeded
5 CLOSING_FAIL , // closing connection - failed
6 SELECT_OK , // SELECT operation succeeded
7 SELECT_FAIL // SELECT operation failed
8 };
9
10 OperationResult SELECT(std:: string query , Row& rows);
11 OperationResult SELECTCrossSect(std:: string query , Row& rows);

The Row type is essentially a collection of rows returned by the database query. Since
before the query execution the number and the size of the retrieved entries is not
known, the data structure should be elastic enough to support dynamic, run-time ap-
plied changes. To achieve this goal, class Row was designed. This class consist of a main
dataset - std::vector - in which every item is a row retrieved from the database. More-
over, every RowItem* itself is a pointer to a dynamic collection of the type std::map.
Every pair <key, mapped value> in the RowItem element consist of two std::string.
First one, the key is the column’s name, and the mapped value is the associated value.
C++11 standard and the STL’s container std::map ensures that complexity of both
insert and access operations are logarithmic in size, respectively O(log2(n + 1)) and
O(log2(n)).

Listing A.3: Data structures for database readout.
1 typedef std::map <std::string , std::string > RowItem;
2 typedef std::map <std::string , std::string >:: const_iterator RowItemIter;

43

Element
column name data type constraint
Symbol VARCHAR(5) NOT NULL
Atomic number SMALLINT UNIQUE NOT NULL
PRIMARY KEY (Symbol)

Table A.1: Entity Element.

Isotope
column name data type constraint
Element symbol VARCHAR(5) NOT NULL
Mass number INT NOT NULL
Name VARCHAR(50) NOT NULL
Atomic weight FLOAT NOT NULL
Most abundant BOOL NOT NULL DEFAULT FALSE
Abundance FLOAT NOT NULL DEFAULT 0
PRIMARY KEY (Symbol)
FOREIGN KEY (Element symbol) REFERENCES Element (Symbol)

Table A.2: Entity Isotope.

Process type
column name data type constraint
Type VARCHAR(50) NOT NULL
PRIMARY KEY (Type)

Table A.3: Entity Process type.

Substance
column name data type constraint
Formula VARCHAR(256) NOT NULL
Density FLOAT NOT NULL
Name VARCHAR(256) —
PRIMARY KEY (Formula, Density)

Table A.4: Entity Substance.

Compound
column name data type constraint
Name VARCHAR(100) NOT NULL
PRIMARY KEY (Name)

Table A.5: Entity Compound.

44

Isotope in substance
column name data type constraint
Element symbol VARCHAR(5) NOT NULL
Isotope mass number INT NOT NULL
Substance formula VARCHAR(256) NOT NULL
Substance density FLOAT NOT NULL
PRIMARY KEY(Element symbol, Isotope mass number, Substance formula)
FOREIGN KEY (Element symbol) REFERENCES Element (Symbol)
FOREIGN KEY (Isotope mass number) REFERENCES Isotope (Mass number)
FOREIGN KEY (Substance formula, Substance density)

REFERENCES Substance (Formula, Density)

Table A.6: Entity Isotope in substance.

Substance in compound
column name data type constraint
Compound name VARCHAR(100) NOT NULL
Substance formula VARCHAR(256) NOT NULL
Substance density FLOAT NOT NULL
Percentage FLOAT NOT NULL
PRIMARY KEY (Compound name, Substance formula, Substance density)
FOREIGN KEY (Compound name) REFERENCES Compound (Name)
FOREIGN KEY (Isotope mass number) REFERENCES Isotope (Mass number)
FOREIGN KEY (Substance formula, Substance density)

REFERENCES Substance (Formula, Density)

Table A.7: Entity Substance in compound.

Gamma process type
column name data type constraint
Type VARCHAR(50) NOT NULL
PRIMARY KEY (Type)

Table A.8: Entity Gamma process type.

Neutron cross section
column name data type constraint
Element symbol VARCHAR(5) NOT NULL
Isotope mass number INT NOT NULL
Type VARCHAR(50) NOT NULL
Energy FLOAT NOT NULL
Value FLOAT NOT NULL
Is interpolated BOOL NOT NULL DEFAULT FALSE
Origin VARCHAR(50) —
PRIMARY KEY (Element symbol, Isotope mass number, Energy, Type)
FOREIGN KEY (Type) REFERENCES Process type (Type)
FOREIGN KEY (Element symbol, Isotope mass number)

REFERENCES Isotope (Element symbol, Mass number)

Table A.9: Entity Neutron cross section.

45

Neutron angular distribution
column name data type constraint
Type VARCHAR(50) NOT NULL
Element symbol VARCHAR(5) NOT NULL
Isotope mass number INT NOT NULL
Energy FLOAT NOT NULL
Number INT NOT NULL
Coefficient INT NOT NULL
PRIMARY KEY (Type, Element symbol, Isotope mass number, Energy, Number)
FOREIGN KEY (Element symbol, Isotope mass number))

REFERENCES Isotope (Element symbol, Mass number)
FOREIGN KEY (Type) REFERENCES Process type (Type)

Table A.10: Entity Neutron angular distribution.

Max probability neutron angular distribution
column name data type constraint
Type VARCHAR(50) NOT NULL
Element symbol VARCHAR(5) NOT NULL
Isotope mass number INT NOT NULL
Energy FLOAT NOT NULL
Value INT NOT NULL
PRIMARY KEY (Type, Element symbol, Isotope mass number, Energy, Number)
FOREIGN KEY (Element symbol, Isotope mass number))

REFERENCES Isotope (Element symbol, Mass number)
FOREIGN KEY (Type) REFERENCES Process type (Type)

Table A.11: Entity Max probability neutron angular distribution.

Energy level
column name data type constraint
Number INT NOT NULL
Energy FLOAT NOT NULL
Element symbol VARCHAR(5) NOT NULL
Isotope mass number INT NOT NULL
PRIMARY KEY (Number, Element symbol, Isotope mass number)
FOREIGN KEY (Element symbol, Isotope mass number))

REFERENCES Isotope (Element symbol, Mass number)

Table A.12: Entity Energy level.

Inelastic gamma quantum production multiplicity
column name data type constraint
Number INT NOT NULL
Energy FLOAT NOT NULL
Element symbol VARCHAR(5) NOT NULL
Isotope mass number INT NOT NULL
PRIMARY KEY (Number, Element symbol, Isotope mass number)
FOREIGN KEY (Element symbol, Isotope mass number))

REFERENCES Isotope (Element symbol, Mass number)

Table A.13: Entity Inelastic gamma quantum production multiplicity.

46

Neutron capture gamma quantum production multiplicity
column name data type constraint
Element symbol VARCHAR(5) NOT NULL
Isotope mass number INT NOT NULL
Energy FLOAT NOT NULL
Value FLOAT NOT NULL
PRIMARY KEY (Element symbol, Isotope mass number, Energy)
FOREIGN KEY (Element symbol, Isotope mass number))

REFERENCES Isotope (Element symbol, Mass number)

Table A.14: Entity Neutron capture gamma quantum production multiplicity.

Generator reaction
column name data type constraint
Type VARCHAR(50) NOT NULL
Projectile element symbol VARCHAR(5) NOT NULL
Projectile mass number INT NOT NULL
Target element symbol VARCHAR(5) NOT NULL
Target mass number INT NOT NULL
Secondary product element symbol VARCHAR(5) NOT NULL
Secondary product mass number INT NOT NULL
Energy FLOAT NOT NULL
PRIMARY KEY (Type)
FOREIGN KEY (Projectile element symbol, Projectile mass number,

Target element symbol, Target mass number,
Secondary product element symbol, Secondary product mass number)

REFERENCES Isotope (Element symbol, Atomic mass number,
Element symbol, Atomic mass number, Element symbol,
Atomic mass number)

Table A.15: Entity Generator reaction.

Gamma cross section
column name data type constraint
Element symbol VARCHAR(5) NOT NULL
Isotope mass number INT NOT NULL
Type VARCHAR(50) NOT NULL
Energy FLOAT NOT NULL
Value FLOAT NOT NULL
Origin VARCHAR(50) —
PRIMARY KEY (Element symbol, Energy, Type)
FOREIGN KEY (Type) REFERENCES Gamma Process type (Type)
FOREIGN KEY (Element symbol)

REFERENCES Isotope (Element symbol)

Table A.16: Entity Gamma cross section.

47

Figure A.2: Enhanced entity–relationship (EER) diagram of the database schema.

48

Appendix B

DVD with the SABAT package
source code and documentation

This thesis is distributed with the DVD containing the whole simulation C++ source
code with its documentation generated with the help of Doxygen. The documentation
is held in the directory docs within the root folder.

49

Listings

3.1 Declaration of the Point3D::Translate() method. 6
3.2 Part of the geometry description XML file: scene/A2.xml. 14
3.3 Triangle mesh plotting. 15
3.4 Geometry visualization. 16
3.5 Visualization of the particle flying path. 17
3.6 Visualization script output. 17
3.7 Visualization script output. 18
4.1 Method of determination if the point is inside of the rectangle: range

check. 21
4.2 Method Triangle3D::IsIntersecting(). 23
5.1 The fcmp() function header. 25
5.2 Global constant values used in the SABAT simulation package. 26
5.3 List of all the SABAT package files with their lengths. 26
5.4 Cloning of the SABAT repository (USER: user’s account name). 29
5.5 Installation of the libraries required by the SABAT package. 29
5.6 Cloning the SABAT repository (USER: user’s account name). 30
5.7 Source code compilation and execution on a single process. 30
5.8 Source code compilation and execution on multiple processes. 30
5.9 Aggregation of the data. 30
5.10 Format of the tests output in terminal. 31
5.11 Compilation flags in the CMakeLists.txt file. 32
5.12 GNU gprof execution. 32
5.13 A part of the analysis file made by the GNU gprof (edited for clarity). . 33
A.1 Generating the database dump and restoring the database from it. . . . 43
A.2 Queries types and possible results. 43
A.3 Data structures for database readout. 43

50

List of Figures

1.1 Scheme of the neutron interaction with nucleus of a given substance
(diagram adopted from [2]). 2

3.1 Point in R3 (diagram adapted from [15]). 5

3.2 The Standard Basis for R3 (diagram adapted from [16]) under the GFDL). 6

3.3 An example of a triangle mesh (adapted from [22]). 9

3.4 Mesh modelling overview (adapted from [21] under the WP:CC BY-SA). 9

3.5 Binary tree of a CSG object constructed with the help of two union ∪,
single intersection ∩ and a single difference − operations (adapted from
[20] under the WP:CC BY-SA). 10

3.6 Rectangular cuboid (hexahedron) as a bounding box with all facets par-
allel to the origin axes surrounding a triangle with its centroid. 11

3.7 The left hand figure shows the scene/G2.xml geometry in which the
detector contour is magenta, the neutron guide is green, the γ guide is
red, the hazardous substance (sulphur mustard) is blue, the sea bottom
is cyan and the whole setup is immersed in the sea water marked with
the black contour. The figure of the right presents the k-d tree build
on top of this scene’s triangle mesh with the blue bounding boxes (i.e.
subspaces). Both of the figures were generated with the geo check.py
script presented in the Sec. 3.6. 13

3.8 The left hand figure shows the scene/H2.xml geometry in which the de-
tector contour is magenta, the neutron guide is green, the γ guide is red,
the hazardous substance (sulphur mustard) is blue and the sea bottom
is cyan. The only difference between this scene and the scene/G2.xml is
the sea water removal. The figure of the right presents the k-d tree build
on top of this scene’s triangle mesh with the blue bounding boxes (i.e.
subspaces). Both of the figures were generated with the geo check.py
script presented in the Sec. 3.6. 13

3.9 The figure on the left side shows the scene geometry extracted directly
from the XML file scenes/A2.xml. On the right hand side is the triangle
mesh generated at the beginning of the simulation. Both of the figures
were generated with the geo check.py script. 16

3.10 The figure on the left side shows the scene geometry extracted directly
from the XML file scenes/C2.xml, which is the version of the geometry
shown on the previous Fig. 3.9 without the γ quanta guides. On the
right hand side is the triangle mesh generated at the beginning of the
simulation. Both of the figures were generated with the geo check.py
script. 16

51

3.11 The thick orange curved line is a trajectory of the neutron passing
through the scene/A2.xml scene. As it was expected, neutron path was
quickly ended in the sea water. Every change in direction marks the place
of the particle interaction with matter. The small green triangle marks
the place of neutron emission and the red one the point of its disappear-
ance (e.g. if the particle’s energy falls down below certain threshold) or
where neutron was captured by some nucleus (Fig. 4.1). 17

4.1 Neutron tracking algorithm used (diagram adapted from [6]). 20

4.2 Neutron reaction place (diagram adapted from [6]). 20

4.3 An example of the cuboid (left side) and the cube (right side) with the
required vertices ordering listed (adapted from [23]). 21

4.4 The ray tracing algorithm extends rays from the light source into a scene
(diagram adapted from [33] under the GFDL). 23

4.5 Truncated square pyramid (adapted from [24] under the GFDL). The
figure on the left have the vertices listed in the order of an input required
for the package. The figure on the right shows the triangles 4ABC and
4CDA that will be extracted from one of the faces (quadrangular figure)
of the pyramid. The strict and correct order of the 3D figure vertices is
needed so the automatically generated mesh triangles will not overlap
with each other. 24

5.1 The local browsable HTML version of the SABAT package documenta-
tion generated with the help of Doxygen. 28

5.2 The Bitbucket web-based GUI with some of the SABAT package commits. 29

5.3 An example of the output generated by the unit tests. 31

5.4 An example of the error in the geometry description clearly visible on
the x− y view plot of the γ quanta interactions. 32

5.5 The plots shows the total percentage [%] of time used by the given func-
tion/method for the six different simulation samples of increasing size.
The full names of the functions/methods were edited (e.g. removed pa-
rameters and arguments) for the graph clarity. There are differences be-
tween the profile samples in both, the order of the items with regards
to the total time, and in the listed top entries. The detail information
can be found in the profile files profileSAMPLESIZEsceneA2.txt. The
floating-number comparison and the vector cross product operation are
taking most of the simulation time. Furthermore, the operations related
to the retrieving data from the database (including both std::Rb tree
and std::Rb tree iterator of the STL’s std::map container used by
the Row class) are accounted for roughly 33% of total simulation time.
Hence the way of the data handling maybe a good point for the future
optimization. The simulations were conducted in the single process mode
on the Intel(R) Core(TM) i3 CPU M 330 @ 2.13GHz (2 cores, 4 threads),
under the Ubuntu 12.04.5 LTS (Precise Pangolin) operating system. . . 34

52

5.6 The plots shows the total number of calls (log scale) of the given func-
tion/method for the six different simulation samples of increasing size.
The full names of the functions/methods were edited (e.g. removed pa-
rameters and arguments) for the graph clarity. There are differences be-
tween the profile samples in both, the order of the items with regards to
the total number of calls, and in the listed top entries. The detail informa-
tion can be found in the profile files profileSAMPLESIZEsceneA2.txt.
The number of call for the fcmp and DataBase::Callback shown in
Fig .5.5 were not calculated by the gprof tool, most likely due to the
fact that they are written in C language and not C++ like the rest of
the code. The simulations were conducted in the single process mode on
the Intel(R) Core(TM) i3 CPU M 330 @ 2.13GHz (2 cores, 4 threads),
under the Ubuntu 12.04.5 LTS (Precise Pangolin) operating system. . . 35

6.1 Schematics of the underwater detector (adapted from [6]). 36
6.2 An example of the Monte Carlo simulation of the γ quanta interactions

presented in the x − y views. On all the plots, the detector contour
is yellow, the neutron guides are blue, the γ guides are magenta, the
hazardous substance (sulphur mustard) is red and the sea bottom is cyan.
The a) and b) shows two different setups with the gamma quanta guides
of a different shape, size and angle with respect to the sea bottom. Also
the detector occupies a different position. The same setup but without
the γ quanta guides is shown on the c) and d) respectively. For both of
setups, the neutron emitter is a point-like source placed on the top of
the neutron guides (adapted from [7]). 37

A.1 Crow’s foot notation with an example. 42
A.2 Enhanced entity–relationship (EER) diagram of the database schema. . 48

53

Bibliography

[1] SABAT — Stoichiometry Analysis by Activation Techniques: http://koza.if.uj.
edu.pl/sabat/, [Online; accessed 28-July-2015].

[2] M. Silarski and P. Moskal. Atometria jako metoda wykrywania substancji niebez-
piecznych. Foton, 112:15-22, Wiosna 2011.

[3] P. Moskal. Nuclear physics in medicine, minefield and kitchen. Annales UMCS Phys-
ica 66:71-88, 2012.

[4] M. Silarski and P. Moskal. Patent application No. P409388 (2014); PC-
T/PL2015/050021

[5] M. Silarski for the SABAT Collaborration. Application of Neutron Activation Spec-
troscopy. Acta Physica Polonica B, 6:1061-1066, 2013.

[6] M. Silarski, D. Hunik, P. Moskal, M. Smolis and S. Tadeja. Project of the underwater
system for chemical threat detection. Acta Physica Polonica A, 127:1543, 2015.

[7] M. Silarski, D. Hunik, P. Moskal, M. Smolis and S. Tadeja. Design of the SABAT
system for underwater detection of dangerous substances. Acta Physica Polonica B,
47(2):497-502, 2016.

[8] Compact Neutron Generator. Phoenix Nuclear Labs, website: http:
//phoenixnuclearlabs.com/library-article/compact-neutron-generator/,
[Online; accessed 09-July-2016].

[9] M. Smolis. Magister’s Thesis: Zrównoleglenie i optymalizacja algorytmów w pakiecie
symulacji wykrywacza materiałów wybuchowych. Jagiellonian University, 2015.

[10] A. Ferrari, P.R. Sala, A. Fasso, J. Ranft. FLUKA: a multi-particle transport code.
CERN-2005-10, INFN/TC 05/11, SLAC-R-773, 2005.

[11] T.T. Böhlen, F. Cerutti, M.P.W. Chin, A. Fassò, A. Ferrari, P.G. Ortega, A.
Mairani, P.R. Sala, G. Smirnov and V. Vlachoudis. The FLUKA Code: Develop-
ments and Challenges for High Energy and Medical Applications. Nuclear Data
Sheets, 120:211-214, 2014.

[12] S. Agostinelli, J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Arce, ... and D.
Zschiescheaf. Geant4 — a simulation toolkit. Nuclear Instruments and Methods in
Physics Research, 506:250–303, 2003.

[13] J. Allison, K. Amako, J. Apostolakis, H. Araujo, P.A. Dubois, M. Asai, ... and
H. Yoshida. Geant4 Developments and Applications. IEEE Transactions on Nuclear
Science, 53:270-278, 2006.

54

http://koza.if.uj.edu.pl/sabat/
http://koza.if.uj.edu.pl/sabat/
http://phoenixnuclearlabs.com/library-article/compact-neutron-generator/
http://phoenixnuclearlabs.com/library-article/compact-neutron-generator/

[14] N.V. Mokhov and C.C. James. The MARS Code System User’s Guide Version
15(2014). Google Inc. Google C++ Style Guide, website: http://www-ap.fnal.
gov/MARS/m1514-manual.pdf, [Online; accessed 06-August-2015].

[15] Cartesian coordinate system — Wikipedia, The Free Encyclopedia: https://
upload.wikimedia.org/wikipedia/commons/6/64/Coord_XYZ.svg, [Online; ac-
cessed 17-May-2016].

[16] Linear combination — Wikipedia, The Free Encyclopedia: https://upload.
wikimedia.org/wikipedia/commons/f/fd/3D_Vector.svg, [Online; accessed 17-
May-2016].

[17] Zbigniew H. Nitecki Calculus in 3D: Geometry, Vectors, and Multivariate Calculus
Tufts University, August 19, 2012.

[18] P. Bourke, website: http://paulbourke.net/geometry/, [Online; accessed 02-
July-2016].

[19] D. Sunday. Geometry Algorithms Home, website: http://geomalgorithms.com/,
[Online; accessed 02-July-2016].

[20] CSG tree — Wikipedia, The Free Encyclopedia: https://upload.wikimedia.
org/wikipedia/commons/8/8b/Csg_tree.png, [Online; accessed 21-June-2016].

[21] Mesh overview — Wikipedia, The Free Encyclopedia: https://upload.
wikimedia.org/wikipedia/commons/6/6d/Mesh_overview.svg, [Online; ac-
cessed 16-June-2016].

[22] Dolphin triangle mesh — Wikipedia, The Free Encyclopedia: https://upload.
wikimedia.org/wikipedia/commons/f/fb/Dolphin_triangle_mesh.png, [On-
line; accessed 16-June-2016].

[23] Cuboid — Wikipedia, The Free Encyclopedia: https://commons.wikimedia.
org/wiki/File:Cuboid_simple.svg, [Online; accessed 16-June-2016].

[24] Truncated square pyramid — Wikipedia, The Free Encyclopedia: https:
//upload.wikimedia.org/wikipedia/commons/6/67/Pyramide_tronquee.svg,
[Online; accessed 16-June-2016].

[25] Tomas Nikodym. Bachelor’s thesis: Ray Tracing Algorithm For Interactive Appli-
cations. Czech Technical University in Prague, 2010.

[26] KD Trees for Faster Ray Tracing. Blog FrogSlayer: http://blog.frogslayer.
com/kd-trees-for-faster-ray-tracing-with-triangles/, [Online; accessed
24-June-2016].

[27] J. D. Hunter. Matplotlib: A 2D graphics environment. Computing In Science &
Engineering 3(9):90-95, EEE COMPUTER SOC, 2007.

[28] AutoCAD, website: http://www.autodesk.com/products/autocad/overview,
[Online; accessed 11-June-2016].

[29] Blender, website: https://www.blender.org/, [Online; accessed 11-June-2016].

[30] fcmp website: http://fcmp.sourceforge.net/, [Online; accessed 27-Ma-2016].

[31] Google Inc. Google C++ Style Guide, website: https://google.github.io/
styleguide/cppguide.html, [Online; accessed 28-May-2016].

55

http://www-ap.fnal.gov/MARS/m1514-manual.pdf
http://www-ap.fnal.gov/MARS/m1514-manual.pdf
https://upload.wikimedia.org/wikipedia/commons/6/64/Coord_XYZ.svg
https://upload.wikimedia.org/wikipedia/commons/6/64/Coord_XYZ.svg
https://upload.wikimedia.org/wikipedia/commons/f/fd/3D_Vector.svg
https://upload.wikimedia.org/wikipedia/commons/f/fd/3D_Vector.svg
http://paulbourke.net/geometry/
http://geomalgorithms.com/
https://upload.wikimedia.org/wikipedia/commons/8/8b/Csg_tree.png
https://upload.wikimedia.org/wikipedia/commons/8/8b/Csg_tree.png
https://upload.wikimedia.org/wikipedia/commons/6/6d/Mesh_overview.svg
https://upload.wikimedia.org/wikipedia/commons/6/6d/Mesh_overview.svg
https://upload.wikimedia.org/wikipedia/commons/f/fb/Dolphin_triangle_mesh.png
https://upload.wikimedia.org/wikipedia/commons/f/fb/Dolphin_triangle_mesh.png
https://commons.wikimedia.org/wiki/File:Cuboid_simple.svg
https://commons.wikimedia.org/wiki/File:Cuboid_simple.svg
https://upload.wikimedia.org/wikipedia/commons/6/67/Pyramide_tronquee.svg
https://upload.wikimedia.org/wikipedia/commons/6/67/Pyramide_tronquee.svg
http://blog.frogslayer.com/kd-trees-for-faster-ray-tracing-with-triangles/
http://blog.frogslayer.com/kd-trees-for-faster-ray-tracing-with-triangles/
http://www.autodesk.com/products/autocad/overview
https://www.blender.org/
http://fcmp.sourceforge.net/
https://google.github.io/styleguide/cppguide.html
https://google.github.io/styleguide/cppguide.html

[32] Doxygen, website: http://www.stack.nl/~dimitri/doxygen/, [Online; accessed
09-September-2015].

[33] Ray tracing diagram — Wikipedia, The Free Encyclopedia: https://upload.
wikimedia.org/wikipedia/commons/8/83/Ray_trace_diagram.svg, [Online; ac-
cessed 31-July-2015].

[34] T.Möller, B.Trumbore Fast, Minimum Storage Ray/Triangle Intersection. Journal
of Graphics Tools, 1997.

[35] Möller-Trumbore intersection algorithm — Wikipedia, The Free Encyclo-
pedia: https://en.wikipedia.org/wiki/M%C3%B6ller%E2%80%93Trumbore_
intersection_algorithm, [Online; accessed 12-June-2016].

[36] GNU gprof profiler: https://sourceware.org/binutils/docs/gprof/, [Online;
accessed 17-June-2016].

[37] SQLite database engine, official website: https://www.sqlite.org/index.html,
[Online; accessed 28-July-2015].

[38] E. F. Codd. A Relational Model of Data for Large Shared Data Banks. Communi-
cations of the ACM 13 (6): 377, 1970.

[39] Oracle Corporation. MySQL database engine, official website: https://www.
mysql.com/, [Online; accessed 28-July-2015].

[40] Oracle Corporation. MariaDB database engine, official website: https://
mariadb.com/, [Online; accessed 28-July-2015].

[41] N. Otuka, E. Dupont, V. Semkova, B. Pritychenko, A.I. Blokhin, M. Aikawa, ... and
Y. Zhuang. Towards a More Complete and Accurate Experimental Nuclear Reac-
tion Data Library (EXFOR): International Collaboration Between Nuclear Reaction
Data Centres (NRDC). Nuclear Data Sheets, 120:272–276, 2014.

[42] NIST Physical Measurement Laboratory. NIST XCOM: Photon Cross Sections
Database, website: http://physics.nist.gov/PhysRefData/Xcom/Text/intro.
html, [Online; accessed 31-July-2015].

[43] Oracle Corporation. MySQL Workbench: https://www.mysql.com/products/
workbench/, [Online; accessed 18-May-2016].

[44] Scott Chacon, Ben Straub. Pro Git 2nd ed. 2014 Edition. Pro Git online version:
https://git-scm.com/book/en/v2, [Online; accessed 19-May-2016].

[45] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Dongarra, ... and T. S.
Woodall. Open MPI: Goals, Concept, and Design of a Next Generation MPI Imple-
mentation. In Proceedings, 11th European PVM/MPI Users’ Group Meeting, Bu-
dapest, Hungary, September 2004. Official website: https://www.open-mpi.org/,
[Online; accessed 19-May-2016].

[46] Tanner Lovelace. CMake: The Cross Platform Build System. Linux Magazine, July
2006.

[47] Scott Chacon, Ben Straub. Pro Git 2nd ed. 2014 Edition. ROOT website: https:
//root.cern.ch/, [Online; accessed 30-May-2016].

56

http://www.stack.nl/~dimitri/doxygen/
https://upload.wikimedia.org/wikipedia/commons/8/83/Ray_trace_diagram.svg
https://upload.wikimedia.org/wikipedia/commons/8/83/Ray_trace_diagram.svg
https://en.wikipedia.org/wiki/M%C3%B6ller%E2%80%93Trumbore_intersection_algorithm
https://en.wikipedia.org/wiki/M%C3%B6ller%E2%80%93Trumbore_intersection_algorithm
https://sourceware.org/binutils/docs/gprof/
https://www.sqlite.org/index.html
https://www.mysql.com/
https://www.mysql.com/
https://mariadb.com/
https://mariadb.com/
http://physics.nist.gov/PhysRefData/Xcom/Text/intro.html
http://physics.nist.gov/PhysRefData/Xcom/Text/intro.html
https://www.mysql.com/products/workbench/
https://www.mysql.com/products/workbench/
https://git-scm.com/book/en/v2
https://www.open-mpi.org/
https://root.cern.ch/
https://root.cern.ch/

	Introduction
	Principle of Atometry
	Stoichiometry Analysis by Activation Techniques
	Contents of the Chapters
	Main Content
	Appendix A

	Existing Transport Codes
	Geant4
	FLUKA
	MARS

	Scene Representation
	Basic 3D Geometry Concepts and Implementation
	Point in R3
	Vector in R3
	Line in R3
	Plane in R3

	Polygon Meshes
	Convex Polygon
	Triangle Mesh

	Constructive Solid Geometry
	Space Partitioning Data Structures
	Bounding Volumes
	K-D Tree

	Geometry Input File
	Geometry Visual Validation Tool

	Particle Tracking
	Non-Flexible Solution
	Ray Tracing Algorithm
	Möller–Trumbore intersection algorithm

	Non-Flexible and Ray Tracing Solutions Comparison

	SABAT Simulation Package
	Coding Style
	Comparison of the Floating-Point Numbers
	Used Constants and Calculation Precision
	Coding Style Guideline and the Coding Conventions
	Commenting Style: Doxygen

	Obtaining and Installation
	Obtaining the SABAT package
	Installation of the SABAT Package
	Output Data Format

	Source Code Testing
	Software Profiling

	Example of the SABAT Package Applications
	Underwater Threat Detection System
	Background Study

	Summary and Perspectives
	Findings and Conclusions
	Ideas for Further Research

	SABAT Database
	Description of the Selected Data Storage
	SQLite
	Database Schema

	SQLite Database C++ Wrapper

	DVD with the SABAT package source code and documentation
	Listings
	List of Figures
	Bibliography

