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We discuss the Higgs mass and cosmological constant hierarchy puzzles with emphasis on the interplay 
of Poincaré invariance, mass generation and renormalization group invariance. A plausible explanation 
involves an emergent Standard Model with the cosmological constant scale suppressed by power of the 
large scale of emergence. In this scenario the cosmological constant scale and neutrino masses should be 
of similar size.
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1. Introduction

Particle Physics comes with two mysterious hierarchies of 
scales. The mass of the Higgs boson discovered at CERN is about 
125 GeV [1,2]. Theoretically the Higgs mass squared comes with a 
quadratically divergent counterterm which naively would push its 
value towards the Planck scale. The cosmological constant or vac-
uum energy density which drives the accelerating expansion of the 
Universe is characterized by a scale 0.002 eV [3], very much less 
than the Higgs mass, QCD and Planck scales. It is an open question 
whether these two puzzles might be connected. Here we discuss 
these scale hierarchies with focus on the interplay of Poincaré in-
variance, mass generation and renormalization group invariance. 
We argue that a plausible explanation involves an emergent Stan-
dard Model [4,5] and the measured cosmological constant scale 
associated with higher dimensional terms in the action, suppressed 
by power of the large emergence scale. In this scenario it is natural 
that the cosmological constant scale and neutrino masses should 
be of similar size.

In Section 2 we next discuss the scale hierarchies associated 
with ultraviolet divergences and renormalization, e.g. the Higgs 
mass counterterm and zero-point energies induced by quantiza-
tion. Both the Higgs mass counterterm and net zero-point energy 
contribution to the cosmological constant are related to the rela-
tive contributions of bosons and fermions, including possible ex-
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tra Higgs bosons. Consequences for new particles at LHC energies 
are discussed. Section 3 discusses the effect of running masses 
and couplings, how the Standard Model parameters are linked to 
physics in the ultraviolet. Finally, in Section 4 we consider the cos-
mological constant and explain why a tiny non-zero value fits with 
possible emergent gauge symmetry. Large zero-point energy con-
tributions to the cosmological constant are renormalization scale 
dependent and decouple. With emergence, contributions from po-
tentials linked to the Higgs and QCD condensates are cancelled at 
mass dimension four in the action.

2. Scale hierarchies and renormalization

In the Standard Model the masses of the W and Z gauge bosons 
and charged fermions come from coupling to the Higgs boson with 
a finite Higgs vacuum expectation value, vev. The renormalized 
Higgs mass squared comes with the divergent counterterm

m2
h bare = m2

h ren + δm2
h (1)

where

δm2
h = K 2

16π2

6

v2

(
m2

h + m2
Z + 2m2

W − 4m2
t

)
(2)

relates the renormalized and bare Higgs mass. Here K is an ultra-
violet scale characterizing the limit to where the Standard Model 
should work, v is the Higgs vev and the mi are the Higgs, Z, W 
and top quark masses. We neglect contributions from lighter mass 
quarks.
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Boson and fermion contributions enter with different signs and 
come with different renormalization scale dependence. The renor-
malized and bare masses would coincide with no hierarchy puzzle 
if

2m2
W + m2

Z + m2
h = 4m2

t . (3)

This equation is the Veltman condition [6]. It implies a collective 
cancellation between bosons and fermions. Taking the pole masses 
for the W, Z and top quark (80, 91 and 173 GeV) would require a 
Higgs mass of 314 GeV, much above the measured value. Running 
masses are discussed below.

A similar discussion follows for the vacuum zero-point energies, 
ZPEs, of quantum field theory which are induced by quantization 
[7] and important in the cosmological constant [8] together with 
potentials associated with vacuum condensates. We work in flat 
space-time. Zero-point energies come with ultraviolet divergence 
requiring regularization and renormalization,

ρzpe = 1

2

∑
{h̄ω} = 1

2
h̄

∑
particles

gi

kmax∫
0

d3k

(2π)3

√
k2 + m2. (4)

Here 1
2 {h̄ω} denotes the eigenvalues of the free Hamiltonian and 

ω = √
k2 + m2 where k is the wavenumber and m is the particle 

mass; gi = (−1)2 j(2 j + 1) f is the degeneracy factor for a particle 
i of spin j, with gi > 0 for bosons and gi < 0 for fermions. The 
minus sign follows from the Pauli exclusion principle and the anti-
commutator relations for fermions. The factor f is 1 for bosons, 2 
for each charged lepton and 6 for each flavour of quark (2 charge 
factors for the quark and antiquark, each with 3 colours).

It is important to choose a Lorentz covariant regularization to 
ensure that the renormalized zero-point energy satisfies the cor-
rect vacuum equation of state. Dimensional regularization with 
minimal subtraction, MS, is a good regularization. One finds

ρzpe = −pzpe = −h̄ gi
m4

64π2

[
2

ε
+ 3

2
− γ − ln

(
m2

4πμ2

)]
+ ...

(5)

from particles with mass m [9]. Here pzpe is the pressure, D =
4 − ε the number of dimensions, μ the renormalization scale and 
γ is Euler’s constant. If one instead uses a brute force cut-off on 
the divergent integral, the leading term in the ZPE proportional to 
k4

max obeys the radiation equation of state ρ = p/3.
Equation (5) means that the ZPE vanishes for massless parti-

cles, e.g. photons. For Standard Model particles it is induced by 
the Higgs mechanism. Boson and fermion contributions to the net 
zero-point energy come with different signs. This led Pauli to sug-
gest a collective cancellation of the ZPE [10], much like the Velt-
man condition for the Higgs mass squared. If we take the ZPEs as 
physical, then this Pauli constraint for cancelling the ZPE gives new 
constraints on possible extra particles [10,11]

∑
i

gim
4
i = 0

∑
i

gim
4
i ln m2

i = 0. (6)

For the Standard Model with the physical W, Z and top-quark 
masses, these two equations would need a Higgs mass of about 
319 GeV and 311 GeV respectively, close to the Veltman value 
of 314 GeV. With the Standard Model particle masses, the ZPE is 
negative and fermions dominated. We need some extra bosons if 
we want this to work. (Contributions to the total vacuum energy 
from the Higgs potential and QCD condensates are discussed in 
Section 4 below.)

Obvious first candidates are 2 Higgs Doublet Models [12]. These 
are a simple extension of the Standard Model. One introduces 
a second Higgs doublet. There are 5 Higgs bosons, two neutral 
scalars h and H , one pseudoscalar A and two charged Higgs states 
H± . Since the 125 GeV Higgs-like scalar discovered at CERN in 
2012 [1,2] has so far showed no departure from Standard Model 
predictions, it must be assumed in any model with extra Higgs 
states that one of the neutral scalars h is a lot like the Standard 
Model Higgs.

The possible extra Higgs states are looked for in direct searches 
[13,14]. The parameter space is constrained with lower bounds on 
the masses from global electroweak fits [15] and rare B-decay pro-
cesses [16,17]. Different model scenarios depend on the fermion 
to Higgs couplings. The most constrained are Type II models with 
600 GeV < mH± , 530 GeV < mA and 400 GeV < mH . Here one 
doublet couples to up type quarks and one to down type quarks 
and leptons. Others are the type I fermiophobic model where all 
fermions couple to just one doublet, lepton specific (one doublet 
to quarks and one to leptons) and flipped (same as type II ex-
cept leptons couple to the doublet with up type quarks). There 
are also inert models where only one doublet acquires a vev and 
couples to fermions. These models are less well constrained. For 
the Veltman condition extended to 2HDMs, a favoured bench-
mark point is quoted in the Type II model with mH ∼ 830 GeV 
and mA, mH± ∼ 650 GeV [18]. Within the mass constraints quoted 
for the Type II models, bosons win! We would need also extra 
fermions in the energy range of the LHC to cancel the Pauli condi-
tion with the allowed masses.

3. Running masses

We next turn to running masses.
Both the Veltman and Pauli constraints are evaluated from loop 

diagrams so the masses which appear there are really renormaliza-
tion group, RG, scale dependent. Boson and fermion contributions 
enter with different signs and evolve differently under RG evolu-
tion which means they have a chance to cross zero deep in the 
ultraviolet. With the particle masses and couplings measured at 
the LHC, the Standard Model works as a consistent theory up to 
the Planck scale. One finds that the electroweak vacuum sits very 
close to the border of stable and metastable suggesting possible 
new critical phenomena in the ultraviolet, within 1.3 standard de-
viations of being stable on relating the top quark Monte-Carlo and 
pole masses if we take just the Standard Model with no coupling 
to undiscovered new particles [19]. The question of vacuum stabil-
ity depends on whether the Higgs self-coupling crosses zero or not 
deep in the ultraviolet and involves a delicate balance of Standard 
Model parameters. The Higgs and other particle masses might be 
determined by physics close to the Planck scale.

The scale of Veltman crossing is calculation dependent. Values 
reported are 1016 GeV with a stable vacuum [4], about 1020 GeV 
[20] and much above the Planck scale of 1.2 × 1019 GeV [21,22]
with a metastable vacuum. With the Standard Model evolution 
code [23] crossing is found at the Planck scale with a Higgs mass 
about 150 GeV, and not below with the measured mass of 125 
GeV. (The 125 GeV mass is close to the minimum needed for vac-
uum stability.)

4. The cosmological constant

Experimentally, vacuum energy becomes important through the 
cosmological constant �. This measures the vacuum energy den-
sity ρvac = �/(8πG) where G is Newton’s constant. The cosmolog-
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ical constant appears on the right-hand side of Einstein’s equations 
of General Relativity

Rμν − 1

2
gμν R = −8πG

c2
Tμν + �gμν. (7)

Here Rμν is the Ricci tensor, R is the Ricci scalar and Tμν is the 
energy-momentum tensor for excitations above the vacuum. The 
cosmological constant receives contributions from the ZPEs, any 
(dynamically generated) potential in the vacuum, e.g. associated 
with the Higgs and QCD condensates, and a renormalized version 
of the bare gravitational term ρ� [8,24].

The net vacuum energy density after turning on particle inter-
actions,

ρvac = ρzpe + ρpotential + ρ�, (8)

is renormalization scale invariant. It drives the accelerating expan-
sion of the Universe and is independent of how a theoretician 
might choose to calculate it,

d

dμ2
ρvac = 0. (9)

Before we couple to gravity only energy differences have phys-
ical meaning, which then allows us to cancel the zero-point 
energy contribution by normal ordering before consideration of 
vacuum potentials induced by spontaneous symmetry breaking. 
The Casimir force which is sometimes claimed as experimen-
tal evidence for ZPEs can also be calculated without reference 
to ZPEs [25]. Calculation of the Casimir effect involves Feynman 
graphs with external lines whereas the ZPE does not, just closed 
loops.

The ZPE contributions in Eq. (5) are scale dependent both 
through explicit μ2 dependence and through the running masses. 
For QCD, the degrees of freedom depend on the resolution. Deep 
in the ultraviolet one has asymptotic freedom. For massless quarks, 
the ZPE vanishes. Quark-gluon interactions are chiral symmetric 
at these scales. In the infrared confinement and dynamical chiral 
symmetry breaking take over: the degrees of freedom are pro-
tons, neutrons, pions, nucleon resonances... If energy conservation 
held for the ZPE (plus QCD potential terms) one would find a 
constraint condition on the hadron spectrum from summing over 
hadronic ZPE contributions. The Higgs potential is RG scale depen-
dent through the scale dependence of the Higgs mass and Higgs 
self-coupling, which determines the stability of the electroweak 
vacuum. QCD quark and gluon condensates also enter. Renormal-
ization scale dependence cancels to give the scale invariant ρvac. 
The important question is whether, after we sum over the ZPEs, 
potentials in the vacuum and the ρ� contribution in Eq. (8), there 
is anything left over. How big is the remaining ρvac?

A clue may be the curious result that with a finite cosmolog-
ical constant Einstein’s equations have no solution where gμν is 
the constant Minkowski metric [8] (A non-vanishing ρvac acts as a 
gravitational source which generates a dynamical space-time, with 
accelerating expansion for positive ρvac). For the vacuum with net 
constant field, ρvac �= 0, space-time translational invariance is bro-
ken without extra fine tuning. This, in turn, challenges the flat 
space-time with covariance assumed in Eq. (5).

So far we have treated the Standard Model as fundamental. In-
teractions are determined by gauge symmetries. The theory is co-
variant and renormalizable and described by an action with terms 
of dimension four or less.

The Standard Model and its gauge symmetries might be emer-
gent [4,5,26–29]. For example, Standard Model particles could be 
the long-range, collective excitations of a statistical system near to 
its critical point that resides close to the Planck scale [4]. With the 
Standard Model as an effective theory emerging in the infrared, 
low-energy global symmetries can be broken through additional 
higher dimensional terms, suppressed by powers of a large ultravi-
olet mass scale [5,29]. Gauge symmetries would be exact, modulo 
the Higgs coupling, within the effective theory. Suppose the vac-
uum including condensates with finite vevs is translational invari-
ant and flat space-time is consistent at dimension four, just as sug-
gested by the success of the Standard Model. Then the RG invariant 
scales �qcd and electroweak �ew might enter the cosmological 
constant with the scale of the leading term suppressed by �ew/M , 
where M is the scale of emergence (that is, ρvac ∼ (�2

ew/M)4 with 
one factor of �2

ew/M for each dimension of space-time). This sce-
nario, if manifest in nature, would explain why the cosmological 
constant scale 0.002 eV is similar to what we expect for the neu-
trino masses [30], themselves linked to a dimension five operator 
with mν ∼ �2

ew/M and Majorana neutrinos [31]. The cosmolog-
ical constant would vanish at dimension four. That is, ρvac = 0
follows as a renormalization condition at dimension four set by 
space-time translational invariance, even in the presence of Higgs 
and QCD vacuum condensates. The precision of global symmetries 
in our experiments, e.g. lepton and baryon number conservation, 
tells us that the scale of emergence should be deep in the ultra-
violet, much above the Higgs and other Standard Model particle 
masses.
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