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Abstract

The aim of this work is to devise an auxiliary method of reconstruction of the K→ π0π0

decay vertex for the KLOE experiment. The requirement for reconstruction is not to

depend on quantities that may be affected by kaon regeneration and thus to allow for its

rejection as background for the φ → KSKL → π+π−π0π0 process. A new reconstruction

algorithm is proposed and implemented which uses four photons from the K → π0π0 →
γγγγ decay chain recorded by an electromagnetic calorimeter and is based on finding their

common origin point. A kinematic fit is included in the algorithm in order to tune the

quantities used as input to vertex reconstruction and thus increase spatial resolution of

vertex location. The final resolution achieved by the new reconstruction algorithm was

found to be about 0.5 cm in each spatial coordinate for vertices of kaons decaying very

close to their production point and about 2.5 cm for the most interesting region where

the spherical beam pipe is present. The prospects of application of the new algorithm to

rejection of regeneration background were tested in several ways.
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Chapter 1

Introduction

The K mesons were the first particles to be called strange by physicists due to a large dif-

ference in time scales between their production and decays which surprised scientists after

their discovery in 1947 [1]. This was due to the fact that kaons contain the third lightest

quark and so not only did the word strange permanently enter the scientific language as

the name of the quark’s flavour but also kaons with their peculiar properties become one

of the most intensively examined particles in modern physics. Among them neutral kaons

are of special interest as their observation led to the discovery of CP symmetry violation

in 1964 [2]. Since then neutral K meson decays were studied in numerous experiments to

examine both direct and indirect CP violation [3].

The neutral kaon system has, however, even more exciting properties to be examined. As

flavoured mesons, kaons can be produced in pairs whose states are entangled in the sense of

the Einstein-Podolsky-Rosen quantum correlation [4]. Moreover, the difference in masses

of the two neutral kaons is small enough [5] for the interference phenomena resulting from

the correlation to be measurable. This opens a new world for kaon interferometry, allowing

for CP violation studies and even for tests of the basic quantum mechanics’ principles such

as the large-scale persistence of quantum coherence [6].

One of the possible interferometric studies with correlated kaon pairs involves the φ →
KSKL → π+π−π0π0 process in order to determine the ε′

ε parameter which is a measure of

the CP violation [7] (details on the neutral kaon physics are described in the next chapter).

Here, however, kaons’ peculiarities become both the friend and foe because the process

of neutral kaon regeneration constitutes one of the major background sources in such an

analysis. Regeneration is a transformation of one neutral kaon into the other one which

destroys quantum correlation in the system while leading to the same final state as a signal

event. In addition to the entanglement loss the regeneration taking place at the KLOE

detection setup is predominantly incoherent [8] and changes the momentum direction of

the kaon. This is especially difficult to recognize in case of the K → π0π0 decay which

1



Chapter 1. Introduction 2

involves only neutral particles and therefore the momentum direction of the initial kaon

cannot be precisely determined.

The KLOE experiment located in the National Nuclear Physics Laboratory in Frascati

(Italy) was designed with a view to investigating the physics of kaon pairs produced in

the φ meson decays among other studies such as η ans η′ meson decays and search for

the dark forces [9–11]. KLOE is a barrel-shaped detector located on the e+e− collider

DAΦNE which operates at the energy equal to the φ meson resonance (mφ = 1019.455±
0.020 MeV/c2 [5]) leading to the φ meson production. The latter decays to two neutral

kaons with a 34% branching fraction [5], thus providing numerous opportunities to observe

correlated kaon pairs. A significant part of the long-lived K mesons, however, is regenerated

while passing through elements of the detector. Moreover, the standard K → π0π0 vertex

reconstruction algorithm used in KLOE is not sensitive when incoherent regeneration

happens, making it impossible to reject regeneration using vertex location. These facts

raise a need for an auxiliary K → π0π0 decay vertex reconstruction method which would

not be prone to error in case of kaon regeneration and would provide means to recognize

and efficiently reject such events.

This thesis presents a study on such a new reconstruction algorithm developed and tested

with a view to its application as a tool for regeneration background rejection for the data

collected by the KLOE experiment and for further usage in the KLOE-2 experiment. The

work is divided into eight chapters. Chapter 2 describes basic properties of the neutral kaon

system and the neutral kaon regeneration mechanism as well as the quantum entanglement

phenomenon with its use for interferometric studies. These are followed by a detailed

description of the DAΦNE collider and the KLOE experiment in Chapter 3. Chapter 4

presents the φ→ KK→ π+π−π0π0 process as well as the standard method of K → π0π0

vertex reconstruction and its sensitivity to the regeneration process. Chapter 5 comprises

the operation principle and implementation details of the new reconstruction algorithm,

followed by its tests. Chapter 6 is devoted to the details of a fit method introduced to

increase reconstruction accuracy. Finally, results of application of the new method to

regeneration background rejection in the KLOE data are contained in Chapter 7, leading

to the conclusions summarized in the last chapter.



Chapter 2

Neutral kaon physics

Being the first observed particles that contain the strange quark, kaons gave rise to the

new field of flavour physics with phenomena inaccessible using unflavoured particles. Ad-

ditionally, because of their relatively small mass (mK =497.614±0.024 MeV/c2 [5]) they

are easily produced at medium energy range accelerators and thus have been studied in

numerous experiments through last decades (NA31, NA48, KTeV [12–14] are only a few

examples) which contributed to understanding of such fundamental issues as the CP sym-

metry and its violation.

One of the most interesting experimental techniques available with kaons is the neutral

kaon interferometry which utilizes the quantum entanglement in neutral kaon pairs allow-

ing for various measurements as the simultaneous determination of direct and indirect CP
violation observables [15]. However, an obstacle to such investigations is the regeneration

process, inevitable in neutral K meson systems.

This chapter starts with the description of neutral kaon states well-defined at their produc-

tion and decays as well as the properties of decaying states which will be useful for further

considerations. Furthermore, the mechanism of quantum entanglement is presented fol-

lowed by its application to determine the ε′

ε parameter in the study of KSKL → π+π−π0π0

channel. Finally, the regeneration process is explained as well as its impact on the feasi-

bility of the interferometric investigations.

2.1 Neutral kaon states

Kaons are light pseudoscalar mesons containing the strange quark and therefore have a

non-zero strangeness quantum number. The four K mesons constitute two isospin doublets:

(K+, K0) with S=1 and (K−, K
0
) with S=-1. Table 2.1 presents the quark content of

kaons. The two neutral, K0 and its antiparticle K
0
, will be discussed in more detail as

their properties are of great importance to this work.

3
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K+ K− K0 K
0

quarks us us ds ds

strangeness 1 -1 1 -1

Table 2.1: Quark content and strangeness of the K mesons.

Strangeness is conserved in strong interactions through which kaons are produced and thus

their creation from non-strange particles requires that they either appear in pairs or along

with another strange particle like Λ0 (Λ0 = uds). Strangeness conservation makes the

basis of strangeness operator eigenstates suitable for describing the production of kaons.

Their decays, however, occur through weak processes where strangeness is not conserved

and a different basis is necessary for a convenient description of the decaying states.

Let us consider a basis of states with well-defined CP values. Although K0 and K
0

are

clearly not CP eigenstates:

CP |K0〉 = |K0〉 , CP |K0〉 = |K0〉 ,

their linear combinations can be used to construct a proper CP basis:

|K0
1〉 =

1√
2

(
|K0〉+ |K0〉

)
CP = +1,

|K0
2〉 =

1√
2

(
|K0〉 − |K0〉

)
CP = −1.

(2.1)

The K0
1 and K0

2 states can be identified as the decaying kaons. Since they decay mostly

into pions, for CP symmetry to hold, K0
1 may only decay into two pions whereas for the

K0
2 decay only a three-pion final state is possible. The K0

1 and K0
2 states are often called

short and long-lived (KS, KL), respectively, because a more limited phase space for the

K0
2 → 3π decay makes its life time significantly larger than K0

1.

Kaon decays, however, involve weak interactions which violate the CP symmetry as it was

proven in 1964 by Christenson, Cronin, Fitch and Turlay in their experiment [2]. They

observed a decay of the long-lived kaon into π+π− with a branching fraction of the order of

10−3 and thus neutral K mesons have provided the first evidence of CP symmetry violation

in weak interactions. It is then apparent that the decaying kaon states are not well-defined

CP eigenstates.

In order to account for possible CP violation, the K0
1 and K0

2 states from Eq. 2.1 have to

be corrected by introducing small parameters εS and εL:

|KS〉 =
1√

2(1 + |εS |2)

(
(1 + εS)

∣∣K0
〉

+ (1− εS)
∣∣∣K0
〉)

,

|KL〉 =
1√

2(1 + |εL|2)

(
(1 + εL)

∣∣K0
〉
− (1− εL)

∣∣∣K0
〉)

.

(2.2)
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The above states properly describe the decaying kaons and are labelled KS and KL for

short-lived and long-lived kaon, respectively. They are also eigenstates of the effective

hamiltonian H of the neutral kaon system which includes strong and electromagnetic as

well as weak interactions. Although the effective hamiltonian is not hermitian, it can be

decomposed into hermitian and anti-hermitian parts (in the {K0,K
0} basis) [6]:

H =

(
H11 H12

H21 H22

)
= M− i

2
Γ =

(
M11 M12

M∗12 M22

)
− i

2

(
Γ11 Γ12

Γ∗12 Γ22

)
. (2.3)

The eigenvalues of H corresponding to eigenstates {KS,KL} are then:

λS = mS − i
ΓS
2
,

λL = mL − i
ΓL
2
.

(2.4)

2.2 Kaon system properties

Basic properties and most important decay channels of the long-lived and short-lived kaon

states are given in Table 2.2. Further in this work, only the decay channels into two pions

KS KL

mean life time (89.54 ± 0.04) ps (51.16 ± 0.21) ns

mass (497.614 ± 0.024) MeV/c2

mass difference (3.484 ± 0.006)×10−12 MeV/c2

π+π− (6.920 ± 0.005)×10−1 π±e∓νe (4.055 ± 0.011)×10−1

π0π0 (3.069 ± 0.005)×10−1 π±µ∓νµ (2.704 ± 0.007)×10−1

major decay modes π+π−γ (1.79 ± 0.05) ×10−3 3π0 (1.952 ± 0.012)×10−1

(branching ratio) π±e∓νe (7.04 ± 0.08) ×10−4 π+π−π0 (1.254 ± 0.005)×10−1

π±µ∓νµ (4.69 ± 0.05) ×10−4 π±e∓νeγ (3.79 ± 0.06) ×10−3

π+π− (1.966 ± 0.010) ×10−3

π0π0 (8.64 ± 0.06) ×10−4

Table 2.2: Some of the properties and decay modes of neutral kaons [5].

will be considered. Therefore it is worth noting that whereas KS predominantly decays

into two pions, for KL similar decays violate the CP symmetry and thus are much less

probable than semileptonic and three-pion decay modes. Furthermore, as it was mentioned

in the introduction to this chapter, the fact that mass difference between short and long-

lived kaons is small is crucial for the possibility of interference phenomena observation on

measurable time scales.
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2.3 Neutral kaon interferometry

2.3.1 Quantum entanglement of kaons

When kaons are produced in the decays of unflavoured neutral mesons, strangeness con-

servation demands that they are created in pairs. Moreover, as the decays are strong,

C and P values of the original meson must also be preserved. For instance, in the decay of

a φ meson with JPC = 1−− into two neutral kaons, the simplest state of the kaon system

which is an eigenstate of both C and P with eigenvalues equal to -1 can be constructed as

a linear superposition of zero-strangeness states [6]:

|i〉 =
1√
2

(∣∣K0(+~p)
〉 ∣∣∣K0

(−~p)
〉
−
∣∣∣K0

(+~p)
〉 ∣∣K0(−~p)

〉)
, (2.5)

where the momenta of kaons are expressed in the center of mass (CM) reference frame.

The state is labelled |i〉 as the initial state of the neutral kaon system produced in a φ

decay.

As mentioned before, kaon decays are described more conveniently in the {KS,KL} ba-

sis, therefore for further considerations, based on equations (2.2), equation (2.5) can be

transformed into:

|i〉 =
N√

2
(|KS(+~p)〉 |KL(−~p)〉 − |KL(+~p)〉 |KS(−~p)〉) (2.6)

with:

N =

√
(1 + |εS |2)(1 + |εL|2)

1− εSεL
' 1

as a normalization factor.

Let us now assume that the two neutral kaons decay into two final states f1, f2 after

their proper times t1 and t2, respectively, and let T denote the transition matrix. The

time-dependent amplitude of the f1f2 final state is then of the form:

A(f1, t1; f2, t2) =
N√

2

(
〈f1|T|KS(t1)〉 〈f2|T|KL(t2)〉 − 〈f1|T|KL(t1)〉 〈f2|T|KS(t2)〉

)
(2.7)

The time evolution of KS and KL states is given by [6]:

|KS(t)〉 = e−λSt |KS〉 = e−(mS−
ΓS
2

)t |KS〉 ,

|KL(t)〉 = e−λLt |KL〉 = e−(mL−
ΓL
2

)t |KL〉 .
(2.8)
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Inserting it into the amplitude (2.7) and taking the square yields the probability of kaons

decaying to a f1f2 final state in times t1 and t2:

I(f1, t1; f2, t2) = C12

[
|η1|2e−ΓLt1−ΓSt2 + |η2|2e−ΓSt1−ΓLt2

− 2|η1||η2|e
ΓS+ΓL

2
(t1+t2) cos(∆m(t1 − t2) + ϕ2 − ϕ1)

] (2.9)

where

C12 =
|N |2

2
| 〈f1 |T |KS〉 〈f2 |T |KS〉 |2,

ηi are defined as ratios of transition amplitudes:

ηi =
〈fi |T |KL〉
〈fi |T |KS〉

, (2.10)

ϕi are their respective complex phases and ∆m is the mass difference between KS and KL

(see Section 2.2).

The interference term in the second line of expression (2.9) describes the quantum correla-

tion of KS and KL states produced in the same φ decay. Indeed, in the initial state of the

neutral kaon system (2.6) none of the two kaons’ states can be expressed independently of

the other one. This phenomenon was first described by Einstein, Podolsky and Rosen in

their famous work [4] as a paradox in quantum mechanics. If one of two particles in such

a superposition of states is measured for a certain observable, this immediately implies

knowledge of this observable for the second particle regardless of their spatial separation.

Interferometric investigations with the neutral kaon system allow for testing quantum me-

chanics principles from which these large-scale correlations result, but the presence of the

interference term also allows for numerous other measurements such as the simultaneous

determination of the real and imaginary part of the CP violation parameter ε′

ε , which will

be described in the following section.

2.3.2 Measurement of ε′

ε

The coefficients εS , εL from equation (2.2) which describe the degree of CP violation in

KS and KL mesons may also be parametrized as [6]:

ε =
εS + εL

2
, δ =

εS − εL
2

,

where ε can be defined using elements of the hamiltonian of neutral kaon system (2.3)

after neglecting higher order terms [16]:

ε =
H12 −H21

2(λS − λL)
.
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As the equality of effective hamiltonian elements H12 = H21 should hold if the CP symme-

try is conserved, the value of ε is a measure of CP violation. This parameter is, however,

dependent on the phase convention [16]. Fortunately, there are also several other ways to

define the two CP violation parameters which are independent of the phase convention. In

this work a definition sometimes referred to as “experimental” will be used as in [17, 18],

and a comprehensive summary of other possible approaches can be found in [19].

Let us consider the transition amplitudes of kaons as isospin states into two-pion final

states with definite isospin value I :

〈ππ(I)|T|K0〉 = AIe
iδI ,

〈ππ(I)|T|K0〉 = AIe
iδI .

(2.11)

As only final states with I = 0 or 2 are possible, amplitudes of decays of the KS and KL

states into π0π0 and π+π− can be expressed in terms of A0 and A2 and the respective ηi

parameters (2.10) may be decomposed into the following combinations [18]:

η00 =
〈π0π0|T|KL〉
〈π0π0|T|KS〉

= ε− 2ε′,

η+− =
〈π+π−|T|KL〉
〈π+π−|T|KS〉

= ε+ ε′
(2.12)

of parameters ε, ε′ which (after neglecting higher order terms) are given as:

ε = ε+ i
=(A0)

<(A0)
,

ε′ = i
ei(δ2−δ0)

√
2

<(A2)

<(A0)

[
=(A2)

<(A2)
− =(A0)

<(A0)

]
.

(2.13)

The above parameters are measurable and independent of the phase convention. A non-

zero value of ε′ indicates direct CP violation whereas ε is a measure of indirect CP violation

[18].

Based on the branching fractions of neutral kaon decays into two-pion final states it is

possible to determine the real part of the ε′/ε ratio using the relation [19]:

<
(
ε′

ε

)
' 1

6

(
1−

∣∣∣∣ η00

η+−

∣∣∣∣2
)
. (2.14)

The average result of such a measurement is [5]:

<
(
ε′

ε

)
= (1.66± 0.23)× 10−3. (2.15)

It is worth to note that it is impossible to probe =
(
ε′

ε

)
in a similar manner. This is where

interferometic methods reveal their potential, as the study of correlation between decays
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in the KSKL → π+π−π0π0 process allows for a simultaneous measurement of both the real

and imaginary part of ε′

ε .

In Section 2.3.1 the probability of a neutral kaon system decaying into final states f1, f2 in

times t1, t2 was derived. The two final states may be chosen as f1 = π+π− and f2 = π0π0.

Moreover, if equation (2.9) is integrated over t1 + t2 with fixed ∆t = t1 − t2, a formula

is obtained for the probability of the decays taking place with a certain time difference

rather that in absolute times [6]:

I+−00(∆t ≥ 0) = I(π+π−, π0π0; ∆t) =
C12

Γs + ΓL

[
|η+−|2e−ΓL∆t + |η00|2e−ΓS∆t

− 2|η+−||η00|e
ΓS+ΓL

2
∆t cos(∆m∆t+ ϕ2 − ϕ1)

] (2.16)

Although the above is valid only for ∆t ≥ 0, a symmetrical formula is obtained for ∆t <

0 by exchanging the f1 and f2 states. Figure 2.1 shows a complete plot of the I+−00

probability as a function of ∆t. The time difference is expressed in units of KS lifetime

for convenience. It can be seen that the non-zero value of the ε′

ε parameter results in an

asymmetry of this distribution around ∆t = 0.

Sτ t / ∆
-20 -15 -10 -5 0 5 10 15 20

 [a
.u

.]
+

-0
0

I

0

0.05

0.1

0.15

0.2

0.25

0.3

Figure 2.1: Intensity of φ → KSKL → π+π−π0π0 decays I+−00(∆t) as a function of

the difference of kaon decay times. Solid (black) line corresponds to ε′

ε = 0, dotted (red)

line to <
(
ε′

ε

)
= 0.01 and dashed (blue) line to =

(
ε′

ε

)
= 0.05. The region |∆t/τS | < 5 is

sensitive to =
(
ε′

ε

)
while for large |∆t/τS | the intensity asymmetry tends to 3<

(
ε′

ε

)
.

In order to measure this asymmetry the following time-dependent asymmetry function is

introduced:

Aε′/ε(|∆t|) =
I+−00(∆t > 0)− I+−00(∆t < 0)

I+−00(∆t > 0) + I+−00(∆t < 0)
. (2.17)
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This function can be separated into components proportional to <
(
ε′

ε

)
and =

(
ε′

ε

)
[17]:

Aε′/ε(|∆t|) =AR(|∆t|)<
(
ε′

ε

)
−AI(|∆t|)=

(
ε′

ε

)
, (2.18)

where

AR(|∆t|) = 3
e−ΓL|∆t| − e−ΓS |∆t|

e−ΓL|∆t| + e−ΓS |∆t| − 2e−
ΓL+ΓS

2
|∆t| cos(∆m|∆t|)

AI(|∆t|) = 3
2e−

ΓL+ΓS
2
|∆t| sin(∆m|∆t|)

e−ΓL|∆t| + e−ΓS |∆t| − 2e−
ΓL+ΓS

2
|∆t| cos(∆m|∆t|)

.

(2.19)

An important result of (2.19) is that Aε′/ε is sensitive to the <
(
ε′

ε

)
and =

(
ε′

ε

)
parameters

for distinct ranges of the time difference. It can be shown [15] that:

Aε′/ε
|∆t�τS |−−−−−→ 3<

(
ε′

ε

)
, (2.20)

whereas for |∆t| < 5τS the asymmetry is sensitive to =
(
ε′

ε

)
.

The simultaneous extraction of the real and imaginary parts of ε′

ε is possible by means of

a fit of the asymmetry function (2.19) to the asymmetry calculated from an experimental

distribution of I+−(∆t). The latter can be determined in an experiment where entangled

neutral kaon pairs are produced and their decay times can be measured.

2.4 Kaon regeneration

Neutral kaon regeneration is a peculiar process leading to the fact that when an initially-

pure beam of KS or KL traverses through matter, a non-zero component of the other state

appears in the beam. Predicted theoretically by Pais and Piccioni in 1955 [20], it was

observed in experiment 6 years later and used as a tool to determine the mass difference

between KS and KL [21].

Regeneration results from the mass eigenstates of kaons (KS, KL) being superpositions of

K0 and K
0

as in (2.2). K mesons passing through matter can undergo strong interactions

with nucleons which are well described in the {K0,K
0} basis. However, it turns out that

the conservation of quantum numbers does not allow the same set of reactions for K0 and

K
0
. For instance, the processes:

K
0

+ p→ Λ0 + π+,

K
0

+ n→ Λ0 + π0
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have no equivalent for K0. As a result, the total cross section for interaction with nucleons

is larger for K
0

than for K0 (except for the asymptotic region where equality holds) [22]:

σT (K
0
N) ≥ σT

(
K0N

)
. (2.21)

Let us now consider the evolution of a beam of pure KL state traversing through matter.

The initial state can be expressed as:

|i〉 = |KL〉 =
1√

1− |εL|2
(

(1 + εL)
∣∣K0
〉
− (1− εL)

∣∣∣K0
〉)

, (2.22)

and the final state |f〉 after the interaction may be described using the angle-dependent

scattering amplitudes f(θ) and f(θ) for K0 and K
0

respectively:

|f〉 =
1√

1− |εL|2
(
f(θ)(1 + εL)

∣∣K0
〉
− f(θ)(1− εL)

∣∣∣K0
〉)

. (2.23)

When the transition back to the {KS,KL} basis is made it becomes apparent that a

component of the KS state may appear in the initially-pure KL beam if the scattering

amplitudes differ:

|f〉 =
f(θ) + f(θ)

2
|KL〉+

f(θ)− f(θ)

2
|KS〉 . (2.24)

The difference of scattering amplitudes is indeed non-zero as a result of (2.21). Therefore

it is useful to define the regeneration amplitude using this difference [22]:

freg(θ) ≡
f(θ)− f(θ)

2
. (2.25)

Value of freg(θ) depends on the type of the regeneration process which can be coherent

or incoherent due to different possible ways of scattering in the medium [8]. In coherent

regeneration the kaon does not change its direction (θ < 10−6 rad) whereas the incoherent

(elastic) regeneration results in a change of the momentum direction of the kaon with a

probability dependent on the regeneration angle θ. A detailed analysis of these two kinds

of regeneration and their probabilities can be found in ref. [8, 22].

Neutral kaon regeneration is an important obstacle in the interferometric studies described

in the previous section which are performed for example at the KLOE experiment. Next

chapter gives a description of the KLOE experimental setup as well as an overview of

regeneration possible in that case.





Chapter 3

The DAΦNE collider and the

KLOE experiment

The KLOE Experiment is situated at the DAΦNE e+e− collider [23] in the National

Laboratory of Frascati (LNF) which is a part of the Italian National Institute for Nuclear

Physics (INFN) located in the city of Frascati near Rome. The idea of building a φ-factory

was born in 1989 [24] and only two years later the construction of a sophisticated detector

was proposed for studying CP violation in the system of neutral kaons.

KLOE started its operation in 1999 and was taking data during two periods — in the

years 2001–2002 and 2004–2005. A total of about 2.5 fb−1 of data was collected which

corresponds to about 1010 of φ mesons produced. Presently an upgrade of KLOE is being

performed with a view to starting the new generation of experiment — KLOE-2 which

aims at both higher precision and luminosity (DAΦNE has already proved its capability

of delivering a luminosity 3 times higher than before the upgrade [25]).

The name of KLOE stands for the K-LOng Experiment and indeed multiple traits of its

setup are dictated exclusively by the special properties of the long-lived neutral kaon such

as its unusually long lifetime and the possibility of regeneration.

This chapter is started with a description of the DAΦNE collider as the source of φ

mesons for KLOE. Subsequently, an overview of the KLOE detector is presented followed

by details of its two major components — the drift chamber and the electromagnetic

calorimeter. A particular emphasis is put on the latter as it is the source of information

used in the reconstruction algorithm presented in this work, and its properties are of

special importance for future considerations.

13
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3.1 The DAΦNE collider

As it is indicated by its full name which stands for Double Annular Factory for Nice

Experiments, the DAΦNE collider is composed of two separate storage rings as shown in

the right side of Figure 3.1. Such design allows for a larger number of bunches in the rings

in comparison to the conventional single-ring colliders, thus leading to a higher luminosity.

Each ring of DAΦNE stores a beam of the energy of 0.51 GeV composed of 120 bunches

of particles — electrons in one of them and positrons in the other. A single bunch is a

packet of about 8.9×1010 particles which collides with a bunch of its antiparticles once per

cycle [23, 24].

Figure 3.1: The accelerator complex at LNF (left) and the DAΦNE storage rings (right).
On the left figure the location of the KLOE experiment on one of two interaction regions

of DAΦNE is also presented. The figures are adapted from [24] and [23] respectively.

In order to compensate for the decaying intensities of stored beams, several times per hour

the rings are injected with new particles produced in the accelerator complex (Figure 3.1,

left). The LINAC produces electrons which are either directly transferred to the accumu-

lator or used to produce positrons on a metallic target. The accumulator is then used for

both electrons and positrons to reduce the emittances of the initial LINAC beam and to

form a bunch which is finally injected into the ring.

There are two intersection points at the rings where the beams collide at an angle of

(π − 0.025) rad which is a result of the double-ring design. Since both rings lie in one

horizontal plane, the beam horizontal size is defined very well whereas the transverse

and longitudinal ones are larger by orders of magnitude. Mean beam sizes are shown in

Table 3.1 along with other DAΦNE parameters.

The beam energy is chosen so that the canter-of-mass energy of the colliding e+e− system

is at the peak of the φ meson, that is
√
s ' mφ = 1019.45 MeV. Thus in the collisions the

φ meson is predominantly produced with a peak cross section of about 3 µb−1 which is

the reason for DAΦNE being called a φ-factory.

The collision energy close to the peak results in the φ meson being produced almost at rest

(with βφ ≈ 0.015) in the laboratory frame although it has a small momentum component
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beam energy 510 MeV

bunches per beam 120

particles per bunch 8.9×1010

bunch size
σx 0.02 cm
σy 0.002 cm
σz 3 cm

max. luminosity 5×1032 cm−2s−1

RF frequency 368.25 MHz

Table 3.1: Selected parameters of the DAΦNE collider [23].

towards the center of the storage rings due to the beam crossing geometry. The φ meson

decays almost immediately (τφ = 1.55 ± 0.01 × 10−22 s [5]) through strong interaction,

mostly producing kaon pairs. Table 3.2 contains a summary of major φ decay channels.

Decay channel branching ratio [%]

φ→ K+K− 48.9±0.5

φ→ KSKL 34.2±0.4

φ→ ρπ0, φ→ π+π−π0 15.32±0.32

φ→ ηγ 1.309±0.024

Table 3.2: Main decay channels of the φ meson [5].

3.2 The KLOE detector

3.2.1 Geometry of the detector

KLOE, installed at Interaction Region 1 of DAΦNE (Figure 3.1, right), is a detector of

a barrel geometry surrounding the point of the e+e− collisions and covering 98% of the

full solid angle. Figure 3.2 shows a cross section of the detector in the plane of beam axis

and vertical direction. The two basic components of KLOE are the drift chamber (DC)

and the electromagnetic calorimeter (EMC). The latter is constituted by the barrel part

with an inner radius of 2 m and two endcaps mounted at the barrel ends which altogether

enclose the volume of the detector. The drift chamber is a cylinder of a 2 m outer radius

and inner radius of 25 cm filling all the space allowed by the EMC and by the focusing

quadrupole magnets mounted on the beam pipe. The sensitive detector components are

surrounded by a superconducting coil which provides a magnetic field of 0.52 T along the

beam axis.

The large size of KLOE is necessary for the possibility of recording decays of the KL meson.

The mean path of a long-lived kaon in KLOE is about 3.4 m even despite its small velocity

(βK ≈ 0.22) and therefore a large fiducial volume is necessary for capturing a reasonable

number of its decays. KLOE with its dimensions is able to record decays of about 40% of

the produced KL mesons.
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Figure 3.2: Cross section of the KLOE detector. The drift chamber (orange) is a
cylindrical shape surrounding the interaction point. Two quadrupole magnets mounted
on the beam pipe are covered with additional QCAL calorimeters [26] (green). The
electromagnetic calorimeter (red) consists of a barrel part surrounding the drift chamber
and the two end caps which close the barrel. The whole setup is immersed in magnetic
field provided by a superconductiong coil (blue) located around the calorimeter barrel.

The figure is adapted from [24].

For the system of coordinates used at the KLOE the geometrical middle point of the beam

pipe at the interaction region is chosen as (0,0,0). The x axis points radially towards the

outside of DAΦNE in the horizontal plane, y is the vertical direction pointing upwards

and the z axis lies along the intersection of the angle between the crossing beams in the

direction positrons’ movement [24]. This coordinate system will be used in the remainder

of this work.

3.2.2 Drift chamber

Tracking and identification of charged particles in KLOE is performed by a drift chamber

being one of the largest of such devices ever constructed [27]. It contains a total of

about 52000 wires aligned to the chamber axis between its end plates. About 12500 of

the wires are collecting the charge deposited by an ionizing particle in the gas filling the

chamber. The remaining wires are used to form the electric field of the DC cells so that

a proper dependence of the electron drift time on distance from the sensing wire can be

obtained. The cells, each constituted by one sensing wire and the surrounding field wires,

are arranged in 58 concentric layers in the chamber. Due to a usually higher track density
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in KLOE close to the interaction point, the 12 inner cells are sized 2×2 cm while the

remaining 46 are larger (3×3 cm) as shown in Figure 3.3 (left).

Figure 3.3: Alignment of the drift chamber cells (left) and geometry of the wires with
respect to the z axis (right). A non-zero stereo angle ε between a wire of length L and
the z axis is obtained with a twist of the wire endpoint by an angle α chosen so that the
difference of R0 and Rp distances remains constant independently of the absolute radius.

The figures are adapted from [28] and [24], respectively.

Rather than being parallel to the z axis the wires form a small stereo angle ε with the

axial direction (Figure 3.3, right). The value of this angle depends on the radius and varies

between 60 and 150 mrad while its sign is opposite for neighboring layers. Such geometry

allows for the determination of the z coordinate of a DC hit.

The construction materials as well as the gas mixture used in the KLOE DC were carefully

chosen with a view to minimizing the probability of kaon regeneration in the chamber.

Therefore the walls are built of a low-density and low-Z carbon fiber composite [24]. The

gas used is a mixture of helium (90%) and isobutane (10%) due to its minimal density

even though it has a higher diffusion of drifting ionization than certain other gases.

The hits recorded by wires and the measured drift times are used to reconstruct the track

of the particle. A pion from a KS → π+π− decay yields on average about 60 hits in

the DC [24]. Moreover, charge collected by the wires provides a measure of the energy

deposition which is characteristic of the particle type and thus gives the possibility of

particle identification. Finally, the curvature of the reconstructed track resulting from

the presence of magnetic field allows for determination of the particle momentum with an

excellent relative accuracy of σ(p)
p = 0.4% [27]. The spatial resolution of the drift chamber

is less than 200 µm in the transverse plane and about 2 mm in the z coordinate. Decay

vertices are reconstructed with an accuracy of about 1 mm [29].

3.2.3 Electromagnetic calorimeter

The purpose of the KLOE electromagnetic calorimeter (EMC) is to record hits of neutral

particles and provide Time-of-Flight (TOF) measurement possibility for charged ones.
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Hits of gamma quanta in the calorimeter are used to reconstruct the vertices in which

only neutral particles are produced such as KL → π0π0. Therefore the EMC was designed

to achieve an excellent time resolution and high detection efficiency for photons in the

20–500 MeV energy range [24].

The technology of a lead-scintillating fiber sampling calorimeter was applied in the KLOE

EMC. It is built of a composite of scintillating fibers as an active material and passive

lead layers which enhance the electromagnetic shower production. The diameter of fibers

is 1 mm whereas the lead layers are 0.5 mm thick and grooved so that the adjacent fibers

fill the grooves minimizing the amount of empty spaces. Alternating layers of lead and

fibers are glued together with a special epoxy and constitute a bulk material of which

the calorimeter modules are built. The lead:fiber:epoxy volume ratio of this composite is

42:48:10 resulting in a density of 5 g/cm3 and the radiation length X0 of about 1.5 cm

[30].

Figure 3.4: Modular composition and dimensions of the barrel EMC part (left) and the
cell structure of a single module (right). Dark dots represent photomultiplier tubes. The

figures are adapted from [31] and [32], respectively.

The EMC structure consists of a central barrel-shaped part and two endcaps closing the

barrel on both sides (Figure 3.2). The barrel is built of 24 modules forming a cylinder

as shown in Figure 3.4, left. Each module is a uniform piece of the composite described

above with about 200 lead-fiber layers perpendicular to the cylinder radius and the fibers

lying along the beam axis. The barrel modules are 4.3 m long with a trapezoidal cross

section with bases of 52 and 59 cm. Their thickness of 23 cm corresponds to about 15

radiation lengths.

Each of the endcaps is composed of 32 modules, rectangular in cross-section and bent

around the pole pieces of the magnet yoke into a C-shape (Figure 3.2). Such a geometry

allows to avoid the dead zones between barrel edges and the endcaps resulting in a good

coverage of the full solid angle (98% of 4π) by the whole calorimeter. Moreover, the

photomultiplier tubes (PMTs) placed at the ends of modules are thus always directed

along the magnetic field [30].
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Readout of the calorimeter modules is performed by arrays of photomultiplier tubes

mounted through light guides at both ends of each module. The guides are divided into

blocks of almost square cross section, one for each photomultiplier. This accounts for the

division of a whole EMC module into 5 planes and 12 columns of readout segments called

cells where each cell is read out by one PMT at each of its ends. The cell structure of a

module is shown in the right panel of Figure 3.4.

Such a segmentation allows for determination of the position of particle hit in two dimen-

sions: x-y in the barrel and x-z in the endcaps. When a particle causes an electromagnetic

shower in the EMC, its energy is deposited in multiple cells. All cells in which a signal

was detected are then analyzed and grouped into clusters [32]. The energy deposited by a

particle in the calorimeter is reconstructed as the sum of energies measured in all cells in

a cluster with appropriate corrections taken for light attenuation in the scintillating fibers

and the efficiency of photomultipliers.

The exact position of a hit in plane perpendicular to the fibers is taken as the energy-

weighted average of positions of cluster cells. This method results in a position resolution

of ∼1.3 cm in the x and y coordinates [24].

PMT A PMT B

z=0

L

Figure 3.5: Times tA,B of light recorded by the two PMT on the ends of a calorimeter
cell of length L. Blue dashed arrow indicates a particle hit position and tA,BL are times of

light travelling in the scintillator from this point to PMT A and B.

In order to measure the hit time and position along the cell, the times tA and tB of

impulses recorded by PMT on both ends A,B of a cell respectively, are considered and

used to compare the times tA,BL of light travelling from the hit point to the two ends of a

cell (Figure 3.5). The recorded times tA,B are the sum of light travel times tA,BL and the

time ttof elapsed between the beginning of event and hit in the EMC (for simplicity the

cable delays are omitted):

tA,B = tA,BL + ttof . (3.1)

The time of a hit for a certain cell is then calculated as an average of ttof obtained from

tA and tB:

tcell =
tA + tB

2
− L

2υ
, (3.2)

where υ is the velocity of light in the scintillator and the relation tALυ + tBLυ = L is used.

An energy-weighted average of these times for each cell in a cluster is eventually taken as

the cluster time Tcl.
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The z coordinate of the hit in a cell is obtained from the difference of light travel times in

the scintillator to cell ends A and B:

zcell =
tBL − tAL

2
υ, (3.3)

The z position is thus determined with respect to the center of a cell as shown in Figure 3.5.

Similarly as in case of time, the z coordinate of a whole cluster is the energy-weighted

average of zcell over the cluster cells.

The way the times tA and tB are measured is related to the KLOE trigger and will be

described in Section 3.2.4. Accuracy of time determination depends on the size of the

pulse and therefore on the energy deposited in the EMC which results in the resolution of

hit time and z position being energy-dependent. Due to this dependence it is justified to

take the energy-weighted average of times of all cells in a cluster as the cluster time Tcl.

A more detailed description of measurement procedures applied in the KLOE EMC can

be found in ref. [30]. Table 3.3 summarizes the resolutions for each of the parameters

measured by the KLOE calorimeter.

resolution

x,y 1.3 cm

z 1.2 cm√
E[GeV ]

t 54 ps√
E[GeV ]

⊕ 140 ps

E 5.7%E√
E[GeV ]

Table 3.3: Summary of the KLOE electromagnetic calorimeter resolution.

3.2.4 Trigger

The trigger system applied in KLOE comprises two levels and operates in continuous mode

due to high bunch crossing rate of DAΦNE. Level 1 trigger is based on the appearance

of isolated energy deposits in the EMC and multiplicity of hits in the DC [27]. This

trigger signal is obtained with a small delay and initializes the conversion in the front-end

electronics modules. The more detailed information collected from the DC and calorimeter

after the arrival of the first level trigger is then processed to obtain the level 2 trigger which

validates the first one and starts the readout of data [27].

The Time-to-Digital Converters (TDCs) which measure the times tA,B of light signal arrival

to the ends of calorimeter cells are started by the level 1 trigger synchronized with the

DAΦNE clock [33]. In consequence, the recorded cluster time Tcl is related to the actual
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time of flight Ttof of a particle from the interaction point to the calorimeter as below:

Tcl = Ttof + δc +Nbc · Trf , (3.4)

where δc accounts for the electronics-related delays, Nbc is the number of bunch crossings

necessary to generate the trigger and Trf ≈ 2.71 ns is the period related to DAΦNE

radio frequency. The values of δc and Nbc are determined for each data-taking run using

e+e− → γγ events. Such approach is caused by the fact that at KLOE high event rate and

relatively large spread of particle arrival times make it impossible to identify the bunch

crossing which corresponds to a certain event [33]. It also requires the synchronization of

level 1 trigger with DAΦNE RF clock which introduces a time jitter resulting in a constant

term of 140 ps which has to be added in quadrature to the temporal resolution as shown

in Table 3.3.





Chapter 4

The φ→ KSKL→ (KSKS→)π+π−π0π0

process at KLOE

In the φ → KSKL → (KSKS →)π+π−π0π0 process the π+π− are the only two particles

whose tracks are recorded by the drift chamber. As all other participants are neutral, the

possibility to reconstruct a kaon decay vertex where only neutral particles are involved is

especially important in this case.

Determination of such a neutral decay vertex is a challenging task since typically the

vertex resolution for charged decays is better than in case of fully neutral ones. While the

KS,L → π+π− decay vertex can be found with an excellent accuracy (about 3 mm) using

the charged pion tracks measured by the drift chamber, in the KS,L → π0π0 process no

tracks are recorded and the hits of four photons in the electromagnetic calorimeter are the

only trace of this event. A great advantage of KLOE, however, is the possibility of kaon

four-momentum reconstruction based on the information calculated from the other kaon

produced in a two-body φ decay. Although it allows for a significant improvement in the

accuracy of neutral vertex determination, its usage may lead to a loss of sensitivity to the

appearance of kaon regeneration process.

The following chapter starts with a depiction of φ→ KSKL → π+π−π0π0 process as it ap-

pears in KLOE, followed by a short discussion of possibilities of neutral kaon regeneration

on elements of the setup. Finally, the method of using EMC clusters and the tagged kaon

momentum for reconstruction of a neutral vertex, which is commonly applied at KLOE

both to the KL → π0π0 and KL → π0π0π0 decays, is presented. As this method does not

assume the possibility of incoherent kaon regeneration, its performance of reconstruction

for events with regeneration is also discussed.

23
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4.1 Properties of the process

Neutral kaons produced in the φ meson decay at KLOE move with a relatively small

velocity (β ≈ 0.22) which — given their life times as in Table 2.2 — results in a mean path

travelled of about 6 mm for KS and 340 cm for KL. While directions of their momenta

are exactly opposite in the CM reference frame, the small x momentum component of the

decaying φ needs to be included when transforming the kaons momenta to the laboratory

frame.

Figure 4.1 shows a schematic picture of the two possible variants of the process described

here, with either KS → π+π− and KL → π0π0 → 4γ (left) or vice versa (right). As one

of the kaons decays into a pair of charged pions and the other one into a neutral π pair,

only the former of these decays is recorded by the drift chamber. The tracks of charged

pions are used to reconstruct the momentum of the decaying kaon with a high accuracy

(see Section 3.2.2). The neutral pions produced in the other process, K → π0π0, decay

into pairs of γ photons almost in all cases (BR(π0 → γγ)=(98.823±0.034)% [5]). Due to

their short life time (τπ0=(8.52±0.18)×10−17s [5]) their travelled path is negligible and

the whole process appears in the experiment as 4 photons originating at the kaon decay

point.

calorimeter 
barrel

cluster

Figure 4.1: Schematic view the two possible scenarios of the φ→ KSKL → π+π−π0π0

process in the x-y plane of KLOE. Dashed lines represent particle paths not recorded
directly by the detector. For simplicity the paths of π0 particles are not shown.

The signature of the φ→ KSKL → π+π−π0π0 event at KLOE is therefore:

• two charged tracks connected to one vertex

• at least 4 calorimeter clusters not associated to DC tracks.

Usually there are more than 4 clusters recorded by the EMC in a single event which makes

it necessary to choose those which really come from the K→ π0π0 → 4γ decay. To achieve

this, all possible pairs of clusters are considered and the two pairs are chosen for whom
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the invariant masses of their corresponding γγ pairs are closest to the mass of π0 and for

whom the spread of KL decay points reconstructed separately for each of the 4 clusters is

the smallest. The cluster selection procedure must be performed along with the standard

vertex reconstruction described in Section 4.3.1.

Since the kaon momentum obtained as a sum of reconstructed momenta of four photons

is significantly less accurate than the momentum measured by the drift chamber, in many

considerations the precise momentum information of the kaon undergoing the K→ π+π−

decay is transformed to the other kaon by taking the opposite in the CM frame and

performing a Lorentz transform to the laboratory frame.

4.2 Kaon regeneration at KLOE

The probability of neutral kaon regeneration is significant when the kaon travels through

a dense material. Therefore, three solid parts of the KLOE detection setup account for

most of the regeneration events.

Figure 4.2: Location of the three materials closest to the IP which cause kaon regener-
ation in KLOE: the beryllium cylinder (blue), the beam pipe (green) and the inner wall

of the drift chamber (red). The figure is adapted from [8].

Placement of certain regenerating materials is shown in Figure 4.2. The beam pipe (BP) is

spherically shaped around the interaction point with a radius of 10 cm in order to ensure

vacuum in the volume of about 15λs isotropically around the φ decay point and thus

minimize the chance of KS regeneration [24]. The beam pipe is made of a 0.5 mm thick

layer of Be-Al alloy. Although regeneration of the short-lived kaon is indeed not observed

at KLOE due to its mean life time, KL is often regenerated when passing through the BP.

In order to ensure continuity of electric field in the spherical part of the BP, a cylinder

made of beryllium foil is inserted inside it as shown in Figure 4.2. The radius of the

cylinder is 4.4 cm. Despite the foil thickness of 50 µm, it also becomes an important

source of KL regeneration in KLOE. Third of the materials is the cylindrical inner wall
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of the drift chamber made of a 750 µm layer of carbon fiber and 150 µm of aluminum [8]

with a radius of 25 cm.

A detailed study of regeneration at KLOE can be found in ref. [8]. It is shown there that

the probability of coherent regeneration (which does not change the momentum direction of

the undergoing kaon) is two orders of magnitude smaller than for incoherent regeneration

which makes this process negligible at KLOE. The dominating incoherent regeneration

is associated with a change of the kaon direction. Let us define the regeneration angle

as an angle between momenta of the original KL and the KS produced in regeneration.

Distributions of this angle obtained with Monte Carlo-simulated events are shown in the

left plot of Figure 4.3. The Monte Carlo simulation can be also used to evaluate the
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Figure 4.3: Distributions of the regeneration angle (left) and momentum modulus
change due to regeneration (right) for all regeneration events (black histogram) and for
certain regenerating materials in KLOE (colors correspond to Figure 4.2). The distribu-

tions were obtained using Monte Carlo-simulated events.

change of kaon momentum value caused by regeneration. Right plot of Figure 4.3 shows the

distribution of the change of kaon momentum modulus defined as ∆p = |~p regen.KS
|−|~p initialKL

|.
It is visible that only regeneration on the DC wall may modify the kaon momentum

significantly. Taking into account the mean neutral kaon momentum of 127 MeV/c, the

maximum momentum change due to regeneration on the beryllium or the beam pipe is

about 8%. Such a maximum change in momentum corresponds to an average difference

in the regenerated KS path of about 0.5 mm.

The probabilities of regeneration of a kaon passing a certain material as well as cross

sections for these processes were estimated for all main regenerating materials of KLOE.

Table 4.1 contains a summary of available measurements of cross section values for regen-

eration at KLOE.
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source
Regeneration cross section [mb]

berylium foil beam pipe DC inner wall
I. Balwierz
(preliminary
result) [8]

50±0.7stat ± 5.0syst 77.6±0.3stat ± 7.8syst 75.7±0.3stat ± 7.6syst

S.Bocchetta
thesis [34]

— 59.6±0.6stat ± 6.0syst 60.2±0.8stat ± 6.0syst

CMD-2 [35] 55.1±7.7 — —
I. Balwierz
(refined
analysis)

54.1±2.3stat ± 1.8syst 91.7±0.9stat ± 8.3syst 113±1stat ± 11syst

Table 4.1: Cross sections for KL regeneration on main regenerating materials of the
KLOE detector according to several measurements: preliminary results by I. Balwierz [8],
previous results by S. Bocchetta [34], measurement at the CMD-2 experiment [35] and

recent refined results by I. Balwierz (from private communication).

4.2.1 Influence of regeneration on interferometric studies

In order to perform interferometric measurements with neutral kaon pairs, a distribution

of differences of kaon decay times has to be collected and analyzed as described in Sec-

tion 2.3.2. This distribution is, however, affected by the events where KL is transformed

into KS in the regeneration process. Since it predominantly occurs at the regenerators

located in a well-defined distance from the interaction point and the regenerated KS de-

cays quickly compared to the original KL, the regeneration leads to the appearance of

three structures of events which are not expected in the ideal distribution shown in Fig-

ure 2.1. The location of these structures corresponds to the flight time of KL before it is

regenerated. First excess of events appears at about 7τs and is caused by the beryllium

foil, the second is at ∼17τs and corresponds to regeneration on the beam pipe. Finally,

regeneration on the drift chamber wall should contribute to the distribution at ∆t ≈ 45τs.

The latter, however, is the least harmful as it lies away from the most important region

(∆t ≈ 0).

Figure 4.4 shows a distribution of decay time differences of the φ→ KSKL → π+π−π+π−

process. A peak caused by regeneration on the beam pipe is clearly visible due to the fact

that at the moment of regeneration of KL into KS, the original quantum entanglement

between a pair of neutral kaons is lost and therefore the decays of the regenerated KS

should not be included in the distribution. The scale of the peak makes it apparent that the

influence of events with regeneration can by no means be neglected in the interferometric

studies.

Regeneration, especially taking place in beryllium and in the beam pipe, constitutes back-

ground for the study of φ → KSKL → π+π−π0π0 process and requires efficient meth-

ods to reject these events. Unfortunately, the standard reconstruction method used

for the KL → π0π0 vertex is not sensitive to the appearance of regeneration in the

KL → KS → π0π0 process, as it will be shown in the next section.
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Figure 4.4: Fit (solid histogram) of the intensity distribution to data in the analysis
of the φ → KSKL → π+π−π+π− process. An excess of events at ∼ 17τs caused by

regeneration on the beam pipe is clearly visible. The figure is adapted from [36].

4.3 Standard KL → π0π0 reconstruction method

4.3.1 Principle of the reconstruction

In the case of a neutral kaon decaying into neutral pions only, the only information recorded

by the detector are the photons produced in pairs in the π0 decays which hit the electro-

magnetic calorimeter. Fortunately, if the other of the kaon pair decayed into charged

pions, the information on its momentum vector obtained from the DC can be used to

estimate the momentum direction of the kaon which decayed through the neutral channel.

It is then enough to search for the decay point along the kaon momentum direction which

corresponds to the path of its flight.

EMC 
cluster

K decay 
point

Figure 4.5: The time-of-flight triangle used to determine the kaon decay point. Dashed
grey line denotes the kaon momentum direction tagged with the other kaon.
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The determination of the decay point on this path then requires only one calorimeter

cluster and is in fact done independently for each of the clusters registered in an event.

The centroid of the cluster, the interaction point where the kaon is created and its decay

point form a time-of-flight triangle, schematically shown in Figure 4.5. Two edges of this

triangle are the flight paths of the kaon (of the length LK) and of the γ quantum (of

the length Lγ). Length of the third edge L can be easily calculated using the interaction

point location and the EMC cluster coordinates. Considering the fact that the cluster

time equals to the sum of times of flight of the kaon and photon, leads to equation (4.1).

Moreover as the θ angle between the kaon flight direction and the L segment is known,

the law of cosines can be written for the time-of-flight triangle as in equation 4.2.

tγ =
LK
cβ

+
Lγ
c

(4.1)

L2
γ = L2 + L2

K − 2LLKcos(θ) (4.2)

Solution of the equation system (4.1–4.2) yields the length LK of the kaon flight path,

which in turn determines two possible points of K decay along its flight direction, one of

which is easily discarded [37].

This method is used to find the kaon decay point independently using each of the neutral

clusters recorded in the event. As it is not known a priori which of the clusters come from

the π0π0 → 4γ decay, the reconstructed vertices are used to calculate invariant masses of

all possible γγ pairs. The two pairs are chosen based on two criteria — their invariant

masses should be close to π0 mass and the KL decay points obtained using each of the

four clusters should have the smallest spread along the kaon momentum direction.

Once the 4 clusters are chosen, an energy-weighted average of the LK values obtained

for each of them is eventually taken as the neutral vertex position. Using the energies

of clusters as weights is justified by the fact that the resolution of the kaon path length

determination with this method depends on the cluster energy as ∼ 1/
√
E [37].

4.3.2 Resolution of the method

Resolution of the vertex reconstruction can be tested using experimental data by studying

the KL → π0π+π− [33] decays. The vertex obtained with photons from the π0 decay is

compared to the one found with the charged pion tracks. Results of such a resolution

analysis are shown in Figure 4.6. A decrease of the LK accuracy with distance from the

interaction point is caused by the finite angular accuracy of the tagged kaon momentum

direction. It should be noted, however, that the resolution for the KL → π0π0 process is

better because of a higher number of clusters entering the average [30].

Resolution of this method for the K→ π0π0 decay vertex position was studied using recon-

structed events from Monte Carlo (MC) simulation. Figure 4.7 left shows the distribution
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Figure 4.6: Resolution of the LK kaon decay length determination by the standard
algorithm as a function of LK. Main contributions to the uncertainty come from the
calorimeter cluster position uncertainty (dot-dashed line), the cluster time (dashed line)

and the KL flight direction (dotted line). The figure is adapted from [33].

of differences between the x coordinate of MC-generated and reconstructed kaon decay

vertex position as a function of vertex distance from the φ decay point. Similar distribu-

tions for each of the vertex coordinates may be used to estimate the spatial resolution of

reconstruction with the mean spread of these differences in vertical slices of the distribu-

tion. Right-side of Figure 4.7 presents the resolution obtained this way. Horizontal bars

indicate width of the slices whereas vertical bars correspond to standard deviation of the

estimated resolution.
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Figure 4.7: Left: distribution of differences in the x coordinate of reconstructed (Vrec
K )

and MC-generated(Vgen
K ) kaon vertices as a function of distance from the φ meson (Vφ)

to kaon (VK) decay vertex. Right: spatial vertex resolution in each coordinate as a
function of the distance between decay vertices of kaon (VK) and φ meson (Vφ). The
points indicate distribution widths in vertical slices of the left-side plot in case of x and
similar distributions in case of y and z coordinates. Horizontal error bars correspond to

the width of each slice.



Chapter 4. The φ→ KSKL → (KSKS →)π+π−π0π0 process at KLOE 31

4.3.3 Performance for events with regeneration

The reconstruction method described above assumes that the decay vertex of the kaon

lies along its initial flight path. Figure 4.8 schematically shows the process φ→ KLKS →
KSKS → π+π−π0π0 where the long-lived kaon is regenerated with a change in its mo-

mentum direction. The created KS then travels a short distance moving away from the

original kaon path. The standard reconstruction, however, always determines the decay

vertex along this direction. As a result, the reconstructed vertex does not correspond to

the real point where the regenerated kaon decayed into pions. Although the discrepancy

is small due to the short life time of KS, the fact that the resulting reconstructed event re-

sembles a good signal event is an important obstacle to regeneration background rejection.

regeneration 
point

Figure 4.8: Schematic view of an event with KL regeneration. The dotted-dashed line
represents the momentum direction of KL obtained from the decay of KS. Even though
the regenerated kaon decays away from this line, the vertex is still sought only along this

direction.

In order to recognize the regeneration taking place in an event, an auxiliary vertex recon-

struction method for KL → π0π0 is necessary, i.e. one which does not assume the vertex

location along the initial kaon momentum direction. Such a reconstruction algorithm is

proposed and described in the next chapter.
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New reconstruction method

The standard reconstruction method of the KL → π0π0 vertex used in analysis of the

φ→ KSKL → π+π−π0π0 process takes a great advantage of presence of a tagging kaon

which decays into charged pions. Its momentum gives a very accurate information on the

direction of flight of the kaon which undergoes a decay into π0π0. This information is used

along with the spatial and temporal coordinates of the clusters recorded by the calorimeter

to determine the neutral decay vertex. Although the EMC of KLOE is characterized by

an excellent resolution, its measurements cannot exceed the precision of a drift chamber.

The kaon momentum direction is then the most accurate of the values used in the vertex

reconstruction. Unfortunately, the assumption that the kaon decay vertex lies along this

direction is only valid if the kaon was not regenerated as it was shown in the previous

chapter. Therefore in order to account for the possibility of regeneration, an alternative

method of KL → π0π0 vertex reconstruction is needed which does not assume the vertex

lying along the path of the original kaon. Then, however, the tagged momentum direction

cannot be explicitly used. Instead, a modulus of this momentum is utilized and the

reconstruction is based exclusively on the calorimeter clusters created by γ hits. Such a

reconstruction algorithm was invented and proposed as an auxiliary method. Details of

this algorithm are presented in the following chapter.

5.1 Requirements

In the KL → KS → π0π0 process the momentum direction of incoherently regenerated KS is

usually different from the one of the original KL (see Figure 4.3, left). Therefore, in case of

regeneration, in order to properly reconstruct a KL → π0π0 vertex, the method described

here cannot depend on the momentum vector of the tagging kaon. This, however, implies

that in case of KSKL → π+π−π0π0 events part of experimentally available information is

not used.

33
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It should then be emphasized that the new reconstruction method does not aim at achiev-

ing a higher resolution than the standard one. Rather than that it should provide an

accuracy sufficient to distinguish events with regeneration (KSKL → KSKS → π+π−π0π0)

from good KSKL → π+π−π0π0 events, for which purpose it is exclusively targeted.

5.2 Working principle

The information on a KS,L → π0π0 → 4γ event available from the detector which may

be used for the vertex reconstruction consists of spatial and temporal coordinates of four

neutral clusters in the electromagnetic calorimeter (associated with the four photons). The

temporal coordinate of a cluster, i.e. the time of its recording is related to the time Ttof

elapsed between the φ decay and the γ hit into the EMC as in eq. (3.4). For simplicity, in

further considerations Ttof will be referred to as the cluster time. The spatial and temporal

coordinates of the i-th cluster will be denoted with capital letters: Xi,Yi,Zi,Ti. The four

clusters to be used are chosen prior to reconstruction using the procedure described in

Section 4.3.1.

Let us now assume that the long-lived kaon produced in a φ decay has lived for time t

before decaying into π0π0 in a point (x, y, z). Due to short lifetime of neutral pions the

photons from their decays are created approximately in the same point. The cluster time

for each of the clusters created by photons is therefore equal to a sum of flight times of

KL and the respective photon:

Ti = t+ tγi, i = 1, . . . , 4. (5.1)

Although the times tγ vary between the EMC clusters, all photons must have been created

in the same point being also the kaon decay vertex. Thus the problem of localizing the

vertex is identical with finding a common origin point of the four photons. This situation

is schematically presented in Figure 5.1.

For a given time of flight of a gamma (tγ) and the point where it hit the EMC, a set of

its possible origin points is represented by a sphere centered at the cluster spatial position

and of the radius corresponding to path travelled by a photon in time tγ :

Si((Xi,Yi,Zi), ctγi), i = 1, . . . , 4, (5.2)

where c is the velocity of light. If the γ times of flight are eliminated using eq. (5.1),

full equations representing the aforementioned spheres for each of the photons are of the

following form:

(Xi − x)2 + (Yi − y)2 + (Zi − z)2 = (Ti − t)2c2, i = 1, . . . , 4, (5.3)
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Figure 5.1: Idea of the K→ π0π0 decay vertex reconstruction. For simplicity the event
is shown in a 2-dimensional transverse section of the detector. Dashed arches represent
sets of possible origin points of photons which created clusters in the EMC (gray ring).
Blue dot denotes the intersection of these sets which corresponds to the K→ π0π0 vertex.

where x, y, z and t are not known1. The above constitutes a system of 4 equations with

4 unknowns which can be solved to obtain the intersection point (x, y, z) of the spheres

from eq. (5.2) as well as the kaon flight time t.

Although the problem of solving this system of equations is to some extent similar to

finding a geometrical intersection of spheres, it should be noted that the radii of spheres

in this case are not constant. Instead, they are parametrized by an additional variable t

which adds a substantial complication to the problem.

Finally, it is worth stressing that this reconstruction algorithm strongly relies on a proper

choice of the four calorimeter clusters associated with the KL → π0π0 → 4γ decay. This

is because information on all of the clusters enters the reconstruction simultaneously in

contrast with the standard method described in Section 4.3.1. Therefore wrong choice of

even one of the clusters might significantly affect the result of reconstruction.

5.3 Implementation of the method

A complete analytical solution to the above system was found and its detailed description

is provided in Appendix A. This solution comprising the spatial coordinates of the vertex

1As the general form of equation describing a sphere of radius R centered at (xc, yc, zc) is
(xc − x)2 + (yc − y)2 + (zc − z)2 = R2.
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(x, y, z) and the time of kaon flight t is determined with a two-fold ambiguity which results

from the time being a solution of the quadratic equation (A.15). In further considerations

the two solutions (see equations (A.17–A.18) in Appendix A) will be referred to as solution

1:

(t1, x(t1), y(t1), z(t1)), t1 =
−q −

√
q2 − 4pr

2p
, (5.4)

and solution 2:

(t2, x(t2), y(t2), z(t2)), t2 =
−q +

√
q2 − 4pr

2p
, (5.5)

where the coefficients p, q and r are defined in the aforementioned Appendix A.

The ambiguity of solutions may appear in two possible ways:

1. One of the two solutions corresponds to a real kaon decay vertex whereas the other

one is a mathematical artifact and has to be rejected.

2. Both solutions differ to a small extent only resulting from the numerical inaccuracies

in their determination. This case corresponds to an ideal situation of q2 − 4pr ≈ 0

in eq. (A.17) where the single existing solution was split due to the fact that the

solutions are evaluated with finite precision.

It is crucial both that the these two cases are distinguished and that in the first case a

proper solution is selected rather than the artifact one. In order to ensure this, several

criteria were devised to be applied to pairs of solutions obtained for each event. These

criteria are based on physical constraints a real decay vertex must satisfy:

1. t ≥ 0 and t < 60 ns as the time of kaon flight in the detector must be positive and

not exceed the time of a particle with βK ≈ 0.22 travelling the maximal possible

distance in the detector (which is about 262 cm along a diagonal from the e+e−

collision point to the edge of EMC barrel).

2. The spatial vertex coordinates must lie in the geometrical limits of the detector. The

detector volume is a cylinder constrained in transverse radius by rT =
√
x2 + y2 <

200 cm and in the z coordinate by |z| < 169 cm.

3. The kaon originating at the IP with its velocity must have been able to reach its

decay point (x, y, z) within its flight time t.

The third criterion is the strongest and requires a broader explanation. If the kaon vertex

spatial location is denoted by VK = (x, y, z) and the φ decay point (interaction point) by

Vφ then the length of path travelled by a kaon before its decay can be calculated as2:

S = |Vk −Vφ|. (5.6)

If the i-th solution for the vertex (VKi, ti) is physical, the condition must hold:

υ ti − Si = 0, (5.7)

2So far let us assume no regeneration in the event.



Chapter 5. New reconstruction method 37

where υ is the kaon velocity. Even though the direction of KL momentum vector calculated

using the tagging kaon is not reliable in this method, its bare modulus can be safely used

to determine the kaon velocity υ.

If one of the two solutions is rejected by any of the aforementioned criteria, the remaining

one is chosen as the location of reconstructed kaon decay vertex. Otherwise the solutions

are checked for being close to each other. If their difference is below a threshold value of

1 ns, an arithmetic average of both solutions is used as the final reconstruction result.

5.4 Method validity studies

The new reconstruction method was tested using a sample of Monte Carlo-simulated (MC)

events of the φ → KK → π+π−π0π0 process containing both signal and regeneration.

Since the simulated events are generated artificially, in their case all parameters of the

process are known exactly. Events described using these exact values will be referred to

as generated events. For each generated event a detector response is determined and then

cluster coordinates are reconstructed in the same way as it is done for the experimental

data. If the events are described by such reconstructed parameters, they will be called

reconstructed events.

5.4.1 Spatial resolution of the method for generated events

MC generated events were used to test the performance of the reconstruction method in an

ideal case. First, the possibility of selecting the proper solution was tested. As mentioned

in the previous section, criterion 3 is the most powerful tool to reject non-physical solutions

for the vertex. Feasibility of its use can be estimated with the respective distribution of

(υ ti − Si) values calculated for first and second solution. Such a plot for reconstruction

of generated events is shown in Figure 5.2. Since the difference (υ ti − Si) must be close

to zero for a vertex to be physical, it is visible that criterion 3 can be successfully used

to select one of the solutions as for all events at least one of the solutions satisfies this

condition. If both solutions fulfill it, they must be checked for being in fact one split

solution.

For generated MC events, the criteria described in sec. 5.3 allowed for selection of one

proper solution in a majority of events as shown in Table 5.1. A worse result in case of

regeneration events results from the calculation of kaon path length as in eq. (6.5) which

does not assume the kaon flight direction change due to regeneration.

For the events where a single physical solution was distinguished, the spatial resolution of

the vertex obtained with the new reconstruction method was analyzed. Figure 5.3 shows

the resolution in each coordinate as a function of vertex distance from the IP. The estimated
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Figure 5.2: Left: Two-dimensional distribution of the υ ti−Si values for solutions 1 and
2 obtained in the vertex reconstruction for generated MC events. Right: magnification
of this distribution for the ranges |υ ti − Si| <10 cm. At least one of the solutions always
satisfies the υ ti − Si≈ 0 criterion which allows for good selection of the single solution

describing the real vertex.

signal regeneration

1. one solution chosen 97.9% 90.8%

2. two solutions 2.0% 1.95%

3. both rejected 0.1% 7.25%

Table 5.1: Results of physical solution selection for generated MC events. Signal and
regeneration events are analyzed separately. Only in case 1 one solution is chosen un-
ambiguously. In case 2 none of two solutions could be discriminated and in case 3 both

solutions were rejected by the criteria.

resolution is of the order of 10−5 cm which is below the measurable scales in KLOE and

probably results only from numerical inaccuracies appearing in the reconstruction.

This result shows that in an ideal case where exact cluster coordinates are used as input

to the reconstruction, the exact position of real vertex is obtained, which proves that the

new reconstruction algorithm is correct.

5.4.2 Spatial resolution for reconstructed events

Reconstruction of the neutral vertex was tested with the use of reconstructed MC events

which are affected by experimental inaccuracy. Figure 5.4 shows a two-dimensional distri-

bution of the (υ ti− Si) values for both solutions obtained in the same manner as the plot

in Figure 5.2.

The distribution of (υ ti − Si) differences for reconstructed MC events is substantially

broader than for generated MC in case of both solutions. Therefore the third criterion from



Chapter 5. New reconstruction method 39

[cm]
φ

gen
and V

K

gen
distance between V

0 10 20 30 40 50

| 
[c

m
]

Kg
e

n
- 

V
Kre

c
|V

0

2

4

6

8

10

12

14

16

18

20

22
-6

10×

coordinate:

X Y Z

Figure 5.3: Spatial vertex resolution in each coordinate as a function of vertex distance
from the φ decay point obtained for generated MC events. Vertical error bars (too small to
be visible) represent the error on determination of width of the distributions of differences
(for each coordinate) between reconstructed (Vrec

K ) and generated (Vgen
K ) kaon vertices.

Horizontal bars correspond to ranges of distance between generated kaon (Vgen
K ) and φ

meson (Vgen
φ ) vertices chosen so as to contain the same number of events. This result

shows that using exact cluster parameters in the reconstruction leads to a precise vertex
location proving validity of the new method.
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Figure 5.4: Two-dimensional distribution of the υ ti − Si values for solutions 1 and
2 obtained in the vertex reconstruction for reconstructed MC events. The inaccuracy
of input parameters in the reconstruction leads to solutions which do not satisfy the

υ ti − Si≈ 0 criterion well.

Section 5.3 which is based on at least one of solutions giving the value of aforementioned

difference close to zero, could not be applied in this case as it would reject a majority of all

events. This, however, leads to a decrease in the capability to select one physical solution

as it can be seen in Table 5.2.

In addition to strongly reducing the number of useful events (with one reliable solution for

the vertex), the inaccuracy of input parameters also affects the final spatial resolution of
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signal regeneration

1. one solution chosen 18.9% 17.7%

2. two solutions 29.3% 29.9%

3. both rejected 51.8% 52.4%

Table 5.2: Results of physical solution selection for reconstructed MC events. Signal
and regeneration events are analyzed separately. Only in case 1 one solution is chosen
unambiguously. In case 2 none of two solutions could be discriminated and in case 3 both

solutions were rejected by the criteria.

the vertex. The resolution is presented in Figure 5.5 showing a poor result of about 15 cm

spread of distances between the generated and reconstructed vertex in each coordinate.

An even worse performance is observed for events close to the φ decay vertex. This trend is
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Figure 5.5: Spatial vertex resolution in each coordinate as a function of vertex distance
from the IP obtained for reconstructed MC events. Inaccuracy of reconstructed cluster
coordinates used as input in the vertex reconstruction results in a poor resolution of the

vertex location.

caused by the fact that in case of KS,L → π0π0 → 4γ decay close to the detector center, the

spheres of possible gamma origin points for all clusters are almost of the same radii whereas

for peripheral decays the sphere radii may vary strongly. Figure 5.6 schematically shows

both cases (using two spheres for simplicity) where experimental errors of cluster times

cause a smearing of the spheres’ surfaces (denoted with colored bands). The uncertainty

of the spheres’ intersection point is bigger when all the radii are large (which is the case

for decays close to detector center), as it can be seen on the left side of Figure 5.6 which

leads to a worse resolution of decay vertices close to the φ decay point.

The above results indicate that the accuracy with which the cluster coordinates are deter-

mined experimentally is not sufficient to reconstruct the KS,L → π0π0 decay vertex with

a satisfactory spatial resolution using the presented method. However, the accuracy of

input data used in the reconstruction can be noticeably improved in order to achieve a

better vertex resolution with the help of additional physical constraints. This fit will be

presented in the next chapter.
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Figure 5.6: Intersections of two spheres (dashed lines) with experimental inaccuracy
(colored bands). Left picture shows the case of spheres with similar radii R1 ≈ R2 while
on the right picture one sphere is significantly larger: R1 � R3. Blue region represents the
area where the intersection point may be found and its size corresponds to the uncertainty

of vertex location.

5.4.3 Influence of input data inaccuracy on spatial resolution

Uncertainty of the vertex reconstruction depends on the resolution of the position and of

the time reconstruction of the EMC clusters. In this section influence of the reconstruction

resolution of each cluster coordinate on the accuracy of vertex reconstruction is investi-

gated. For this purpose the vertex is reconstructed using the simulated samples of events

for which only one coordinate was smeared according to the gaussian distribution and the

other coordinates were not smeared. Resolution of vertex location obtained in these cases

as a function of the distance from the interaction point is shown in Figure 5.7.

It is visible that the uncertainty of EMC cluster times gives a significantly larger con-

tribution to the vertex inaccuracy than errors on spatial coordinates of clusters. When

the latter are considered, the inaccuracies of vertex reconstruction due to the uncertainty

of X and Y are similar and smaller than due to the smearing of Z coordinate, as it was

expected due to worse EMC resolution in the Z direction (see Table 3.3). A conclusion

can be drawn that the vertex location resolution is dominated by the experimental error

in determination of cluster times.
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Figure 5.7: Resolution of vertex reconstruction when one of the input cluster coor-
dinates is smeared with an experimental uncertainty while other parameters are exact
(MC-generated). The upper plots correspond to smeared cluster X (left) and Y (right)
coordinates, lower left plot corresponds to smeared Z cluster coordinates and lower right

plot — to smeared cluster times.



Chapter 6

Tuning the input parameters

Tests of the new K → π0π0 vertex reconstruction method with Monte Carlo-generated

events described in the previous chapter have shown that the principle of its operation

is correct as it yields a precise vertex location using ideally accurate input data. On the

other hand, it was also discovered that when the reconstructed cluster coordinates with

an experimental uncertainty are used, the inaccuracy of these data strongly affects the

reconstructed vertex location resulting in a poor spatial resolution.

Since precision of the cluster coordinate reconstruction is limited by finite resolution of

KLOE calorimeter (see Table 3.3), additional information needs to be introduced to the

system in order to improve the accuracy of vertex reconstruction. This can be achieved by

imposing several constraints on the properties of the considered system based on physical

conditions which must be satisfied by each event of the process of interest.

Two major constraints were found for the case of K → π0π0 → 4γ decay which include

information not exploited in the bare reconstruction of the respective vertex. The way to

include these constraints in the considered problem follows a general scheme of a kinematic

fit. The following chapter gives a detailed description of the procedure of this fit and

influence of its application on the vertex reconstruction.

6.1 Fitting procedure

6.1.1 Principle of the fit

The principle of a kinematic fit relies on an assumption that experimentally measured

quantities are randomly distributed around the respective exact values with a normal dis-

tribution whose width corresponds to their measurement uncertainty. In such a case a

variation of these values in ranges allowed by their uncertainty so that they satisfy addi-

tional physical constraints to a higher extent should result in these quantities being shifted

43
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towards their exact values and thus increasing their accuracy. This requires formulation

of the penalty functions as functions of the vector x = (xi)i=1,...,n of n parameters being

tuned. The penalty functions (constraints) C(x) are chosen so that constraints take the

form:

C(xtrue) = 0, (6.1)

where xtrue is a vector of exact values corresponding to the measured parameters1. In

order to control the degree of parameter variation from reconstructed values xrec, the

following function of varied parameters xvar is also introduced:

F(xvar) = χ2(xvar) +
∑
j

C2
j (xvar), (6.2)

where j iterates over all constraints and:

χ2(xvar) =
n∑
i=1

(
xvari − xreci
σ(xi)

)2

(6.3)

is a simple χ2-like term where correlations between parameters are not included2 and where

σ(xi) corresponds to the experimental inaccuracy of i-th parameter. A set of parameters

xmin which minimizes the value of F in Equation 6.2 corresponds to these of values which

satisfy the imposed constraints which at the same time are least varied with respect to

original measurements.

6.1.2 Tuned parameters and physical constraints

The primary set of measured quantities whose improvement in accuracy is desired in the

fit consists of spatial coordinates and times of the four EMC clusters which are used in the

K → π0π0 vertex reconstruction. Two physical constraints on their values were devised

and are listed below.

1. The position of reconstructed vertex must be consistent with the length of the tra-

jectory of a kaon produced at the φ decay point and having a velocity υK . This

constraint is similar to the third criterion for solution choice from Section 5.3 and

takes the form:

C0(x) = υK t− S, (6.4)

where the path travelled by kaon between φ vertex Vφ before its decay in VK point

is:

S = |VK −Vφ|, (6.5)

1As an example constraint, mvar
π0 −mPDG

π0 = 0 may be given, where the var superscript denotes a varied
reconstructed value of π0 mass and mPDG

π0 = 134.9766±0.0006 MeV/c2 is the value recommended by PDG
[5].

2As all variable parameters in the fit are independently measured in the detector, no significant corre-
lations should exist.
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for signal events. I case of regeneration, the path must be modified as it will be

later described in Section 6.3. The cluster coordinates enter the above constraint

indirectly through vertex reconstruction of kaon decay into π0π0. Moreover, as

additional experimental values, spatial coordinates of φ meson decay point and kaon

velocity, enter this constraint, they are also tuned as parameters in the fit.

2. Due to the fact that the four gamma quanta in the K → π0π0 → 4γ process come

from decays of the neutral pions, invariant masses of γγ pairs must equal be the

mass of π0. The γγ invariant mass of i-th pair is calculated as below:

Mγγ
i =

√
2Eγi,1Eγi,2 cos(1− θi), (6.6)

where Eγ indicates the γ energy measured by EMC and θ is the angle between

momentum vectors as indicated in Figure 6.1. In order to calculate the θ angle, the

K→ π0π0 vertex must previously be reconstructed. Additionally, the use of cluster

energies in the constraint motivates their inclusion as variable parameters in the fit.

For each of the γγ pairs the penalty function is of the form:

Ci(x) = Mγγ
i −mπ0 , i = 1, 2. (6.7)

As the assignment of four neutral clusters into pairs is not initially known, a sum

of the constraints in quadrature C1
2(x) + C2

2(x) is calculated for each of three

possible pair combinations of which one is chosen that yields the smallest value of

C1
2(x) + C2

2(x).

Figure 6.1: Angles between directions of paired gammas and their respective energies
measured by the EMC, used to calculate invariant masses of γγ pairs. Red solid lines

indicate one pair and green dashed – the second one.

In addition to the above physical constraints, several geometrical conditions were also

imposed on the system to ensure that the reconstructed vertex does not lie outside limits

of the detector and that during the variation of cluster coordinates the clusters are not

shifted outside of the calorimeter. Penalties for violation of the geometrical constraints

(proportional to the distance between the vertex or cluster position and the exceeded limit)

are summed into a common penalty function C3:

C3 =
∑

clusters

∑
EMC
limits

dclu,limit +
∑

detector
limits

dvtx,limit, (6.8)



Chapter 6. Tuning the input parameters 46

where dx,limit (with x being the location of a cluster or vertex) is defined as:

dx,limit =

{
|limit− x| if x outside limit

0 if x inside limit
(6.9)

After taking into account the quantities utilized in the constraints in addition to the input

parameters of vertex reconstruction algorithm, all the variable parameters in the fit are as

follows:

• cluster coordinates: Xi,Yi,Zi,Ti for i = 1, . . . , 4,

• φ decay point location: xφ, yφ, zφ,

• kaon velocity υK ,

• EMC cluster energies Ei for i = 1, . . . , 4.

The above constitute a set of 24 variable parameters in the fit.

6.1.3 Minimization procedure

The minimum of the function F(x) introduced in Equation 6.2 can be found numerically

using tools for multidimensional optimization. In this work the Migrad minimizer from

the MINUIT package [38] was used. The minimizer varies the values of parameters in an

allowed range and computes the value of a given function F in order to find a set xmin

which minimizes F.

The constraints introduced in Section 6.1.2 (and thus also the minimized function F)

depend on the location of the reconstructed vertex. Therefore the reconstruction is con-

ducted in each iteration of the minimizer using the varied parameters xvar. However, as

reconstruction yields two solutions for the vertex, none of which can be discriminated at

that point, the minimization is performed twice each time using a different solution for

the vertex.

Algorithm 6.1 presents the flow of reconstruction with the fit performed for a single event.

First, Migrad is called to find a set of parameters x1 which minimizes the function F being

in a general form as in Equation 6.2 (exact forms of the functions used will be described

later) where solution 1 is always chosen as the decay vertex in its reconstruction. Next,

the same is done always using solution 2 and the minimum x2 is found. It should be noted,

however, that the minimizer is not always able to converge to a proper minimum. In case

no minimum is found for one of the solutions, it is assumed that this solution is non-

physical and it was not possible to find a set of parameters which satisfy the constraints

well. The other solution is then chosen as describing the physical vertex. For some events
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Data: initial set of parameters x0 for an event
Result: vertex
Minimize(x0) using solution 1 → x1

Minimize(x0) using solution 2 → x2

if both minimizations converged then
Reconstruct(x1) using solution 1 → vertex 1
Reconstruct(x2) using solution 2 → vertex 2
if |υ ti − Si| < 1 cm for only one vertex of i =1,2 then

vertex ← vertex for which |υ ti − Si| < 1
else if χ2(x1) ≤ χ2(x2) then

vertex ← vertex 1
else

vertex ← vertex 2
else if only one of minimizations converged then

vertex ← result for the solution whose minimization converged
else

vertex ← ∅
Algorithm 6.1: Procedure applied to each event in order to select the proper solution for
the vertex and reconstruct the vertex using input parameters tuned by the fit.

it may happen that use of neither of the solutions leads to a good minimum. The vertex

is not reconstructed for these events.

Most often, however, minimizations using both solutions converge to a minimum (about

67.7% events). The vertex reconstruction is then performed for both solutions, each time

utilizing the respective set of minimizing parameters x1,2. The two vertices obtained this

way are then checked to satisfy the υ ti − Si≈ 0 criterion with a precision better than

1 cm and if only one solution satisfies this criterion then it is chosen. For a high number

of events this criterion is well satisfied by both solutions and then the one is selected for

which finding a minimum required a smaller variation of the initial parameters (which

corresponds to a smaller χ2 value). This is motivated by the fact that even for an artifact

solution the optimization may find the parameters which minimize the υ ti−Si difference,

although at a cost of a huge change of the measured parameter values. The physical

solution, however, should already be close to the minimum before variation.

A detailed formula of the minimized function (of a general form given in Equation 6.2)

with the penalty functions of physical constraints normalized by the respective σj factors,

reads:

F(xvar) = χ2(xvar) +
2∑
j=0

C2
j (xvar)

σj
+ 106 × C3(xvar), (6.10)

where C0,1,2,3 are the penalty functions defined in Section 6.1.2 and σ0,1,2 are the errors of

determination of physical quantities used in the constraints (kaon path and time difference

υt− S for the first and the neutral pion mass reconstructed from a γγ pair for the second

constraint). These errors were estimated using reconstructed Monte Carlo events. The

sum of geometrical constraints is multiplied by a large factor as it is a simple penalty

needed to keep the minimizer inside the allowed parameter phase space.
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Each of the 24 variable parameters was allowed to be shifted from the originally measured

value by no more than 3σ(xi) where σ(xi) is the resolution of the i-th measured parameter.

In case of parameters with an energy-dependent resolution (see Table 3.3), the σ values

were calculated for each event using appropriate cluster energies. The performance of the

fit was also tested with a smaller allowed variability of parameters equal to 1σ(xi). Better

results were, however, obtained with the 3σ variability as it will be shown in the next

section.

At the first approach the Migrad tool was called once to find a minimum of function from

Equation 6.10 for each of the solutions. When the new vertex reconstruction with fit was

applied to the reconstructed MC events it was, however, observed that the optimization is

not convergent to a minimum for a noticeable number of events. The exact statistics are

given in Table 6.1. In case of a considerable fraction of the events only a minimization for

one of the solutions was successful in finding a proper minimum (with a higher number of

successes for the first solution). It was also possible that no minimum was found for any

of the solutions in which case the fit could not be used to tune the input parameters of

vertex reconstruction.

solutions with
good minima

percentage
of events

both solutions 67.7%

only solution 1 16.3%

only solution 2 7.4 %

none 8.6 %

Table 6.1: Percentage of minimizations convergent to a good minimum obtained with
a single Migrad run.

An examination of the problem led to an observation that the υ ti−Si penalty function (C0)

introduces strong correlations between parameters into the minimized function F. Unfor-

tunately, as the input parameters enter the υ ti − Si difference through the complicated

reconstruction as in Appendix A, it is difficult to take such correlations into account or to

remove them. Moreover, this problem cannot be easily parametrized differently. Therefore

it was chosen to perform the minimizations iteratively with the constraints applied with

weights increased between minimizations. This approach follows a scheme of an iterative

method with quadratic penalty functions as described in Ref. [39].

For use with this method, the F function was formulated as follows:

F(xvar, µ) = χ2(xvar) +
3∑
j=0

µjC
2
j (xvar), (6.11)

where the µj coefficients are weights of each of the constraints. The whole minimization

procedure is summarized in Algorithm 6.2. Initially, the weights are set to small values

in order to avoid strong correlations of parameters due to constraint functions. Then a
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series of subsequent minimizations is performed with Migrad, each time using the minimum

resulting from previous minimization as a starting point. Between each two calls to Migrad,

weights are increased by an order of magnitude thus imposing the constraints more strictly.

If after several iterations the minimization does not converge to a proper minimum, the

result of last successful attempt is used as the minimum. Otherwise a fixed number of

iterations nmax = 10 is performed.

Data: initial set of parameters x(0), µ(0) – initial penalty weights
Result: xmin – set of parameters minimizing FCN(xmin, µ)
i ← 0
repeat

x(i+1) ← Minimize(FCN(x(i), µ(i)))
µ(i+1) ← µ(i) · 10
i ← i+1

until last minimization convergent or i = nmax;
if last minimization convergent then

xmin ← x(i+1)

else

xmin ← x(i)

Algorithm 6.2: Procedure of iterative minimizations using quadratic penalty functions.
“Minimize” represents calls to the Migrad minimizer. The weights µ of each constraint are
increased between subsequent minimizations by an order of magnitude. If minimization
fails to converge, the last proper minimum found is taken as the result.

Such an iterative minimization solved the problem of unsuccessful searches for the mini-

mum as shown in Table 6.2. The results of input parameter tuning using this method are

presented in the next section.

solutions with
good minima

percentage
of events

both solutions 96.8%

only solution 1 3.0%

only solution 2 0.2%

none 0.0%

Table 6.2: Percentage of minimizations convergent to a good minimum obtained with the
iterative method. The minimization is always successful for at least one of the solutions.

6.2 Results of input parameter tuning

In Section 5.4.2 the results of K → π0π0 decay vertex reconstruction were shown for the

case of reconstructed MC events where the experimental uncertainty of reconstruction in-

put data renders it impossible to use the υ ti−Si≈ 0 criterion in order to extract a physical

solution (see Figure 5.4). The aim of first constraint used in the fit (see Section 6.1.2),

based on the same physical requirement, was to tune the measured values so that this
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relation is satisfied. The plots in Figure 6.2 present a distribution of the same quantities

as in Figure 5.4 but obtained from vertex reconstruction with tuned parameters (with 3σ

parameter variability during the fit). This result shows that the aim was achieved since

for a majority of events at least one of the υ ti − Si, i = 1, 2 differences is close to zero,

similarly as in case of generated MC events (Figure 5.2).
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Figure 6.2: The first physical constraint after tuning the parameters by means of a fit.
Left: two-dimensional distribution of the υ ti − Si values for solutions 1 and 2 obtained
in the vertex reconstruction using tuned parameters. Right: the left-side distribution

zoomed for |υ ti − Si| < 10 cm.

The fit was tested with two allowed ranges of parameter variability — 1σ and 3σ around the

measured value. Although the above result was obtained with the 3σ allowed variability,

the use of smaller variable range yields a similar result. However, a detailed consideration

of each of the one-dimensional υ ti − Si distributions shown in Figure 6.3 reveals that

in the second case the distributions are broader, indicating worse performance of the fit.

Nonetheless in both cases it can be stated that the first physical criterion of the fit is

satisfied with a precision of the order of 1 mm.

The degree to which the second physical constraint of the fit is satisfied can be assessed

using the distribution of invariant masses of γγ pairs obtained with the reconstructed

neutral vertices. Such distributions resulting from fits with the two tested parameter

variable ranges are shown in Figure 6.4. The fact that distributions are peaked at the

precise value of π0 mass as expected for photons coming from neutral pion decays as well

as small width of the peaks prove that the second physical constraint is also well satisfied.

Again, however, a slightly worse result is observed for the 1σ version.

In Figure 6.5 distributions of χ2 values obtained with the tuned parameters are shown.

They may be treated as a measure of how strongly the parameters were varied in the fit

with respect to their measured values. Left-side plot presents the result of fit with 3σ

variability and right-side plot — of 1σ variability. It should be noted that a maximal
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Figure 6.3: One-dimensional distributions of υ ti − Si values for solutions 1 and 2 ob-
tained after tuning the reconstruction input parameters with a fit with parameter vari-
ability of 3σ (left plot) and 1σ (right plot) around the measured value. The distribution

obtained with smaller variability of parameters is noticeably broader.
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Figure 6.4: Distribution of the invariant masses of γγ pairs obtained with tuned pa-
rameters after the fit variants with two different parameter variability ranges. Dashed

vertical line corresponds to the value of π0 mass according to PDG [5].

possible variation of a single parameter contributes to the χ2 a value of (3σ)2

σ2 = 9 in

the former and respectively 1 in the latter case which is the reason for the distributions

terminating respectively at 9·24=216 and 24. Peaks appearing at ends of both distributions

correspond to events where all parameters were shifted by the minimizer to the end of their

allowed phase space. This shows that unfortunately even though the minimizer may signal

finding a proper minimum, it may not be a physically valid one. It is also visible that such

a peak is significantly larger with respect to the peak of lower χ2 values (which correspond

to small variation of parameters) in case of 1σ variability which is an indication that this
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variability range is too narrow to search for minimizing values of parameters. Therefore, in

further considerations the 3σ variant was used. Other peaks visible in both distributions

in Figure 6.5 correspond to events where the values of a certain number of parameters were

moved to the edge of allowed range during minimization. Numbers of parameters for which

this happens are 19 and 22 (in the left distributions these appear as peaks at 171 and 198

respectively). Although this fact suggests that it is not equally easy to find a minimizing

value in each of the fit parameters, the groups of parameters which are maximally varied

in the above cases were not identified.
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Figure 6.5: Distributions of the χ2 (see Equation 6.3) values from fit with parameter
variability of 3σ (left plot) and 1σ (right plot). Peaks at the ends of distributions corre-
spond to events where all parameters were varied to the maximal allowed degree by the
minimizer. A larger fraction of such events in case of 1σ variability indicates this variable
range is too narrow. Other peaks appearing at 19 and 22 in the right plot correspond to
peaks at 171 and 198 in the left plot and originate from events where a certain number of
parameters was maximally varied which shows that some groups of parameters are more

difficult to find minimizing values than the others.

Finally, the reconstructed quantities from MC events, tuned by the fit, were used to

estimate the spatial resolution of neutral vertex reconstruction. The result is shown in

Figure 6.6. For vertices distant from the φ decay vertex a threefold improvement in

accuracy was achieved with respect to the resolution without the fit (Figure 5.5) whereas

closer to φ the improvement is significantly higher. From the point of view of rejection of

kaon regeneration background the spatial vertex resolution is of special importance in the

region about 10 cm from the detector center where the spherical beam pipe is located and

thus where the regeneration process occurs, spoiling the ∆t distribution (see Figure 4.4).

The vertex accuracy in this region is estimated to be about 2.5 cm.
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Figure 6.6: Spatial resolution of the neutral vertex reconstruction as a function of ver-
tex distance from the φ decay point. Resolution for each coordinate is shown separately
as indicated in the legend. This result was obtained with vertex reconstruction includ-
ing input parameter tuning. A considerable improvement is visible with respect to the

resolution without the fit (Figure 5.5).

6.3 Tuning the parameters with regeneration assumption

One of the criteria for selecting a proper solution from Section 5.3 as well as the first

constraint in the fit are based on a comparison of the path travelled by kaon and the

product of its flight time and velocity. In the form presented until now, the kaon path was

always calculated as a simple distance between the φ decay point and the reconstructed

kaon decay vertex. As it can be easily seen in Figure 4.8, this scheme does not correspond

to the physical situation of events with incoherent regeneration. Because of implicitly

assuming no regeneration in an event, using this form of distance S in the fit will be

referred to as fitting with signal assumption in the remainder of this work.

In order to make the constraint υ ti− Si≈ 0 well applicable to the case of regeneration, an

alternative version of the fit was prepared which assumes regeneration in an event. Idea

of the modification is presented in the left side of Figure 6.7. Rather being the direct

distance (grey dotted arrow), the path travelled by a kaon before decay is calculated as

a sum of lengths of two segments. First of them (Sa), is the distance travelled by the

original KL before it undergoes regeneration in point P. Although location of this point is

not known for an event, it may be safely assumed to lie along the KL momentum direction

obtained with the tagging decay KS → π+π−. The second segment of length Sb spans

between the regeneration point and the KL → π0π0 decay vertex. As regeneration usually

changes the direction of kaon flight, these two segments form an angle θ corresponding to

the regeneration angle estimated in Section 4.2.

An important fact for using the constraint υti − (Sa + Sb) ≈ 0 in the fit for events with

regeneration on the beam pipe is that momentum value of the regenerated kaon does not

differ from the one of original KL by more than 10%. Therefore the comparison of length of
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Figure 6.7: Scheme of the kaon path length calculation with the assumption of regener-
ation taking place in point P along the fight direction of original long-lived kaon (dashed
line). The path is a sum of sections Sa and Sb which form an angle θ. Left scheme presents
the case of regeneration event when the true kaon path is different from the one calculated
with signal assumption (dotted arrow). Right drawing presents the case of signal events

where the two paths S and Sa + Sb are equal.

Sb with the velocity of KL rather than of regenerated KS (which is not measured) accounts

for an error in the υti − (Sa + Sb) calculation not larger than 1 mm× t
τs

.

Location of the regeneration point P for each event may be estimated using the roughly

known position of vertex. If it lies in an area around one of the main regenerating materials

in KLOE and the regeneration occurs, it predominantly happens inside this material.

Therefore an intersection of the original kaon momentum direction and surface of a certain

regenerating material is taken as the P point. In further considerations, only the case of

assuming regeneration on the spherical beam pipe will be presented. The material is then

a sphere of 100 mm radius whose 500 µm thickness may be neglected with the accuracy

available.

Since the θ angle is about 60o for most of the regeneration events (except on the DC wall),

the difference in kaon path calculated as S and as Sa + Sb is expected to be:

∆S = (Sa + Sb)− S = (Sa + Sb)−
√
S2
a + S2

b − 2SaSbcos(π − θ), (6.12)

which for the case of regeneration on the BP (Sa ≈ 100 mm), θ = 600 and the regenerated

KS living τS (Sb = λs ≈ 6 mm) is about 2.88 mm.

As the fit usually minimizes the υ ti − Si value with a precision better than 1 mm, such

a difference can change the result significantly when the version with signal assumption

is applied to a regeneration event. Conversely, taking the regeneration assumption should

not disturb the fit of a signal event because the Sa Sb segments are co-linear in this case

as shown in the right of Figure 6.7.

The above observations reveal a potential of distinguishing regeneration from signal events

using the quality of the two versions of the fit which will be described in the next chapter.



Chapter 7

Application of the new

reconstruction method

Tests of neutral vertex reconstruction including tuning of the input parameters with the

fit have shown that spatial resolution of vertices located in the region around the spherical

beam pipe (which contributes a large amount of regeneration events) is about 2.5 cm for

each coordinate. Unfortunately, such accuracy is not sufficient for recognition of regenera-

tion only by considering the position of reconstructed vertex since the mean path travelled

by regenerated short-lived kaon is about 6 mm.

However, observation that incoherent regeneration is associated with a change in the length

of path travelled by kaons before decay (as presented in Section 6.3) reveals a possibility of

utilizing the fit constraint based on the υ ti−Si difference in order to observe an influence of

the aforementioned path difference on the fit quality. Such attempt to reject regeneration

using the neutral vertex reconstruction with the fit will be described in this chapter.

7.1 Rejection of regeneration events

7.1.1 Possibilities of regeneration recognition

As explained in the previous chapter, two variants of the first fit constraint may be for-

mulated — assuming that regeneration occurred in an event or not. In the latter case the

calculation of distance S travelled by the kaon will not correspond to the physical situation

if applied to an event with regeneration. The discrepancy between the length composed

of two sections as in left scheme of Figure 6.7 and the direct distance between φ and K

mesons decay points is expected to be of the order of several millimeters, i.e. significantly

larger than the precision to which the υ ti − Si≈ 0 criterion is satisfied in the fit for signal

events. Therefore it may be expected that application of fit with signal assumption to a

regeneration event will result with the υ ti−Si difference being more difficult to minimize.
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Such a difficulty can manifest itself in two ways: the minimization procedure may find a

minimum for which the first physical criterion is not satisfied well or the parameters xmin

which properly minimize υ ti−Si will be found, however at the cost of their large variation

with respect to original values which will result in a large value of χ2(xmin).

Conversely, the use of fit with the regeneration assumption in case of a regeneration event

would lead to a minimization as feasible as when fit with signal assumption is applied to

a signal event because the appropriate form of the kaon path length is properly taken into

account. Moreover, taking the regeneration assumption in case of no regeneration in an

event should not influence the performance of fit since the path calculated as sum of two

sections should then be identical with the direct distance between φ and reconstructed

kaon vertex (see right scheme of Figure 6.7).

7.2 Results

The three detector components described in Section 4.2 contribute a predominant part

of all regeneration events in KLOE. Therefore, the attempts to reject regeneration are

concentrated on areas where these elements are located. Precise knowledge of their position

allows for the use of fit with regeneration assumption where the location of regeneration

point is assumed to be inside the material.

In order to analyze differences of fit performance with and without regeneration assump-

tion, the kaon neutral decay vertices located in regions around the regenerating materials

may be considered, separately for each of the major regeneration sources in KLOE. The

following tests used only events where the K→ π0π0 vertex was in the limits of radial dis-

tance ±1 cm from the spherical beam pipe, as shown in Figure 7.1. This region was chosen

in order to investigate the regeneration process taking place in the beam pipe material.

10 cm

1 cm

Figure 7.1: Region of 1cm width around the spherical beam pipe (green) where the
K→ π0π0 vertices were considered both with signal and regeneration assumption in the

fit.

In order to determine the radial distance of vertex from the detector center, the vertex

location reconstructed using the standard algorithm was used as being more accurate and

as information on the deviation of vertex location from the original flight direction of

the KL is not relevant for the radial distance. In the sample used, the region of 1 cm
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around the spherical beam pipe contained about 3200 signal events and 11700 events with

regeneration. For each of these events the fit was first performed with a signal assumption

and then independently a fit with regeneration point assumed to lie on the BP was carried

out.

As mentioned in the previous section, the two observables resulting from the fit in which a

discrepancy was expected to appear between results of fit with and without regeneration

assumption applied to regeneration events are the υ ti−Si distance for the physical solution

and the χ2(xmin) (see Equation 6.3) value for the set of parameters xmin which minimizes

the physical constraints. In further considerations the sig and reg subscripts will denote

values of these quantities obtained in the fit with signal and regeneration assumption,

respectively.
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Figure 7.2: Left: distribution of differences between υ ti − Si values obtained using a
fit with (reg subscript) and without regeneration assumption (sig superscript). Right:
distribution of differences between χ2(xmin) (a measure of degree of parameter variation
in the fit, see Equation 6.3) values obtained using a fit with and without regeneration
assumption. The above distributions do not exhibit any significant discrepancy between

signal and regeneration events.

Left plot of Figure 7.2 presents a distribution of differences between the (υ ti − Si) values

minimized with and without an assumption of regeneration in an event. It is visible that

while both distributions are narrow, they do not differ to an extent that would allow to

use the value of such difference for each event to discriminate regeneration background.

Unfortunately, distribution of the second quantity expected to be useful, the difference

between χ2 values for the minima found with two variants of the fit, also does not exhibit

any substantial discrepancy between signal and regeneration events as it can be seen on

the right plot of Figure 7.2.

The values of the χ2 which give a measure of the degree to which the parameters had to be

varied in order to find a set of values minimizing the physical constraints, was expected to
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be larger for regeneration events to which the signal assuming version of the fit is applied.

The distribution shown in the right panel of Figure 7.2 is peaked at 0 which suggests

that no systematic difference is observed. A two-dimensional distribution of these values

presented with respect to each other as in the plot in Figure 7.3 (shown separately for

signal and regeneration events) confirms that in most cases the χ2 values yielded by both

fit variants are similar. Although deviations from this occur, they are visible for both

regeneration and signal events. Therefore, no possibilities to reject regeneration may be

observed in the distributions of χ2.

sig
2χ

0 2 4 6 8 10 12 14 16 18 20

re
g

2 χ

0

2

4

6

8

10

12

14

16

18

20

-110

1

10

signal

sig
2χ

0 2 4 6 8 10 12 14 16 18 20

re
g

2 χ

0

2

4

6

8

10

12

14

16

18

20

1

10

210

regeneration

Figure 7.3: Two-dimensional distributions of the χ2(xmin) values for the minima ob-
tained with a fit with regeneration assumption (vertical axes) and with signal assumption
(horizontal axes). Left-side plot corresponds to signal events only while right-side plot
presents only regeneration events. Although there are events for which these two values

are noticeably different, such cases occur for both signal and regeneration.

Traces of the regeneration can, however, also be expected to appear in the other observable:

the value of υ ti − Si difference minimized by the fit. As it was shown in the right-

side plot of Figure 7.2, the bare difference of these values obtained with two fit variants

does not show useful discrepancy between signal and regeneration either. It may then be

useful to analyze relative behaviour of υ ti − Si and χ2. Figure 7.4 shows a set of two-

dimensional distributions of these quantities for four cases of: signal-assuming fit applied to

signal events (upper left) and to regeneration events (lower left) and fit with regeneration

assumption applied to signal events (right) and to regeneration events (lower right).

Unfortunately, The above distributions exhibit no differences significant enough to be

used to devise cuts which would allow for rejection of a part of regeneration events with

no simultaneous effect on the signal events. This is probably a result of the insufficient

accuracy of determination of neutral vertex spatial coordinates by the new reconstruction

algorithm. As concluded in Chapter 6, in the region around the spherical beam pipe the

standard deviation of distances between reconstructed and generated KL → π0π0 vertex

is about 2.5 cm for each spatial coordinate. Therefore, the inaccuracies involved in both
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Figure 7.4: Two-dimensional distributions of the χ2 value after the fit and the υ ti− Si
difference as minimized by this fit. Two plots in the left column present the distributions
of these quantities obtained with a fit with signal assumption and the plots from right
columns – with regeneration assumption. Plots in the upper row were obtained with

signal events only, and lower plots – with events with regeneration.

variants of the fit procedure are larger than effect of wrong kaon path calculation which

appears in case of applying a signal-assuming fit to a regeneration event. In consequence,

this effect is not distinguishable in the distributions presented above. This leads to the

conclusions concerning applicability of the new reconstruction method to regeneration

rejection, which will be presented in the next chapter.





Chapter 8

Conclusions

This work aimed at an elaboration of a new method of reconstruction of the K → π0π0

decay vertex for the KLOE experiment. Reconstruction was required not to assume the

neutral vertex to lie along momentum direction of the original kaon produced in a φ meson

decay and thus to account for the possibility of kaon regeneration.

Such a method using four calorimeter clusters originating from photons created in π0 de-

cays and based on an intersection of sets of possible photon origin points was invented.

It was implemented and proved to find the vertex location correctly using Monte Carlo

generated events. However, the vertex resolution for MC reconstructed events was discov-

ered to be insufficient due to inaccuracies of reconstructed cluster coordinates which are

treated as reconstruction input.

In order to improve the accuracy of reconstructed neutral vertex location, the reconstruc-

tion algorithm was extended to involve a procedure of tuning the measured parameters by

means of a kinematic fit. The fit was based on two constraints that a physical K→ π0π0

decay vertex must satisfy (the kaon meson must reach the origin point of four photons

within a given time and invariant masses of two pairs of gammas must be equal to π0 mass).

An iterative multidimensional minimization method with quadratic penalty functions was

employed.

The application of parameter tuning with the fit led to an enhancement in the resolution

of neutral vertex spatial location with the improvement being especially large in case

of vertices close to the φ meson decay vertex. Final resolution obtained with the new

reconstruction algorithm is about 0.5 cm in each spatial coordinate for kaons decaying very

close to their production point. In the region of spherical beam pipe location in KLOE

(which is important for regeneration rejection) the kaon decay point can be determined

with an accuracy of about 2.5 cm

Since the mean path travelled by a regenerated short-lived kaon in KLOE is about 6 mm,

the above spatial vertex resolution is not sufficient for kaon regeneration in an event
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to be visible in the vertex location with respect to the original kaon flight direction.

Therefore other methods of recognition of regeneration background were sought for, using

the comparison of quality of physical constraints minimization for signal and regeneration

events with and without the regeneration assumption as presented in Chapter 7.

Calculations of the error in kaon path length resulting from treating an event with regen-

eration as a signal one yield a value substantially larger than the accuracy with which the

υ ti−Si≈ 0 criterion is satisfied. Although this suggests that a difference in the fit quality

of two fit variants should appear for regeneration events, no significant discrepancy was

observed in the tests with MC reconstructed events. This is probably a result of the large

inaccuracy of vertex determination which leads to the locations of neutral decay vertices

which do not correspond well to the ideal case of kaon path calculation. With the present

resolution of the new method the vertex may be reconstructed (in the region of the spher-

ical beam pipe) in a distance of about 2.5 cm from the flight direction of original KL even

in case of signal events as this would result only from the uncertainty of reconstruction.

In such a case the path travelled by the kaon before decay would differ from the real path

length significantly despite no regeneration in the event. The above considerations lead to

a conclusion that for the difference in fit quality between signal and regeneration events to

be observable, the accuracy of the vertex spatial location determined by the new algorithm

should be improved.

Although it could be concluded that with its present performance the K → π0π0 decay

vertex reconstruction method presented in this work does not provide spatial resolution suf-

ficient for rejection of regeneration background in the φ→ KSKL →(KSKS →)π+π−π0π0

process at KLOE, the elaborated algorithm can be used as an alternative method for

determination of other neutral vertices with sufficient number of photons, for example

KL → 3π0.



Appendix A

Solution of the 4 spheres’

intersection equation system

As mentioned in section 5.2 the system of quadratic equations describing the spheres

constituted by sets of possible origin points of the γ paths for each of the four EMC

clusters in the KL → π0π0 → 4γ decay can be written as follows:

(T1 − t)2c2 = (X1 − x)2 + (Y1 − y)2 + (Z1 − z)2, (A.1)

(T2 − t)2c2 = (X2 − x)2 + (Y2 − y)2 + (Z2 − z)2, (A.2)

(T3 − t)2c2 = (X3 − x)2 + (Y3 − y)2 + (Z3 − z)2, (A.3)

(T4 − t)2c2 = (X4 − x)2 + (Y4 − y)2 + (Z4 − z)2, (A.4)

where x, y, z and t are unknowns, c is the speed of light and capital letters denote the

spatial and temporal coordinates of the clusters.

If the quadratic terms in the above equations are expanded, subtraction of any of these

equations from another results in the elimination of all terms with the unknowns squared,

i.e. x2, y2, z2 and t2. This way linear (in terms of the unknowns) equations may be ob-

tained. At maximum three linearly independent equations can be produced by subtracting

respective pairs of equations (A.1)–(A.4).
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For the following considerations let us choose to subtract equations (A.2)–(A.4) from (A.1).

The system of linear equations of then of the form:

−2x(X1 −X2)− 2y(Y1 −Y2)− 2z(Z1 − Z2)−X2
1 −X2

2 + Y2
1 −Y2

2 + Z2
1 − Z2

2

= −2c2t(T1 − T2) + c2(T2
1 − T2

2), (A.5)

−2x(X1 −X3)− 2y(Y1 −Y3)− 2z(Z1 − Z3)−X2
1 −X2

3 + Y2
1 −Y2

3 + Z2
1 − Z2

3

= −2c2t(T1 − T3) + c2(T2
1 − T2

3), (A.6)

−2x(X1 −X4)− 2y(Y1 −Y4)− 2z(Z1 − Z4)−X2
1 −X2

4 + Y2
1 −Y2

4 + Z2
1 − Z2

4

= −2c2t(T1 − T4) + c2(T2
1 − T2

4). (A.7)

In order to simplify the notation let us introduce the auxiliary parameters:

∆Xij := 2(Xi −Xj),

∆Yij := 2(Yi −Yj),

∆Zij := 2(Zi − Zj),

∆Tij := −2c2(Ti − Tj),

Cij := −c2(T2
i − T2

j ) + X2
i −X2

j + Y2
i −Y2

j + Z2
i − Z2

j ,

(A.8)

where i, j are the indices numbering the EMC clusters and their corresponding equations

from the initial system. These additional parameters are only dependent on the known

values. The system of equations (A.5)–(A.7) can be then written in the form:

 ∆T12 ∆X12 ∆Y12 ∆Z12

∆T13 ∆X13 ∆Y13 ∆Z13

∆T14 ∆X14 ∆Y14 ∆Z14




t

x

y

z

 =

 C12

C13

C14

 . (A.9)

As there are three equations and four unknowns in the system, an explicit solution cannot

be directly found. Three of the unknowns, however, may be determined with the fourth

one as a variable parameter. Let us choose the time t to be the parameter. In such a case

the solution for (x, y, z)(t) is of the form describing a parametric line in a three-dimensional

space:  x(t)

y(t)

z(t)

 =

 a1

a2

a3

 · t+

 b1

b2

b3

 , (A.10)
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where ai and bi are defined as below:

a1 =(∆T14∆Y13∆Z12 −∆T13∆Y14∆Z12 −∆T14∆Y12∆Z13

+ ∆T12∆Y14∆Z13 + ∆T13∆Y12∆Z14 −∆T12∆Y13∆Z14)/d,

a2 =(−∆T14∆X13∆Z12 + ∆T13∆X14∆Z12 + ∆T14∆X12∆Z13

−∆T12∆X14∆Z13 −∆T13∆X12∆Z14 + ∆T12∆X13∆Z14)/d,

a3 =(∆T14∆X13∆Y12 −∆T13∆X14∆Y12 −∆T14∆X12∆Y13

+ ∆T12∆X14∆Y13 + ∆T13∆X12∆Y14 −∆T12∆X13∆Y14)/d,

(A.11)

b1 =(B1(∆Y13∆Z14 −∆Y14∆Z13) + B2(∆Y14∆Z12 −∆Y12∆Z14)

+ B3(∆Y12∆Z13 −∆Y13∆Z12))/d,

b2 =(B1(∆X14∆Z13 −∆X13∆Z14) + B2(∆X12∆Z14 −∆X14∆Z12)

+ B3(∆X13∆Z12 −∆X12∆Z13))/d,

b3 =(B1(∆X13∆Y14 −∆X14∆Y13) + B2(∆X14∆Y12 −∆X12∆Y14)

+ B3(∆X12∆Y13 −∆X13∆Y12))/d,

(A.12)

and the denominator d in the above expressions is:

d =−∆X14∆Y13∆Z12 + ∆X13∆Y14∆Z12 + ∆X14∆Y12∆Z13

−∆X12∆Y14∆Z13 −∆X13∆Y12∆Z14 + ∆X12∆Y13∆Z14.
(A.13)

Once x, y and z as functions of t are obtained as in equation (A.10), their insertion into

any of the initial equations (let us choose (A.1)) yields a quadratic equation with t as the

only unknown:

(a1t+ b1 −X1)2 + (a2t+ b2 −Y1)2 + (a3t+ b3 − Z1)2 = c2(t− T1)2. (A.14)

The above equation may be transformed to the general form:

pt2 + qt+ r = 0, (A.15)

with the p, q, r coefficients expressed with the previously introduced terms as:

p = a2
1 + a2

2 + a2
3 − c2,

q = 2a1(b1 −X1) + 2a2(b2 −Y1) + 2a3(b3 − Z1) + c2T1,

r = (b1 −X1)2 + (b2 −Y1)2 + (b3 − Z1)2 − c2T1
2.

(A.16)

Equation (A.15) has up to two solutions which in this work are labeled t1 and t2 as below:

t1 =
−q −

√
q2 − 4pr

2p
, t2 =

−q +
√
q2 − 4pr

2p
. (A.17)

Although from the mathematical point of view it is possible that no solutions exist if

q2 < 4pr, it should not be the case when the data from a physical event are used where



Appendix A. Solution of the 4 spheres’ intersection equation system 66

the real vertex corresponding to a solution always exists1. It may be, however, that both

solutions are equivalent, i.e. t1 = t2.

Finally, insertion of the explicit solutions for t into equation (A.10) leads to the full so-

lutions of the initial system composed of kaon flight time t and the spatial decay vertex

coordinates x, y, z:

(t1, x(t1), y(t1), z(t1))

(t2, x(t2), y(t2), z(t2))
(A.18)

1Reconstruction effects, however, can make this equation unsolvable.
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