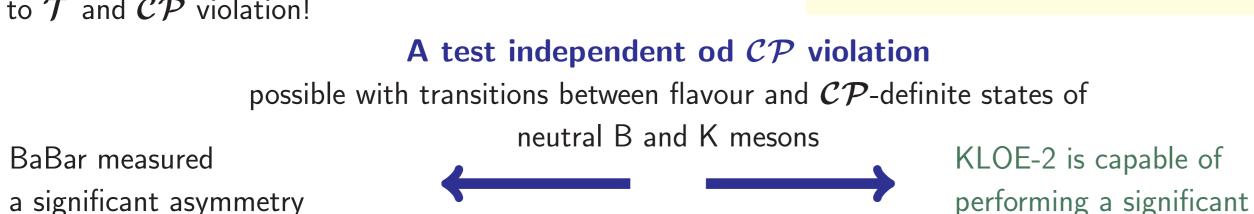


A direct test of time-reversal symmetry in the neutral K meson system with ${\rm K_S} \to \pi \ell \nu$ and ${\rm K_L} \to 3\pi^0$ at KLOE-2 Aleksander Gajos* for the KLOE and KLOE-2 collaborations

*Jagiellonian University, Cracow, Poland

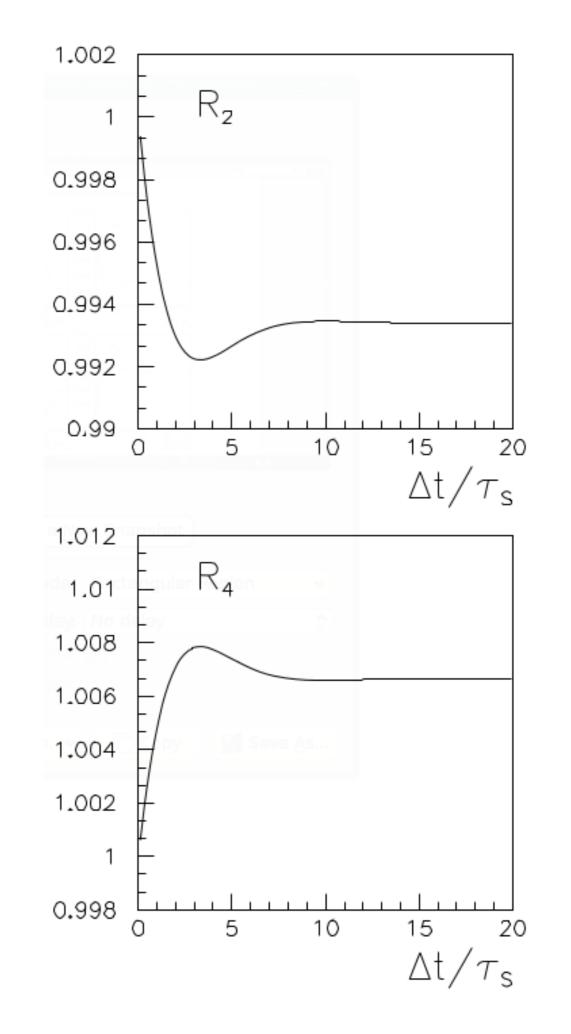

Motivation

A direct test of \mathcal{T} symmetry – for spin 0 particles means an observation of asymmetry between one process and a process obtained by exchange of its initial and final states.

Kabir asymmetry at CPLEAR [1]

Kabir asymmetry at CPLEAR [1]
• Measured probability asymmetry of
$$K^0 \to \overline{K}^0$$
 and $\overline{K}^0 \to K^0$
• $\langle A_T^{exp} \rangle = (6.6 \pm 1.3_{stat} \pm 1.0_{syst}) \times 10^{-3}$ [1]
• Controversy: asymmetry in $K^0 \leftrightarrows \overline{K}^0$ may be attributed both
 $\downarrow = \mathcal{T} = \downarrow \mathcal{CP}$ is latic.

to \mathcal{T} and \mathcal{CP} violation!

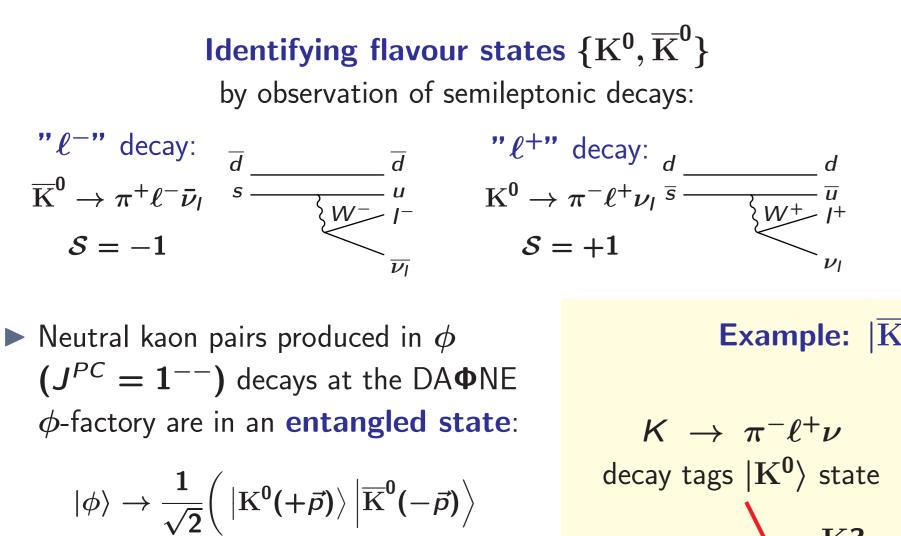

\mathcal{T} test at KLOE-2

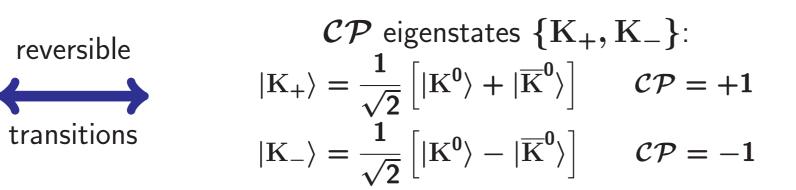
Possible transitions

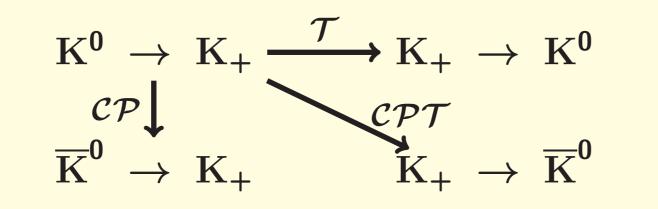
	Transition	Identified by	au-conjugate	Identified by
	•		$\mathrm{K}_+ \to \mathrm{K}^0$	
2	${ m K^0} ightarrow { m K}$	$(\ell^-, 3\pi^0)$	$\mathrm{K}_{-} \to \mathrm{K}^{0}$	$(\pi\pi,\ell^+)$
3	$\overline{\mathrm{K}}^{0} \to \mathrm{K}_{+}$	$(\ell^+,\pi\pi)$	$\mathrm{K}_+ \to \overline{\mathrm{K}}^0$	$(3\pi^0,\ell^-)$
4	$ \overline{\mathrm{K}}^{0} \rightarrow \mathrm{K}_{-} $	$(\ell^+, 3\pi^0)$	$\mathrm{K}_{-} \to \overline{\mathrm{K}}^{0}$	$(\pi\pi,\ell^-)$

KLOE-2 will collect high statistics of events allowing to measure ratios of time-dependent probabilities of two transitions and their time-iverses through numbers of events identified by certain K decays in time interval Δt :

$$R_2(\Delta t) = \frac{P[\mathrm{K}^0(0) \to \mathrm{K}_-(\Delta t)]}{P[\mathrm{K}^-(0) \to \mathrm{K}^0(\Delta t)]} \sim \frac{\mathrm{I}(\ell^-, 3\pi^0; \Delta t)}{\mathrm{I}(\pi\pi, \ell^+; \Delta t)}$$


test with neutral kaons! [2]


 $P(|a\rangle \rightarrow |b\rangle) \stackrel{?}{=} P(|b\rangle \rightarrow |a\rangle)$


Testing \mathcal{T} symmetry with neutral kaons

Strangeness eigenstates $\{K^0, \overline{K}^0\}$: ${\cal S} \ket{{
m K}^0} = +1 \ket{{
m K}^0}$ $|{ar K}^0
angle = -1\,|{ar K}^0
angle$

- $\blacktriangleright CP$ -flavour transitions and their time-inverses are only connected by ${\mathcal T}$ conjugation
- Can be observed in an entangled system of neutral kaons

Identifying CP states $\{K_+, K_-\}$ by observation of hadronic decays:

" $3\pi^0$ " decay: " $\pi\pi$ " decay: $egin{array}{ccc} \mathrm{K}_+ &
ightarrow \pi^+\pi^- & \mathrm{K}_+
ightarrow 3\pi^0 \ \pi^0\pi^0 \end{array}$ $C\mathcal{P} = +1$ $\mathcal{CP} = -1$

Example: $|\overline{\mathbf{K}}^{0}\rangle \rightarrow |\mathbf{K}_{-}\rangle$ in time Δt $K
ightarrow 3\pi^0$ decay tags $|{
m K}_{-}
angle$ state Κ? *Φ* Κ?

 $I [I \subseteq (0) / I \subseteq (\Delta t)] = I (\Lambda \Lambda, \mathcal{L}, \Delta t)$ $R_4(\Delta t) = \frac{P[\overline{\mathrm{K}}^0(0) \to \mathrm{K}_-(\Delta t)]}{P[\mathrm{K}_-(0) \to \overline{\mathrm{K}}^0(\Delta t)]} \sim \frac{\mathrm{I}(\ell^+, 3\pi^0; \Delta t)}{\mathrm{I}(\pi\pi, \ell^-; \Delta t)}$

Asymptotic discrepancy of these ratios and 1 is a measure of ${\cal T}$ symmetry violation:

 $R_2(\Delta t) \stackrel{\Delta t \gg au_s}{\longrightarrow} 1 - 4 \Re \epsilon$ $R_4(\Delta t) \stackrel{\Delta t \gg \tau_s}{\longrightarrow} 1 + 4 \Re \epsilon$

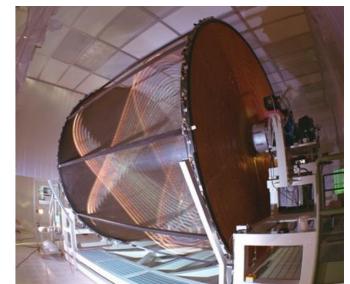
> Figure shows simulated behavior of the ratios expected for $10fb^{-1}$ of KLOE-2 data [2].

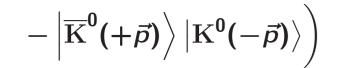
KLOE Detector at DAΦNE

 $\Re \epsilon \neq \mathbf{0}$ implies

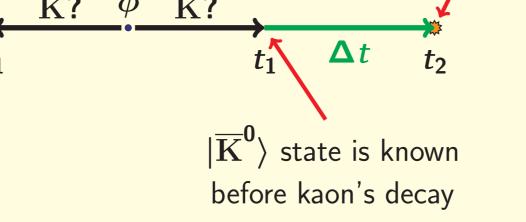
 ${\mathcal T}$ violation[2].

The KLOE (K LOng Experiment) detector is located at the DA Φ NE e^+e^- collider in the National Laboratory of Frascati (LNF). DA Φ NE is a ϕ -factory operating at the energy of the top of ϕ meson resonance, $\sqrt{s} \approx$ 1020 MeV. In the years 1999–2006 KLOE has collected 2.5 fb $^{-1}$ of data which corresponds to about 10^{10} ϕ mesons produced. Pairs of neutral kaons are produced in about 34% of ϕ decays.

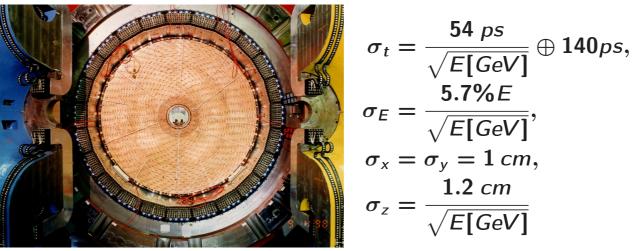



KLOE is a barrel-shaped detector whose basic components are the drift chamber and electromagnetic calorimeter immersed in magnetic field of 0.52 T.

Drift Chamber


- ► One of the largest DCs ever built
- ▶ 2 m radius \Rightarrow captures ${\sim}40\%$ of ${
 m K_L}$ decays

 $(\lambda_{
m K_L}pprox$ **3.5** m).



► Quantum entalglement in the EPR sense allows for identification of a state of the kaon without its decay.

Electromagnetic Calorimeter

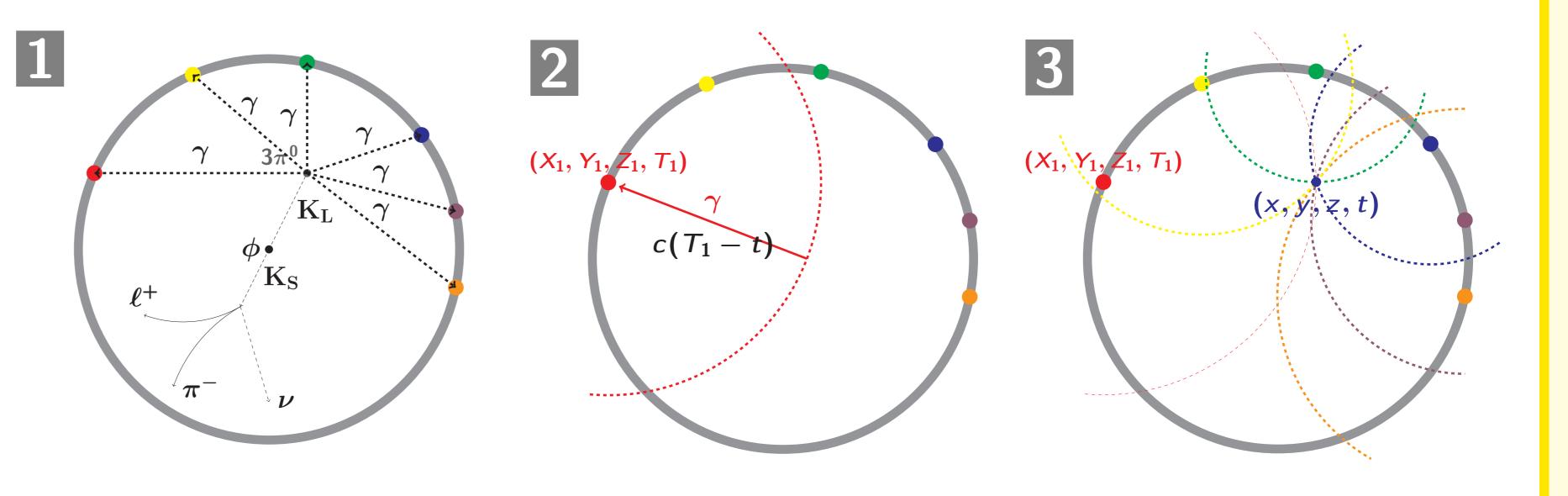
Lead-scintillating fiber sampling calorimeter

► Good momentum resolution $\frac{\sigma(p)}{p} = 0.4\%$ $\blacktriangleright \sigma_{r,\varphi} = 150 \mu m$, $\sigma_z = 3mm$

Upgrade to KLOE-2

Upgraded KLOE-2 detector[5] is starting operation with the following improvements:

- ► Triple higher luminosity of upgraded $DA\Phi NE$
- ► New C-GEM inner tracker [6]
- ► New calorimeters at small angles around beam pipe [7]


Reconstruction of events for the test

- ► The following proceses can be reconstructed for the \mathcal{T} test:
 - $\phi \rightarrow \mathrm{K_SK_L} \rightarrow \pi^+ \ell^- \bar{\nu} \ 3\pi^0$
 - $\phi
 ightarrow {
 m K}_{
 m S} {
 m K}_{
 m L}
 ightarrow \pi^- \ell^+
 u \; 2\pi$
 - $\phi
 ightarrow {
 m K}_{
 m S} {
 m K}_{
 m L}
 ightarrow \pi^- \ell^+
 u \ 3\pi^0$
 - $\phi
 ightarrow {
 m K}_{
 m S} {
 m K}_{
 m L}
 ightarrow \pi^+ \ell^- ar{
 u} \ 2\pi$
- ► Good resolution of kaon decay times required ▷ Obtained from decay vertex position
- \triangleright Decay vertex resolution of $\mathcal{O}(1cm)$ needed
- Good vertex reconstruction obtained using charged particle tracks for $\pi\ell\nu$ and $\pi^+\pi^-$ final states
- ▶ The $K_L \rightarrow 3\pi^0$ decay only invovives neutral particles and requires a specialized reconstruction method!

► Hermetically covers 98% of full solid angle

${ m K_L} ightarrow 3\pi^0 ightarrow 6\gamma$ vertex reconstruction for ${ m K_SK_L} ightarrow \pi\ell\nu$ $3\pi^0$

- \blacktriangleright selection and analysis of $\mathrm{K_S}
 ightarrow \pi e
 u$ decays to be adapted from [8]
- $ightarrow {
 m K_L}
 ightarrow {
 m 3} \pi^0$ reconstruction must rely exclusively on calorimeter information
- ▶ Reconstruction of $K_L \rightarrow 3\pi^0$ similar to GPS positioning is possible:
- 1.6 clusters in the calorimeter from γ hits are the only direct information on the process recorded by the detector

2 For each cluster with location (X_i, Y_i, Z_i) and recording time T_i a set of possible origin points of its incident γ is a sphere with radius dependent on kaon decay time:

 $(T_i - t)^2 c^2 = (X_i - x)^2 + (Y_i - y)^2 + (Z_i - z)^2$ i = 1, ..., 6,

where the unknowns x, y, z, t correspond to K_L decay vertex location and time. 3 The ${
m K_L}
ightarrow 3\pi^0
ightarrow 6\gamma$ decay point and time are found as an intersection of spheres defined for all clusters. At least 4 clusters are required for reconstruction but additional 2 can be used to improve resolution.

References

[1] A. Angelopoulos et al. [CPLEAR Collaboration], Phys. Lett. B 444 (1998) 43. [2] J. Bernabeu, A. Di Domenico and P. Villanueva-Perez, Nucl. Phys. B 868 (2013) 102 [3] J. Bernabeu, F. Martinez-Vidal and P. Villanueva-Perez, JHEP 1208 (2012) 064 [4] J. P. Lees et al. [BaBar Collaboration], Phys. Rev. Lett. 109 (2012) 211801 [5] D. Moricciani [KLOE-2 Collaboration], PoS EPS -HEP2011 (2011) 198. [6] A. Balla, G. Bencivenni, P. Branchini et al., Nucl. Instrum. Meth. A 732 (2013) 221. [7] D. DOMENICI, PoS EPS -**HEP2013** (2014) 495. [8] see a poster by D. Kamińska at this conference

Acknowledgements

This work was supported in part by the EU Integrated Infrastructure Initiative Hadron Physics Project under contract number RII3-CT- 2004-506078; by the European Commission under the 7th Framework Programme through the Research Infrastructures action of the Capacities Programme, Call: FP7-INFRASTRUCTURES-2008-1, Grant Agreement No. 227431; by the Polish National Science Centre through the Grants 0469/B/H03/2009/37, 0309/B/H03/2011/40, 2011/03/N/ST2/02641, 2011/01/D/ST2/00748, No. 2011/03/N/ST2/02652, 2013/08/M/ST2/00323 and by the Foundation for Polish Science through the MPD programme and the project HOMING PLUS BIS/2011-4/3.