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a b s t r a c t

J-PET Framework is an open-source software platform for data analysis, written in C++ and based on the
ROOT package. It provides a common environment for implementation of reconstruction, calibration
and filtering procedures, as well as for user-level analyses of Positron Emission Tomography data. The
library contains a set of building blocks that can be combined by users with even little programming
experience, into chains of processing tasks through a convenient, simple and well-documented API.
The generic input–output interface allows processing the data from various sources: low-level data
from the tomography acquisition system or from diagnostic setups such as digital oscilloscopes, as
well as high-level tomography structures e.g. sinograms or a list of lines-of-response. Moreover, the
environment can be interfaced with Monte Carlo simulation packages such as GEANT and GATE, which
are commonly used in the medical scientific community.

© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Code metadata

Current code version 8.1
Permanent link to the repository https://github.com/ElsevierSoftwareX/SOFTX_2020_50
Legal Code License Apache License 2.0
Code versioning system used git
Software code languages, tools and services used C++, Python, ROOT, Boost
Compilation requirements & dependencies Linux; g++ compiler supporting the c++14 standard;

CMake 3.1.5 or later; Boost libraries 1.64 or later,
ROOT version 6.X

Developer documentation/manual [1]
User and developer support, bug tracker [2]

1. Motivation and significance

Positron Emission Tomography is one of the most popular
methods for tomographic imaging used in nuclear medicine. In
contrast to other techniques such as Computed Tomography that
can detect anatomical changes, PET provides information about
metabolic processes in the patient’s body even at the cell level [3].
This allows detection of pathological symptoms that usually pre-
cede the anatomical changes. PET tomography has a wide range
of research and clinical applications e.g. it is commonly used for
diagnosis of cancer, neurological disorders, heart diseases and
many others [4].
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Although the PET technique is well established for clinical
usage, there are ongoing efforts in the scientific community that
would overcome the limits of the commercial scanners and im-
prove the quality of the image [4–8] or even enrich the available
information by introducing new diagnostic methods. Whole-body
or total-body PET scanner projects [9–11] propose tomographs
that improve the sensitivity of the measurement in order to
shorten the time of a scan or alternatively require a smaller
radiation exposure for the patients [12].

The transformation of the data acquired by a PET scanner
from the raw binary level till the final patient image analyzed
by physicians is a complex, multi-stage process involving low-
and high-level reconstruction algorithms. The associated data
handling and reconstruction is an especially hard task in case of
the whole-body scanners due to large data volume [13].
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The J-PET collaboration aims at providing a low-cost, modular,
whole-body PET scanner based on detection of photon interac-
tions in plastic scintillators [14–16] with a view to its application
in both medical diagnostics [16,17] and in proton therapy moni-
toring [18]. The J-PET prototype is a research device which not
only demonstrates the new operating principle for its use in
standard PET tomography but also explores new imaging modal-
ities such as spatially-resolved determination of properties of
positronium atoms produced in a patient’s body [19–22].

The exploratory nature of the J-PET device results in its oper-
ation with much more flexible data registration conditions than
used in commercial PET solutions. In order to allow for classical
PET imaging without discrimination of signals, which may be
used in the novel diagnostic methods, J-PET operates in a trigger-
less data acquisition mode [23], resulting in a volume of recorded
data unprecedented in medical imaging technologies.

From the software point of view, development and testing
of novel PET modalities and tomography methods become chal-
lenging as the standard approaches must be either extended or
entirely replaced by new algorithms. Moreover, at the prototyp-
ing stage, multiple elements of the detector, its geometrical setup
and the data acquisition chain are subject to change and various
reconstruction procedures may be tested in parallel. The software
framework used to analyze data from evolving prototypes and to
implement and test new reconstruction algorithms must follow
these changes dynamically. At the same time, however, the need
to efficiently process the data stream from trigger-less acquisition
requires that the performance may not be compromised when
asserting flexibility.

The J-PET Framework package has been developed as an an-
swer to the aforementioned challenges, providing a dynamically
adjustable environment for development and efficient implemen-
tation of new algorithms. The basic idea is to provide a set
of generic building blocks, allowing a quick implementation of
data processing chains to be used by analysts with even little
programming experience through a convenient and simple API.
The J-PET Framework is used for analysis of data recorded by
the tomograph prototype from the level of raw data saved by
its data acquisition system, through assembly of higher-level
data structures representing the logic needed for reconstruction
of the physical properties of electron–positron annihilation into
photons, up to the level of medical image reconstruction and
statistical analysis of the data.

Notably, the data acquisition system of J-PET is based on
the TRB3 hardware platform [24,25] which is widely used by
experimental setups both in the fields of medical imaging and
particle physics experiments [26]. Consequently, the J-PET Frame-
work can be easily adopted for data analysis in other TRB3-based
experiments.

From the point of view of the full data reconstruction flow,
the usage scope of the J-PET Framework is different compared
with the existing tomography image software packages such as
STIR [27], CASTOR [28] or QETIR [29], since it also allows to
implement low-level reconstruction and calibration algorithms
which operate before the formation of Line-of-Responses (LORs),
while typical input data for image algorithms consists of higher-
level structures such as sinograms or list of LORs. At the same
time, J-PET environment provides tools for the implementation
of typical image reconstruction algorithms and effectively such
procedures e.g. Time-of-Flight Filtered-Backprojection, have been
implemented within the Framework. However, the aim of the
J-PET Framework package is not to replace the existing image to-
mography toolkits, which offer well tested and proven solutions,
but rather to provide a possibility for passing the transformed
data to the external packages.

While an early version of the J-PET Framework is described
in Ref. [30], this article is intended to present its architecture

and functionality available in its current mature form, which
allows to extend the scope of its usage beyond the J-PETproject.
Therefore, we focus on the properties of the core J-PET Frame-
work library [31] rather than on the particular J-PET-specific
reconstruction algorithms developed using the framework which
are available in a separate repository [32].

2. Software description

The design of the J-PET Framework originated from the ne-
cessity of performing reconstruction and analysis of PET data
from a prototype tomography scanner. It has become a more
generalized environment for execution of tasks which could be
adapted to multi-step analysis of various kinds of data. All the
features naturally followed the implementation: managing in-
put/output, incorporating palette of configurations, adapting data
and parameter structures, user interface and task handling.

The core of the J-PET Framework is constituted by a dynamic
library that can be linked to user applications. The library pro-
vides tools for loading, analyzing and saving transformed data as
well as for implementation of transformation algorithms that can
be further connected in chains and finally executed.

The J-PET environment can be used to e.g. develop a recon-
struction chain for the real data collected by a PET scanner or
to implement a calibration procedure, an image reconstruction
method or any kind of a multi-step analysis. Other typical appli-
cations consist of comparative studies of prototype PET scanners
performance based on the Monte Carlo (MC) simulations.

2.1. User application programming interface

The core library of the J-PET Framework provides the users
with an Application Programming Interface (API) presented
schematically in Fig. 1. The API is concentrated on giving the user
access to data (structured as a stream of subsequent ‘‘events’’)
read from various sources as well to parameters of the exper-
imental setup (read from external configuration files) in order
to combine the event data and setup details in user-defined
algorithms assembling higher-level data structures and filtering
them based on custom conditions (Listing 2 presents an simple
example of such procedure). The API further allows for grouping
of such user-provided logic into analysis modules which can
then be chained to constitute a complete analysis workflow (as
demonstrated in Listing 1).

2.2. Software architecture

The library is written in C++ using object-oriented paradigm.
The core components are implemented as classes with well-
defined responsibilities e.g. computing task execution, input/out-
put operations, logging, option parsing, option validation. More-
over, the package contains a set of classes representing physical
entities e.g. part of the scanner or PET-specialized data structures
such Line-of-Response, which form a language that can be used
to express the domain-specific concepts (see more details in
Section 2.3.4).

The basic concept of the J-PET Framework is the decomposi-
tion of a data processing chain into a series of standardized mod-
ular blocks. Each module corresponds to a particular computing
task, e.g. a reconstruction algorithm or a calibration procedure,
with well-defined input and output. The processing chain is built
by registration of chosen modules in the JPetManager, respon-
sible for synchronization of the data flow between the modules
(see Fig. 2). This approach permits to quickly interchange modules
and to create processing chains for different experimental setups.
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Fig. 1. Scheme of the Application Programming Interface exposed to the user for creation of data reconstruction and analysis workflows. Elements of the workflow
exposed to and modified by the user are contained in the middle gray region whereas the elements outside it are handled by the framework transparently to the
user. Main functionalities of the API exposed to the user are marked with blue arrows and blue text. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Fig. 2. Scheme of Frameworks JPetManager structure, showing order of initialization and execution of tasks.

2.3. Software functionalities

J-PET Framework provides a set of functionalities that helps
in rapid data reconstruction and analysis prototyping. In this sec-
tion, we list the most useful features and present selected usage
examples. More applications can be found in the repository [32].

2.3.1. Handling of multiple data sources
The Framework provides a generic input–output mechanism

that through simple extensions allow for processing of data from
various sources e.g. low-level data in a binary format from a
tomographic data acquisition system, textual representations of
complete photomultiplier (PMT) signal waveforms collected us-
ing a serial data analyzer at detector testing stages, as well as

high-level tomography-specific structures e.g. sinograms or lines-
of-response. Other extensions of the input interface feature using
results of Monte Carlo simulations in place of data as described
in Section 2.3.10.

Fig. 3 presents how inputs from various data sources are uni-
fied at higher analysis levels so that more abstract steps of recon-
struction can act on data independently of their origin. PMT sig-
nals recorded with a serial data analyzer, for example, correspond
to PMT signal representations already assembled from single
Time-to-Digital Converter (TDC) signals in case of the TRB3-based
data acquisition system and are thus injected to the analysis
chain at the corresponding level, i.e. before a module pairing
PMT signals from the same detection module to identify photon
interactions.
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Fig. 3. Scheme of the data processing paths realized with the J-PET Framework for different cases of analysis of data from the J-PET prototypes and the corresponding
Monte Carlo simulations. Each gray rectangle represents a single module whereas arrows denote the flow of data represented as abstract objects.

2.3.2. Input/output mechanisms
Besides the source-specific data formats handled by dedi-

cated wrapper modules, the J-PET Framework relies on binary
internally-compressed data format provided by the ROOT pack-
age, widely adopted in both particle physics and nuclear medicine
research. The framework provides automatic handling of input
and output files for standard data analysis modules, abstracting
the actual storage away from the analysis or reconstruction logic.
User code is only responsible for deciding whether an entry pro-
cessed by a module should be preserved or discarded. Depending
on the option chosen by the user, output from every analysis
module is either saved to a separate file in the ROOT format or
directly fed as input to the subsequent module in the chain. While
the former is useful at the stages of testing the analysis, the latter
approach allows to create a pipeline of analysis modules minimiz-
ing I/O load as the only output saved to disk is the one produced
by the last module in the chain which typically corresponds to
the most filtered data stream where the data volume is reduced
by 1–2 orders of magnitude with respect to the raw input. This
is particularly important when multiple analysis processes are
operating on the same disk space, which is a common use case
in data-driven parallel computing specific to particle physics and
low-level PET tomography event filtering and reconstruction.

2.3.3. Options
The library provides multiple manners of loading optional

information for any custom processing task. These collections of
various parameters would be required for a successful reconstruc-
tion of PET data, giving i.e. descriptions of a experimental setup,
measurement conditions, necessary calibrations or desired form
of the output. The Framework provides the following interfaces
for dynamic configuration:

• command line options (e.g. input file, configuration files,
progress display)

• JSON file with the description of experimental setup -
parametrization of objects, that serve as data schema,

• JSON file with user-provided options — any custom settings
to be used during execution of tasks, passed as named
parameters of elementary C++ types

All the provided options are parsed and validated before exe-
cution of chain of tasks and are accessible during its processing.

2.3.4. Data and parameter structures
The library includes classes representing abstract entities com-

mon for analysis of data from J-PET measurements. Parameter
Objects represent hardware parts of the detector, along with their
working parameters, in-setup placement and connections with
other parts, e.g. a single object per each plastic scintillator strip
with its location in the detector or a photomultiplier coupled
to a given scintillator. Data Objects are structures representing
subsequent stages of reconstructed data — from elementary ones
containing only TDC time and data acquisition channel number, to
a detailed reconstruction of a physical event or a line-of-response.

Data Objects refer to particular elements of the setup encapsu-
lated in Parameter Objects where the physical signals have orig-
inated. Moreover, mapping of connections between such compo-
nents imposes relations between Parameter Objects themselves.
These relations are implemented using persistent object refer-
ences (TRef ) provided by the ROOT libraries [33] which ensure
O(1) lookup of corresponding elements as well as persistence of
the relations across file storage.

On the user side, encapsulation of data and setup proper-
ties into abstract objects allows for definition of reconstruction
and analysis logic even by users without programming profi-
ciency which is one of the objectives of the J-PET Framework.
Listing 2 demonstrates the interplay between Data (JPetHit
and JPetEvent) and Parameter Objects (Scintillator and
BarrelSlot) in a simple task.
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2.3.5. Setup description
Since experimental setup and its conditions can change from

one measurement to another, the set of parameters describing
it must be generated dynamically. The library provides dedicated
tools to handle a setup representation in a form of a configuration
JSON file. Based on its content, the Framework generates the
collection of Parameter Objects (see Section 2.3.4) together with
relations between them expressed in a standardized format. Once
this file is parsed, a Parameter Bank encapsulating the latter
is embedded in all output data files to allow for their further
stand-alone analysis.

2.3.6. Processing control and logging
Each execution instance of any application based on the

Framework environment, generates a log file with a unique name.
By default all input parameters and options are stored in the log
file, moreover each task can produce custom messages with one
of appropriate tags: INFO, DEBUG, ERROR.

User Tasks classes can use tools for creating control his-
tograms. All such objects are then automatically stored in the
output file. An usage example can be found in code snippet 3.

2.3.7. Compressed input files
It is also possible to provide a raw data file in a compressed

format; in that case a task is added by default, that simply
decompresses the input file before any other procedures begin.
Supported formats are: xz, gz, bz2, zip.

2.3.8. Handling of binary data format
The library can read raw data input files provided from the

scanner data acquisition or from digital oscilloscope measure-
ments. Binary data is transformed with dedicated tasks in the
ROOT format, making it available for further processing by the
consecutive tasks in the stream.

2.3.9. Iterative tasks
The structure of task chain allows the implementation of it-

erative tasks schemes, in which a module can be executed in
a loop till a given condition is fulfilled. The stopping condition
can be based on desired number of consecutive iterations or on
the return value of the function defined by the user. This func-
tionality is especially useful for optimization goals, i.e. refining
detector calibration constants or estimation of event classification
parameters.

2.3.10. Interfaces to Monte Carlo simulation packages
Testing and debugging of data analysis modules is often sup-

ported by using Monte Carlo-simulated events in place of actual
data. To this end, the J-PET Framework offers interfaces to two
Monte Carlo simulation packages: the custom J-PET MC simula-
tion software [34] based on the Geant4 toolkit [35] as well as the
GATE package for simulation of PET and SPECT tomography [36].

MC-simulated events are wrapped into the same data struc-
tures as data so that analysis modules intended to process ex-
perimental data can be applied transparently to the simulation
results. At the same time, all MC-specific event information is
preserved and accessible on demand.

2.3.11. Event display
J-PET Event Display [37] is a visualization tool based on the

J-PET library. It can load files with the Framework data structures
to visualize the reconstructed PET data in an event-by-event man-
ner at different phases of the processing. Information on input
geometry of the detector is provided by the same configuration
files in the JSON format used for reconstruction of data described
in Section 2.3.5. A usage example of the Event Display is shown
in Fig. 5.

2.4. Development philosophy, testing and continuous integration

The J-PET Framework developer community is trying to con-
sistently adopt good coding rules and practices in the develop-
ment routine to assure the quality of the software. In particular,
any new code before being merged into official repository must
be reviewed and accepted by at least one person not being the
author. Moreover, it must pass a set of unit and integration tests
defined for the platform. The contributors are strongly encour-
aged to add unit tests together with new classes and to format
the code consistently using the clang-format tool.

The Continuous Integration process is integrated with the
project Github repository. Any new pull request launches au-
tomatic set of tests based on the Travis [38] and Jenkins [39]
services. The unit tests are operated by the Travis system, while
larger integration tests, which typically require some input data,
are run by a dedicated Jenkins server. Both services deliver a
detailed report about possible failures. The testing system is fully
automatized on the servers and can be launched manually for
local testing.

Issue and bug tracking is performed with the Redmine service
which also serves also as a user support forum. The reference
guide is automatically generated from the code using the Doxy-
gen tool and is available online [40]. Additionally, an analysis user
guide is provided in the repository and it is being updated with
every new version of the Framework.

2.5. Sample code snippets analysis

Listing 1 presents the instance of JPetManager registering
user tasks to form a chain of procedures. With the following
useTask method, the user is specifying the input and output
data format of each tasks. In the example, the output of the
first task serves as input for the second one. The processing
of all algorithms with the provided arguments is triggered by
the run method. This simple construction allows to create an
analysis from custom building blocks even for a user with little
programming experience.

Listing 2 presents a snippet of an analysis module identify-
ing 2-photon coincidence events in a stream of single recorded
photon interactions (referred to as hits). Listing 3 shows a basic
usage of the statistics facilities for creation of histograms to be
filled during data analysis.

1 #include <JPetManager/JPetManager.h>
2 #include " Task1.h "
3 #include " Task2.h "
4
5 using namespace std;
6
7 int main (int argc, const char * argv []) {
8 JPetManager& manager = JPetManager::

getManager();
9

10 manager.registerTask <Task1 >( " Task1 " );
11 manager.registerTask <Task2 >( " Task2 " );
12
13 manager.useTask( " Task1 " , " data.input " , " data.

type1 " );
14 manager.useTask( " Task2 " , " data.type1 " , " data

.type2 " );
15
16 manager.run(argc, argv);
17 }

Listing 1: Exemplary main class of a program based on J-PET
Framework library.
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1 for(JPetHit& hit_1: gamma_hits){
2 for(JPetHit& hit_2: gamma_hits){
3 // find double coincidences within 5000 ps
4 if(hit_2.getTime() - hit_1.getTime() < 5000.)

{
5 // check if the two gamma interactions were

recorded
6 // in distinct scintillators of the setup
7 if(hit_1.getScintillator() != hit_2.

getScintillator()){
8 // check if locations of the two

detection modules
9 // differ by more than 160 degrees in

azimuthal angle
10 if(fabs(hit_1.getBarrelSlot().getTheta()

-
11 hit_2.getBarrelSlot().getTheta())

> 160.){
12 // reconstruct e+e- -> 2gamma

annihilation point
13 TVector3 point =
14 EventCategorizerTools::

calculateAnnihilationPoint(hit_1,hit_2);
15 // assemble an event containing the two

hits
16 JPetEvent event;
17 event.addHit(hit_1);
18 event.addHit(hit_2);
19 event.setEventType(JPetEventType::

k2Gamma);
20 // automatically store the event in the

output file
21 // or pass on to the next analysis

module
22 fOutputEvents ->add<JPetEvent >(event);
23 }
24 }
25 }
26 }
27 }

Listing 2: Exemplary naive procedure of finding 2-photon
coincidence events demonstrating the ease of operations on the

data structures provided by the Framework.

1 // Creating histogram with JPetStatistics class
2 getStatistics().createHistogram(
3 new TH1F( " hit_z_pos " , " Z-axis position of

photon interaction in plastic scintillator " ,
200, -25.0, 25.0));

4 getStatistics().getHisto1D( " hit_z_pos " )->GetXaxis
()->SetTitle( " Z-axis position [cm] " );

5 getStatistics().getHisto1D( " hit_z_pos " )->GetYaxis
()->SetTitle( " Number of Hits " );

6
7 // Invoking a histogram by title from statistics

interface for filling
8 getStatistics().getHisto1D( " hit_z_pos " )->Fill(hit

.getPosZ())

Listing 3: Example of using tools for creating filling histograms,
that are stored in output files.

3. Illustrative examples

In this section we present two examples developed with the
Framework library. The first application can be used to perform
tests of a prototype PET scanner based on the Monte Carlo sim-
ulations of various phantoms. The simulated scanner was built
from a cylindrical layer (radius of 42.5, length of 50 cm) of
384 plastic strips (more details about the MC simulations of the
J-PETscanners can be found in [16]).

The program loads the data sample generated by the GATE
Monte Carlo simulation package and transforms it by smearing
the measured observables such as time, energy and position

based on the parametrization of experimental uncertainties de-
termined for a given prototype scanner. This procedures mimics
the real measurement effects. Next, the data is reconstructed and
finally transformed to a sinogram, which serves as an input to
the image reconstruction task implementing the Time-of-Flight
Filtered-Backprojection algorithm (see Fig. 4) or can be send
to an external image reconstruction package such as STIR [27],
CASTOR [28] or QETIR [29]. All operations are implemented as
consecutive tasks executed by the framework.

The second program implements a full reconstruction chain
for the real data collected by the 3-layer J-PET scanner. The exam-
ple reconstruction and analysis is based on the test measurement
with the radioactive source placed in the center of the scanner.
The reconstructed results are visualized with the J-PET Event
Display tool (see Fig. 5).

4. Impact

Flexibility and robustness of the J-PET Framework library al-
lowed it to be adopted as the main software platform of the
J-PET project. The software and applications constructed based on
this package have been used for many kinds of scientific studies
involving data analyses from the J-PET tomography scanner and
will be utilized for future analyses in the fundamental research
and in the development of various PET scanners prototypes.

• performance assessment of novel PET scanners [41],
• time calibration techniques for PET scanners [42,43],
• parametrization of deposited energy in plastic scintillators

by Time-over-Threshold measurements [44],
• implementation of PET image reconstruction techniques

such as Kernel Density Estimation, Maximum Likelihood
Expectation Maximization [45] and Time-of-Flight Filtered-
Backprojection,

• development of plastic-based prototype a Positron Emission
Mammography scanner [46],

• studies in positronium annihilation reconstruction and
imaging [20,22,47],

• fundamental research on photon polarization and quantum
entanglement [48,49],

• tests of discrete symmetries [50,51],
• mirror matter searches [52].

The Framework software platform is currently used by scien-
tists from the Jagiellonian University in Kraków, National Centre
for Nuclear Research in Warsaw and INFN Laboratori Nazion-
ali di Frascati and has been successfully deployed on different
scales starting from laptops and personal PC-s, through mid-size
computing clusters to HPC Swierk cluster.

5. Conclusions

In this article we presented the features and range of possible
applications of the J-PET Framework, a C++ based library for data
processing and analysis for PET tomography and for fundamental
searches. The Framework provides tools for the implementation
of a wide range of data reconstruction and calibration procedures
as well as user-level data analyses and preparation of input for
higher-level medical imaging software. The platform is focused
on flexibility in adjusting to dynamically changing prototyping
environments and asserting ease of implementation of the re-
quired logic by users without programming proficiency while
maintaining high processing performance.

Currently, use cases of the J-PET Framework span among var-
ious data analyses and imaging application of the first J-PET
device. In the near future, a new generation light-weight modular
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Fig. 4. Example image reconstructed with the Time-of-Flight Filtered-Backprojection algorithm with various filters: Ramlak (left), Shepp–Logan (center), Hamming
(right). The input sample is based on Monte Carlo simulations of NEMA IEC phantom performed with the GATE package [36], and further processed by the
Framework-based parser which applies the experimental parametrizations to fully imitate a measurement of the scanner.

Fig. 5. Screenshots of J-PET Event Display [37], (see 2.3.11). This example visualizes result of data reconstruction acquired from a test measurement with radioactive
source in the center of the scanner. Figures show the model of the J-PET detector, consisting of plastic strips, arranged as 3 concentric cylinders. The right image
shows a 3D view, center is a frontal view and left shows these detector elements with positions of reconstructed interactions marked with red stars. In the center
and right figures red lines connect pairs of reconstructed positions, that satisfy selection criteria aiming in preparing the sample of events of electron–positron
annihilation. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

J-PET scanner with fully digital readout and high mobility will
be commissioned along with sibling devices such as a similar-
technology-based mammography scanner. The software platform
is currently being extended with modules specific to the new
devices, which will allow for reusing the higher-level analysis
steps with data from new hardware setups.

Despite having originated solely for the purpose of analysis of
data from a single setup, the recent expansion of the scope of its
usage in the context of J-PET demonstrates that the flexibility of
its architecture allows for use in a wider range of experiments
related to nuclear medicine and fundamental studies. .
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