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We present the analysis of K− absorption processes on 4He leading to �π− final states, measured 
with the KLOE spectrometer at the DA�NE e+e− collider and extract, for the first time, the modulus 
of the non-resonant K−n → �π− direct production amplitude about 33 MeV below the KN threshold. 
This analysis also allows to disentangle the K− nuclear absorption at-rest from the in-flight capture, for 
K− momenta of about 120 MeV. The data are interpreted with the help of a phenomenological model, 
and the modulus of the non-resonant K−n → �π− amplitude for K− absorption at-rest is found to be 
|AK −n→�π− | = (0.334 ± 0.018 stat+0.034

−0.058syst) fm.
© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 

(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Experiments with low energy negatively charged kaon beams 
directed on gaseous or solid targets are unique to study the 
antikaon–nucleon/nuclei interactions, by performing measure-
ments of the kaonic atoms de-excitations, or by detecting the 
final states following K− absorption processes. The capture of K−
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mesons on light nuclear targets (He and C) at-rest was observed 
in old bubble chamber and emulsion experiments ([1–6]), where a 
high purity sample was analyzed at the price of a limited statistics. 
In the case of interactions at-rest the underlying mechanism con-
sists in the capture of the strange meson in a highly excited atomic 
state and a successive cascade to low-lying states, followed by the 
K− nuclear capture. Studies of kaonic atoms produced a wealth of 
data in the recent years [7–10] which helped to understand the 
kaon–nucleon/nuclei threshold processes. Besides the interactions 
at-rest, an important contribution from in-flight K− nuclear cap-
tures was already characterized by the AMADEUS Collaboration in 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 

https://doi.org/10.1016/j.physletb.2018.05.025
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
http://creativecommons.org/licenses/by/4.0/
mailto:kristian.piscicchia@lnf.infn.it
https://doi.org/10.1016/j.physletb.2018.05.025
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physletb.2018.05.025&domain=pdf


340 K. Piscicchia et al. / Physics Letters B 782 (2018) 339–345
previous works [11,12], using a data sample collected by the KLOE 
Collaboration in 2004/2005 [13]. The in-flight capture process con-
sists in the kaon propagation through the electron cloud, followed 
by the nuclear absorption. Since the at-rest and in-flight interac-
tions processes are generating different kinematic distributions in 
the final state, it is possible to disentangle them experimentally. 
Let us consider the process:

K− A → Yπ R, (1)

where A represents the interacting nucleus, R the residual and Y 
the produced hyperon (� or �). �π pairs can be either produced 
in direct formation processes trough non-resonant absorptions of 
the kaon on the nucleon N, or in resonant reactions, with the in-
termediate formation of �(1385) or �(1405) states. For the �π
pair formation, besides the mentioned direct formation, also the 
two-step process with internal conversion production (� N → � N′) 
contributes, which partially or completely fragments the original 
residual R . The internal conversion probability was measured to 
account for ∼ 50% of the total �π produced pairs in 4He and 12C
([1,14]), with higher rates in heavier nuclei.

The direct capture of K− mesons on neutrons in Helium was 
observed in old bubble chamber experiments ([2–4]) and the mo-
mentum of the �π− pair in the final state, equivalent to the recoil 
momentum of 3He, was found to exhibit two components:

• a low �π− momentum component which was associated [15,
16] to the S-wave, isospin I = 1, non-resonant capture from 
atomic states,

• a higher �π− momentum component which is compatible 
with P-wave resonant production, but whose nature remained 
unclear.

According to recent calculations [17] the resonant formation is also 
accessible in atomic S-state K− capture, as a result of the three 
body structure of the initial system (K− = 1, n = 2 and 3He = 3). 
The analysis presented in this paper aims at evaluating the distinct 
contributions of the resonant and non-resonant K−n absorption 
on 4He, in both at-rest and in-flight reactions, by studying the 
�π final state. The contributions of the conversion mechanisms 
are taken into account to evaluate the background to the direct 
�π production distributions. Accounting for the binding energy of 
the neutron in 4He and for the recoil kinetic energy of the 3He, 
the modulus of the non-resonant transition amplitude in the en-
ergy region of (33 ± 6) MeV below the KN threshold is measured 
for the K− capture at-rest, given the known resonant (�∗−(1385)) 
amplitude (the uncertainty on the energy shift below the threshold 
is mainly determined by the width of the residual nucleus momen-
tum distribution).

The detailed characterization of the yield and spectral shape 
of the non-resonant antikaon–nucleon absorption, resulting in a 
hyperon–pion final state below the KN threshold, is also a crucial 
reference to study the �(1405) production in K absorption exper-
iments. According to theoretical predictions based on the chiral 
unitary model [18–20] (see also the review [21]) the �(1405) can 
be interpreted as a molecular meson–baryon state, emerging from 
the interference of two poles, a lower mass pole (about 1390 MeV) 
which is mainly coupled to the �π channel and a high mass pole, 
coupled to the KN production channel, located around 1420 MeV 
(the next to leading order calculation of the poles masses and 
widths can be found in [22]). For this reason the shape of the 
final (�π)0 invariant mass distribution is expected to change in 
function of the production channel. Moreover, the isospin inter-
ference term contributes with opposite sign to the �±π∓ cross 
sections, and vanishes for �0π0, thus the corresponding spectral 
shapes also differ. Such complex situation is well reflected by the 
experimental searches of the �(1405) [23–27]. The �π spectral 
shapes are indeed found to be very different in the position of the 
peak and width, depending on the initial state of the reaction and 
on the observed decay channel. Since the �(1405) can be only 
observed through its strong decay in (�π)0, the only chance to 
enhance the contribution of the high mass pole in the observed 
shape is to exploit the KN production. A detailed study of the non-
resonant amplitude below the KN threshold is hence essential to 
achieve a precision measurement of the �(1405) spectral shape.

For many spectral shapes of interest, like �+π− , �−π+ and 
K−p, the scattering amplitudes are composed of both I = 0 and 
I = 1 states. Hence, in order to extract the properties of the res-
onant, I = 0, �(1405) production experimental constrains on the 
I = 1 amplitude are also needed.

2. The KLOE detector

DA�NE [28] is a double ring e+e− collider, designed to work 
at the center of mass energy of the φ particle. The φ meson de-
cay produces charged kaons (with BR(K+ K−) = 48.9 ± 0.5%) with 
low momentum (∼ 127 MeV/c) which are ideal to study the low 
energy K−-nucleus absorption processes.

The KLOE detector is characterized by a geometrical acceptance 
of ∼ 98%. It consists of a large cylindrical Drift Chamber (DC) and 
a fine sampling lead-scintillating fibers calorimeter [29], all im-
mersed in an axial magnetic field of 0.52 T. The DC [30] has an 
inner radius of 0.25 m, an outer radius of 2 m and a length of 
3.3 m. The DC entrance wall composition is 750 μm of Carbon fiber
and 150 μm of Aluminum foil. The DC is filled with a mixture of
Helium and Isobutane (in volume: 90% 4He and 10% C4H10).

Tracks are reconstructed with a resolution of σρφ ∼ 200 μm
in the transverse ρ–φ plane and of σz ∼ 2 mm along the z-axis. 
The transverse momentum resolution for large polar angle tracks 
(45◦ < θ < 135◦) is σpT /pT ∼ 0.4%.

The analyzed data sample has been collected in 2004/2005 and 
corresponds to a total luminosity of 1.74 fb−1. As will be shown 
in the following sections, the momenta of the � and π− produced 
in the final state of the resonant and non-resonant processes lie 
in the same region of the phase space. For this reason any bias 
introduced by the trigger system [31] does not affect the ratio of 
the corresponding probabilities.

3. Particle identification

The first step of the analysis consists in the selection of a �
candidate, which represents the signature of a K− hadronic in-
teraction occurred in the detector materials. The � candidate is 
reconstructed exploiting the � → pπ− (BR = 63.9 ± 0.5%) decay. 
A momentum larger than 170 MeV is required for the proton in 
order to minimize the pion contamination to the proton track can-
didate sample. Details about the reconstruction of the � decay ver-
tex can be found in [11,12]. The mean value of the reconstructed 
� mass, extracted from the invariant mass distribution mpπ− for 
the selected proton-π− pairs, is 1115.753 ±0.002 MeV, with a res-
olution of σ = 0.5 MeV, where only the statistical error is given. 
For the successive analysis steps, the following cut is applied on 
the � invariant mass: 1112 MeV < mpπ− < 1118 MeV, resulting in 
a sample of 2.2 · 106 events.

After the � reconstruction an additional π− candidate is 
searched for. The K− absorption vertex is reconstructed by ex-
trapolating backwards the � path and the π− track, applying the 
selection on the distance of closest approach (dca) dca < 2 cm. The 
� decay path, expressed as the distance between the � decay ver-
tex and the K− absorption vertex, is required to be smaller than 
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Fig. 1. Panels a) and b) show the non-resonant and resonant �π− direct produc-
tions, respectively. Panels c) and d) show the primary hyperon–pion formation, 
followed by the inelastic/elastic scattering of the �/� hyperon on a single nucleon, 
for the resonant and non-resonant cases, respectively. This figure was adapted from 
Ref. [17].

7 cm. The radial position of the absorption vertex (ρ�π ) is calcu-
lated as the radial distance between the DA�NE beam axis and 
the K− absorption vertex. In order to select K− capture events oc-
curring in the DC gas (mainly composed of 4He) the ρ�π > 30 cm 
cut is applied. A sample of K− absorptions on 12C is also nec-
essary in order to describe the Carbon contamination introduced 
by the Isobutane presence in the gas, this is obtained by select-
ing captures in the almost pure Carbon DC wall applying the cut 
(23.8 < ρ�π < 26.2) cm. The ρ�π limits are optimized on the 
base of Monte Carlo (MC) simulations. At this stage of the analy-
sis a statistics of about 21500 events is selected, of �π− events 
produced following K− absorptions in the DC gas.

4. Data analysis

All the processes contributing to the reaction:

K− 4He → �π− R, (2)

where R is the residual nucleus, are schematically represented in 
Fig. 1. The production of �π− pairs in the final state can oc-
cur either via direct non-resonant/resonant processes (a) and b) in 
Fig. 1) or via non-resonant/resonant two-step processes (c) and d) 
in Fig. 1). In the two-step processes the production of a � or �
is followed by an elastic or inelastic Final State Interaction (FSI) of 
the hyperon. The case �N → �N′ is known as the conversion pro-
cess. Both the direct and the two-step processes can occur for K−
captures at-rest or in-flight.

The goal of the analysis is to extract the modulus of the non-
resonant K−n → �π− transition amplitude using only the direct 
production processes. In Fig. 2 the measured π− vs � momenta 
distribution is shown for K− absorptions in the DC gas. The direct 
production is characterized by a strong correlation between p�

and pπ . The FSI of hyperons with the residual nucleons destroys 
this correlation. Conversion events are also shifted at lower pπ

momenta as a consequence of the � − � mass difference. For 
these reasons, the direct processes appear as rather narrow bands 
in Fig. 2, while the two-step processes populate an uncorrelated 
momentum distribution at lower values of both the pion and 
the lambda momenta. The red line shown in Fig. 2 represents 
the phase space cut used to select the direct processes, this cut 
was optimized based on MC simulations of direct �π− produc-
tion, according to the calculations reported in [17]. The number of 
Fig. 2. (Color online.) Experimental distribution of the π− vs � momenta. The red 
line represents the selection of the direct �π− production events. See the text for 
details.

selected �π− events after applying this cut is 3050. Direct pro-
cesses involve K−n → �π− production both at-rest (characterized 
by smaller π− momenta) and in-flight (associated to higher π−
momenta). The superposition of these two components, which are 
highly correlated in the pπ versus p� plane, generates the shape 
of the red contour. The phase space cut allows to suppress the 
background due to the production of a � − π− pair in the first 
step of the process. In this case the observed � particles can orig-
inate either from � conversions on the residual nucleons or from 
the decays of primary produced �0s (K−n → �0π− followed by 
the �0 decay �0 → �γ ). In both cases the angular correlation be-
tween p� and pπ is lost and the pion momentum is lower (due to 
the � − � mass difference). Such background events populate the 
region centered around p� ∼ 320 MeV/c and pπ ∼ 160 MeV/c in 
Fig. 2.

Besides inelastic FSI processes, involving the conversion of the 
produced � hyperons, also elastic FSI processes can occur, namely 
the re-scattering of the � or the π− on residual nuclear fragments. 
In [17] the correction to the amplitude modulus due to these con-
tributions is found to be less than 3% of the total K−n → �π−
amplitude modulus. For this reason, the elastic FSI contribution is 
neglected in this analysis.

Since the selected sample contains not only direct processes, 
but also a certain contamination from conversion processes, both 
are simulated and used to fit the experimental distributions, in or-
der to extract the amplitude of direct non-resonant processes.

4.1. Direct �π− production simulation

Direct processes have been simulated according to a phe-
nomenological model of the reaction K−4He → �π−3He [17]. 
K− captures both at-rest and in-flight are taken into account. In 
the case of absorptions at-rest S and P atomic states have been 
considered.

For the K−-nucleon interaction, besides the non-resonant S-
wave and isospin I = 1 transition, also the P-wave resonant in-
teraction is included.

The K−n interaction is estimated to occur in the region of 
(33 ± 6) MeV below threshold for K− captures at-rest, which re-
flects a very short range interaction. Two effects contribute to the 
energy shift below the threshold, as shown in Ref. [17]: a) the 
neutron separation energy Bn = 21 MeV (the atomic binding en-
ergy of the negatively charged kaon can be neglected with re-
spect to Bn), b) the recoil energy of the K−n pair with respect 
to the residual nucleus 3He. We then have an energy shift of 
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EKn ∼ −Bn− < p2
�π

2μπ,�,3He
> with μπ,�,3He the appropriate reduced 

mass. The average recoil energy is calculated in Ref. [17] and con-
sists of a peak with center at 12 MeV and width of 12 MeV, 
which represents the main uncertainty on EKn. The in-flight K−n 
interaction occurs about 22 MeV below threshold due to the con-
tribution of the kaon momentum. There seems to be no structure 
in the non-resonant transition amplitude, then this is assumed to 
be weakly energy dependent in Ref. [17] as a result of the very 
short range interaction.

Considering charge and isospin conservation, the only resonant 
contribution to the K− 4He → �π− 3He process is the interme-
diate formation of the �−(1385) resonance. Although the atomic 
capture happens mainly in the S-state, the �−(1385) production 
is allowed when the K−n state is P-wave, since the angular mo-
mentum is conserved by a P-wave configuration between the 3He 
residual and the K−n system.

The model [17] delivers the various probability distributions for 
the total �π momentum (p�π ). Applying energy and momentum 
conservation the reactions K−4He → �π−3He are simulated. The 
following notation for the input probability distributions is used:

• P nr/res
ar (p�π ) – momentum distribution for the non-resonant 

and resonant production at-rest, respectively.
• P nr/res

if (p�π , pK) – momentum distribution for the non-reso-
nant and resonant production in-flight, respectively.

These functions involve nuclear matrix elements, phase space 
elements and K−n→ �π− transition amplitudes. In the non-
resonant case the transition amplitude modulus | f nr| factorizes 
and P nr ∝ | f nr|2. This quantity, denoted in many theoretical papers 
|AK −n→�π−|, is the object of our research. The kaon momentum 
absolute value |pK| is sampled according to the experimental dis-
tribution, which is obtained by selecting negatively charged kaons 
absorbed in the gas of the DC leading to the production of a � hy-
peron. The radial position of the absorption vertex inside the DC 
volume (ρ�π ) is sampled as well based on the experimental data, 
as a consequence the ρ�π distribution is not a bias for the pre-
sented analysis. For each process, the calculated p� and pπ pairs 
are the input for the standard KLOE GEANT digitization (GEANFI 
[32]), followed by the event reconstruction.

4.2. �N → �N′ conversion formalism

In order to account for the residual conversion background sur-
viving the direct production phase space cut in Fig. 2, all the possi-
ble conversion processes compatible with the measured final state 
are simulated. The possible conversion reactions, which are listed 
below, are assumed to contribute with equal probabilities.

K− 4He → �(1385)− 3He → �0π− 3He �0 N → �N

K− 4He → �0π− 3He �0 N → �N

K− 4He → �(1405)(�(1385)0) 3H

→ �+π− 3 H �+ n → �p

K− 4He → �+π− 3H �+ n → �p.

(3)

The first step of the processes listed in Eqs. (3), leading to �π pair 
production is calculated according to [17]. The model delivers the 
momentum distribution of the �π pair, by applying momentum 
and energy conservation, the momenta p�, pπ and p3He/3H are 
obtained for each event. In the case of resonant production the 
parameters of the involved resonances are taken from [33]. In the 
second step the �/� conversion occurs (� N → � N′).

The momentum of the � in the final state was obtained with a 
calculation similar to the case of K−-nucleon in-flight absorption, 
as described in [17].

The nucleon wave function is sampled according to the Fermi 
distribution within the residual nucleus obtained from the first 
step of the calculation. A possible energy dependence of the con-
version transition amplitude is neglected. For each event, the pri-
mary pπ and the momentum of the � emerging from the con-
version process are the input for the standard GEANFI simulation, 
followed by the event reconstruction.

The outcome of the simulation is used to fit the experimental 
distributions and to extract the yields of the contributing pro-
cesses.

4.3. K− absorptions on 12C

Since the DC is filled with a mixture of Helium and Isobutane 
(in volume: 90% 4He and 10% C4H10), the data contain a sizeable 
contribution due to K− interactions on Carbon atoms. The ratio of 
the reactions on Helium and on Carbon, in the DC gas, leading to 
a �π− final state has been evaluated as:

NK−4He

NK−12C
= n4He σK−4He BRK−4He(�π−)

n12C σK−12C BRK−12C(�π−)
. (4)

n4He/n12C is the ratio of the Helium and Carbon atoms in the DC 
and was calculated to be about 2.26. σK−4He and σK−12C are the 
total inelastic cross sections for K− scattering on the two nuclei, 
BRK−4He(�π−) and BRK−12C(�π−) are the branching ratios for the 
�π− production following K− absorption in Helium and Carbon, 
respectively. Experimental low energy cross sections on Helium 
and Carbon for K− momentum ∼ 100 MeV/c are not available, the 
ratio σK−4He/σK−12C = 0.4 was then obtained from the values cal-
culated in [34,35]. The ratio BRK−4He(�π−)/BRK−12C(�π−) was set 
to 1.4 ± 0.4 according to [14].

The value obtained for the Helium to Carbon ratio is:

NK−4He

NK−12C
= 1.27 ± 0.3. (5)

The error accounts only for the branching ratio uncertainty. This 
translates into a probability of (44 ± 13)% for the measured �π−
final state to be originated from a K− absorption on Carbon.

In order to consider this contribution in the interpretation of 
the measured �π− final state, an experimental sample containing 
K− 12C interactions is used. This sample was obtained by selecting 
kaons which interact in the DC entrance wall (ρ�π = 25 ± 1.2 cm). 
MC simulations show that the π− and � momentum resolutions 
obtained for this sample are comparable to the resolutions in gas 
since the DC wall is rather thin. The Carbon-sample is selected us-
ing the same criteria as for the gas sample and was used in the 
global fit. In order to take the error introduced by the selection 
of ρ�π into account, it is varied such as to increase and decrease 
the number of �π− candidate events by 15%. This variation is 
considered as a systematic error of the kinematic distributions cor-
responding to K− absorption on Carbon.

4.4. Results

In order to extract the ratio of the resonant over non-resonant 
�π− production, the measured p�π , m�π (invariant mass of the 
hyperon–pion pair) and cos(θ�π ) (θ�π is the angle between the 
� and π momenta) distributions were fitted. The simulated distri-
butions of the direct �π− production in 4He and the background 
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Fig. 3. (Color online.) Panels a)–f): p�π , cos(θ�π ), m�π , T�π , p� and pπ distributions. The experimental data and the corresponding statistical errors are represented by 
the blue crosses, the systematic errors are light blue boxes. The different contributions included in the fit are shown by the colored histograms: non-resonant at-rest (red), 
resonant at-rest (blue), non-resonant in-flight (brown), resonant in-flight (cyan), �N → �N′ internal conversion (magenta), K− absorptions in Carbon (green). The light and 
dark bands correspond to systematic and statistical errors, respectively. The gray band shows the total fit with the corresponding statistical error. See text for details.
components corresponding to the �N → �N′ conversion process, 
as well as the contamination due to K− captures on Carbon, are 
used in the fit to the experimental data.

The p�π , m�π and cos(θ�π ) measured spectra are fitted simul-
taneously with the following contributions:

• non-resonant K− capture at-rest from atomic S states in 4He,
• resonant K− capture at-rest from atomic S states in 4He,
• non-resonant K− capture in-flight in 4He,
• resonant K− capture in-flight in 4He,
• primary �π− production followed by the �N → �N′ conver-

sion process,
• K− capture processes in 12C giving rise to �π− in the final 

state.

The contribution of the K− captures at-rest from atomic P states 
are found to be negligibly small. Also in the results reported by 
the KEK and SIDDHARTA Collaborations ([36,37]) it is shown that 
due to molecular collisions K− captures mainly occur from high n,S 
states of the atom.

The modulus of the amplitude of the non-resonant processes, 
the ratio of the resonant to non-resonant processes, the modulus 
of the amplitude of the conversions and the contribution of the K−
captures on Carbon are considered as free parameters in the fit.

Panels a)–f) in Fig. 3 show p�π , cos(θ�π ), m�π distributions 
used for the fit and, additionally, the total hyperon–pion kinetic 
energy T�π , as well as the moduli of the p� and pπ momenta. 
The systematic errors are estimated by varying independently the 
selection of the radial position of the K− absorption point ρ�π

inside the DC and the geometrical cut in the pπ –p� scatter plot 
that selects the direct �π− production region, such as to increase 
or decrease the �π− statistics by 15% with respect to the opti-
mized selection. In order to take into account the error introduced 
by the DC entrance wall selection (ρ�π = 25 ± 1.2 cm), this cut 
Table 1
Resonant to non-resonant ratios and amplitudes of the vari-
ous channels extracted from the fit of the �π− sample. The 
statistical and systematic errors are also shown. See text for 
details.

Channels Ratio/yield σstat σsyst

RES-ar/NR-ar 0.39 ± 0.04 +0.18
−0.07

RES-if/NR-if 0.23 ± 0.03 +0.23
−0.22

NR-ar 12.0% ± 1.7% +2.0
−2.8%

NR-if 19.2% ± 4.4% +5.9
−3.3%

� → � conv. 2.2% ± 0.3% +1.6
−0.8%

K −12C capture 57.0% ± 1.2% +2.2
−3.2%

is also varied independently such as to increase and decrease the 
number of �π− vertices in the Carbon wall by 15%.

The systematic errors of the fit were evaluated as follows. First 
the fit is carried out by setting the contribution of the K−12C cap-
tures to the value estimated in the previous Section. The system-
atic error is evaluated by repeating the fit letting the K−12C cap-
tures contribution free. The free Carbon fit requires an increased 
contribution from K−12C captures as big as 61.4%. Half of the dif-
ference between the result of the free fit (61.4%) and the maximum 
expected background (57%) is considered for the Carbon sample to 
estimate the final systematic errors for all the fit components.

The chi-square of the fit is χ2/ndf = 151/148. Table 1 shows 
the fit results, where the resonant to non-resonant ratios for at-
rest and in-flight reactions are shown together with the yields of 
the various channels obtained from the fit.

The ratio of the resonant over non-resonant �π− production 
in-flight is found to be smaller than the corresponding ratio at-
rest. This is not surprising as the K−n interaction in-flight occurs 
about 20 MeV below the KN threshold; the corresponding reac-
tion at-rest occurs about 33 MeV below the threshold, nearer to 
the resonance which lays about 49 MeV below the KN threshold. 
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Table 2
The S-wave non-resonant amplitude (| f nr | fm) extracted 
from K−p → �π0 scattering [38,39] and from this ex-
periment (E = −33 MeV).

E = −33 MeV 0.334 ± 0.018 stat+0.034
−0.058syst

plab = 120 MeV 0.33 ± 0.11

plab = 160 MeV 0.29 ± 0.10

plab = 200 MeV 0.24 ± 0.06

plab = 245 MeV 0.28 ± 0.02

The systematic uncertainty on the resonant to non-resonant ratio 
for the in-flight reactions, prevents from extracting the modulus of 
the non-resonant transition amplitude in-flight.

The �π− momentum distributions (P nr/res
ar (p�π )) for the K−n 

non-resonant and resonant absorption at-rest, introduced in Sec-
tion 4.1, are given in Eq. (14) and Eq. (20) of Ref. [17], respectively. 
The modulus of the non-resonant K−n→ �π− transition ampli-
tude (| f nr

ar |) involved in P nr/res
ar (p�π ) is assumed to be constant. To 

obtain its value we calculate the ratio ( NR−ar
RES−ar ) between the mea-

sured number of �π− pairs produced in non-resonant (NR) and 
resonant (RES) K− absorptions in 4He at-rest (ar). This ratio is then 
equated to the ratio of the integrals of the corresponding momen-
tum distributions P nr/res

ar (p�π ), which leads to:

NR − ar

RES − ar
=

∫ pmax
0 Pnr

ar (p�π)dp�π
∫ pmax

0 P res
ar (p�π)dp�π

=

= | f nr
ar |2 · 8.94 · 105 MeV2 . (6)

Once the constant | f nr
ar |2 is factorized in the numerator the ratio 

of the remaining integrals gives the numerical factor which results 
from the integrals presented in Ref. [17]. The ratio NR−ar

RES−ar deter-
mined by the experiment then yields:

| f nr
ar | = |AK −n→�π−| = (0.334 ± 0.018 stat+0.034

−0.058syst) fm . (7)

5. Discussion

In this work the direct �π− production events from low energy 
K−n captures in 4He were identified and the contributions from 
K−n absorptions at-rest and in-flight (pK ∼ 100 MeV) were disen-
tangled. The measured p�π , m�π and cos(θ�π ) spectra were fitted 
with calculated distributions expressed in terms of K−n→ �π−
transition amplitudes: the isospin I = 1 S-wave amplitude and 
the resonant I = 1 P-wave amplitude which is dominated by the 
�−(1385). The resonant amplitude is well known from direct ex-
periments and was used to extract the non-resonant |AK −n→�π−|
for atomic captures for the first time.

The |AK −n→�π−| extracted using this method describes the 
K−n → �π− transition at about 33 MeV below the K−n threshold, 
according to the energy shift obtained in Ref. [17]. Thus it allows 
an extrapolation to the un-physical region and should be used to 
test models of S-wave interaction. Such extrapolation is also of in-
terest in the studies of the �(1405) as it helps to determine the 
background I = 1 amplitude. One can compare the sub-threshold 
result with the corresponding values extracted from K−p → �π0

cross sections [38,39] shown in Table 2. The sub-threshold S-wave 
amplitude is compatible with the above threshold measurements 
and seems to remain rather constant over the considered energy 
range.

In Ref. [40] and Ref. [41] the real and imaginary parts of the 
non-resonant coupled channels K−n→ �π/�π scattering ampli-
tudes, calculated on the basis of several chiral SU(3) meson–baryon 
coupled channels interaction models (Prague (P) [42], Kyoto–
Munich (KM) [22], Murcia (M1, M2) [43] Bonn (B2, B4) [44]) are 
Fig. 4. (Color online.) Modulus of the measured non resonant K−n→ �π− transition 
amplitude compared with theoretical calculations, see details in the text.

shown. Since the K−n → �π non-resonant amplitude modulus 
was not measured, the comparison of the theoretical results with 
the present measurement requires the extraction of the theoreti-
cally predicted |AK −n→�π−| value (for the �π− final state) from 
the real and imaginary parts of the total K−n non-resonant absorp-
tion scattering amplitude modulus (|AK −n|) presented in Ref. [40]
and Ref. [41]. This was performed as follows:

• for each model the amplitude modulus |AK −n| is calculated 
in the energy region of 33 ± 6 MeV below the KN thresh-
old, according to the estimate described in Section 4.1. It is 
to be stressed that the value of the in-medium energy of 
the two body KN subsystem slightly differs, depending on 
the adopted prescription (see for example references [45–47]). 
Nevertheless, the comparison of the measured transition am-
plitude with the theoretical predictions is weakly dependent 
on the precise value of such energy shift, given that the mod-
els predictions are quite constant in the energy range (1390 
÷ 1432) MeV, except for M2. Moreover M2 is not compatible 
with the experimental value for all the theoretically predicted 
energy shifts.

• |AK −n→�π−| is extracted from the total amplitude modulus 
|AK −n| by calculating the ratios between the probabilities of 
the K−n→ �π− and K−n→ �−/0π0/− processes, which are 
allowed by the electric charge conservation. Such ratios are 
given by:

ProbK −n→�π−

ProbK −n→�−π0
= PhK −n→�π−

c1 PhK −n→�−π0
(8)

ProbK −n→�π−

ProbK −n→�0π−
= PhK −n→�π−

c2 PhK −n→�0π−
(9)

where we indicated with c1,2 the Clebsch–Gordan coefficients 
of the isospin I = 1 components of the �−/0π0/− states and 
with PhK −n→Yπ the phase space factor of the generic K−n→
Yπ process.

The obtained rescaled amplitudes are shown in Fig. 4, together 
with the result of this analysis, with combined statistical and sys-
tematic errors. For the KM and P models a theoretical uncertainty 
of 15% is quoted; for the other models the uncertainty is not avail-
able. The method described in this work gives the first experimen-
tal determination of the modulus of the non-resonant transition 
amplitude 

∣
∣AK−n→�π−

∣
∣ below threshold, consistent with the for-

malism presented in Ref. [17], with a precision comparable to that 
obtained from scattering experiments and, hence, can be used to 
test S-wave interaction models.
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