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AbstratInvestigations of the time interval distributions between the deaysof quantum entangled neutral kaonsSine their disovery, kaons have unabatedly attrated interest of partile physis researhers.As the lightest �avoured partiles, they o�er an exellent possibility of testing disrete symme-tries. KLOE experiment at DAΦNE faility in Frasati (Italy) stands out among others. Itallows to reah inomparable preision in CPT symmetry and quantum mehanis tests.KLOE owes its uniqueness to the fat that DAΦNE produes neutral kaons in quantumentangled pairs. In this work a detailed derivation of formulae for double deay rate from theinitial two kaons state is presented. The results are then applied to spei� �nal states. Emphasisis given to onnetion between the deay intensities and symmetries.Although there has been no evidene of CPT symmetry breaking, several parameterisationshave been proposed where this symmetry is not fundamental and thus an be violated. Oneof these ideas is the CPT noninvariane due to evolution of pure into mixed states induedby quantum gravity e�ets, whih at the same time happens to be inonsistent with quantummehanis. This onept is shortly presented.A subset of KLOE data is analysed for the symptoms of deoherene aused by the afore-mentioned mehanism. For reasons referred to in the text the results obtained in this work areless signi�ant than those from KLOE analysis, nonetheless their orders of magnitude indiatethe expedieny of further measurements.
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1 IntrodutionKaons (also alled K mesons) are the lightest partiles ontaining a strange quark, s, apart from themost ommon quarks u (up) or d (down), and for this reason their potential for testing fundamentalphysis laws was realised almost from the moment of their disovery. The behaviour of harged kaonsserved as an inspiration for Lee and Yang to propose experiments testing parity onservation [1℄. Neutralkaons were partiles for whih CP [2℄ and T [3℄ violations were �rst observed. Then it should not omeas a surprise that they are promising andidates in the searh of CPT noninvariane.
CPT symmetry is a ombination of three disrete symmetries: P− parity, C− harge onjugationand T− time reversal, and although P , C and T have all been shown to be violated individually, CPTsymmetry seems to remain intat. It was shown by Pauli [4℄ to hold for any quantum �eld theory andfor any order of the C, P and T transformations under very basi assumptions: Lorentz invariane,unitarity (onservation of probability) and loality. There was an earlier, but less general proof byLüders [5℄.This work deals with a system of two neutral kaons produed in a φ meson deay. Suh pairs areprodued at DAΦNE, Frasati φ-fatory. A system of two neutral kaons has been alled one of themost intriguing in nature for quite a long time [6, 7℄ and it is de�nitely worth investigating into, andnot only beause it allows testing symmetries. The neessity to onserve parity and harge onjugationeigenvalues in φ deays leads to expressions whih straightforwardly suggest quantum mehanis teststhrough the phenomenon alled quantum entanglement.The goal of this thesis is to show how, starting from very basi assumptions, one an dedue aboutneutral kaons system properties basing on the time intervals between the deays of quantum entangledkaons. This is done on a more basi level than usually presented in papers, hene it allows even a readerwho is less familiar with the subjet to follow the arguments. In ase of doubts, many alulations areinluded in the appendix.The other topi onsidered, whih also is of great interest, is the analysis of possible CPT symmetryand quantum mehanis violation in the neutral kaons system. Among soures proposed to possiblylead to this yet unobserved violations is the evolution of pure states into mixed states. A suitableparameterisation of double deay rates and results of analysis of KLOE data from the year 2005 arepresented. However, results obtained in this work should not be ompared diretly to KLOE ones, asthere were di�erenes in the �tting methods used. These di�erenes will be emphasized in the text.
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2 Neutral kaons system2.1 HamiltonianAt the moment of prodution, neutral kaon is a superposition of K0 and K̄0 states:
|K (0)〉 = a (0)

∣

∣K0
〉

+ b (0)
∣

∣K̄0
〉 , (1)while its time evolution an be desribed as:

|K (t)〉 = a (t)
∣

∣K0
〉

+ b (t)
∣

∣K̄0
〉

+
∑

j

cj (t) |fj〉 , (2)where the sum is over all �nal states |fj〉 a kaon may deay to. As the funtions a and b are time-dependent, it follows from this formula that a neutral kaon an osillate between ∣∣K0
〉 and ∣∣K̄0

〉 states,whih in fat happens with a frequeny of about 5.3 GHz, being a seond-order weak proess withstrangeness hange |∆S| = 2. Phenomenology of the neutral kaons system is suessfully desribed bythe Wigner-Weisskopf approximation [8℄. Although studies of possible deviations from this approxi-mation have been performed, further tests are desirable as the e�ets that are searhed for in K0-K̄0omplex are very tiny [9℄. With the help of Wigner-Weisskopf approximation one �nds that the funtions
a(t) and b(t) obey the Shrödinger-like equation with e�etive Hamiltonian H [7℄:

i
∂

∂t

(

a (t)
b (t)

)

= H

(

a (t)
b (t)

) . (3)Let us denote ψ = e−iHtψ0 with ψ0 = ψ(t = 0). Sine the kaons deay, we have the ondition 0 > d|ψ|2

dt ,and by writing the wave funtion more expliitly we obtain:
0 >

d
(

ψ†ψ
)

dt
=ψ† dψ

dt
+
dψ†

dt
ψ = ψ† (−iH) e−iHtψ0 + ψ†

0iH
†eiH

†tψ =

= − iψ†
(

H − H
†
)

ψ, (4)so learly H is not hermitian. However, in general any omplex matrix an be divided into its hermitianand antihermitian parts. In this partiular ase we write:
H = M− i

2
Γ =

(

M11 M12

M∗
12 M22

)

− i

2

(

Γ11 Γ12

Γ∗
12 Γ22

) , (5)where M and Γ are hermitian and are alled mass and deay matries, respetively. Elements M11 and
Γ11 an be assoiated with K0, while M22 and Γ22 an be linked with K̄0. It should be expeted thatthe deay part leads to exponential damping, hene the minus sign and the fator 1

2 (the dependeneon time will be of the usual form ψ ∼ e−iEt = e−i(m−iΓ/2)t = e−imte−Γt/2, so |ψ|2 ∼ e−Γt).2.2 SymmetriesIn this setion onnetion between symmetries in the neutral kaons system and Hamiltonian matrixelements is disussed.2.2.1 CPTOne of the onsequenes of the CPT theorem is that masses and widths of partiles and theirantipartiles are the same, so in this ase mK0 = mK̄0 and ΓK0 = ΓK̄0 . In addition to this, CPTsymmetry ensures that probabilities of transitions K0 → K0 and K̄0 → K̄0 at a given time are thesame. For Hamiltonian matrix (5) this implies:
CPT : M11 = M22, Γ11 = Γ22; H11 = H22. (6)9



2.2.2 TSymmetry with respet to time reversal implies that transitions K0 → K̄0 and K̄0 → K0 at agiven time have the same probabilities. In the Hamiltonian matrix (5) elements responsible for thesetransitions are H12 and H21. Therefore we have:
T : |H12| = |H21| . (7)2.2.3 CPAn additional hierarhy among the symmetry violations is introdued by quantum mehanis for atwo-state systems: the detetion of a violation of the CPT or (and) of the T symmetry implies a CPsymmetry violation [10℄. Hene we have:

CP : H11 = H22 and |H12| = |H21| . (8)2.3 Eigenvalues, eigenstatesThe equation for eigenvalues of the Hamiltonian is generi (for slightly riher alulations used forthis setion refer to A.1.1):
det (H − λ1) = 0, (9)from whih it is straightforward to obtain:

λ2 − λ (H11 +H22) +H11H22 −H12H21 = 0. (10)From the equation above one �nds the disriminant:
∆ = (H11 −H22)

2 + 4H12H21. (11)From this we �nd the eigenvalues of H in the limit of CP and CPT (refer to setion A.1.1 for moredetails):
λ± =

1

2

(

H11 +H22 ±
√

4H12H21

)

CPT
==== H11 ±

√

H12H21, (12)where the square root, written expliitly in terms of M12 and Γ12, is:
√

H12H21 =

√

|M12|2 +
1

4
|Γ12|2 exp

[

− i

2
arcsin

(

|M12Γ12|
|M12|2 + 1

4 |Γ12|2

)] . (13)Having the eigenvalues we proeed to alulate the eigenstates of H (slightly riher alulations areinluded in setion A.1.2). Equation for eigenstates is generi:
(

H11 − λ± H12

H21 H22 − λ±

)

v± = 0. (14)If one de�nes:
v±

def
==

(

u±
w±

) and e−2iα def
==

H12

H21
,the eigenvetors an be shown to be of the form:

v+ = u+e
iα
2

(

e−i
α
2

ei
α
2

) ,
v− = −w−e

−iα
2

(

e−i
α
2

−eiα
2

) . (15)
10



One an note that v+ and v− are CP−even and CP−odd, respetively [11℄. Therefore by ontinuitywe identify:
v+ ≡ |KS〉, v− ≡ |KL〉 ; (16)

λ+ ≡ λS = mS − i
ΓS
2
, λ− ≡ λL = mL − i

ΓL
2
. (17)The short- and long-lived |KS〉 and |KL〉 states are ommonly expressed as:

|KS〉 =
1

√

2
(

1 + |ǫS |2
)

[

(1 + ǫS)
∣

∣K0
〉

+ (1 − ǫS)
∣

∣K̄0
〉] ,

|KL〉 =
1

√

2
(

1 + |ǫL|2
)

[

(1 + ǫL)
∣

∣K0
〉

− (1 − ǫL)
∣

∣K̄0
〉] . (18)Additional information about the mass di�erene between these partiles, their mean lifetimes andmain deay modes is provided in Tab. 1. In the equations above ǫS and ǫL are small (of the order

10−3), omplex parameters measuring CP violation for KS and KL. Another pair of parameters anbe equivalently de�ned:
ǭ ≡ ǫS + ǫL

2
, (19)

δ ≡ ǫS − ǫL
2

. (20)
ǭ informs about average CP violation for neutral kaons, while δ is a CPT -violating parameter whihwill be useful later.Table 1: Seleted information about KS and KL partiles. The data are extrated from [12℄.Parameter KS KLlifetime (89.58 ± 0.05) ps (51.16 ± 0.20) nsmass di�erene, mL −mS (3.4819 ± 0.0099)·10−6 eV

main deay modes, Γi/Γ

π+π− 0.6920 ± 0.0005 π±e∓νe 0.4055 ± 0.0012
π0π0 0.3069 ± 0.0005 π±µ∓νµ 0.2704 ± 0.0007
π+π−γ (1.79 ± 0.05)·10−3 3π0 0.1952 ± 0.0012
π±e∓νe (7.04 ± 0.08)·10−4 π+π−π0 0.1254 ± 0.0005
π±µ∓νµ (4.69 ± 0.05)·10−4 π+π− (1.966 ± 0.010)·10−3

π0π0 (8.65 ± 0.06)·10−4
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3 Final states amplitudes for φ → K0K̄0 → f1f2At KLOE, neutral kaons are produed in φ meson deay, JPC = 1−−, with a 33.8% probability (forthe list of the main φ deay modes, see Tab. 2).Table 2: Main φ deay modes.Deay mode Branhing ratio (%) [12℄
K+K− 49.1
K0K̄0 33.8

ρπ + π+π−π0 15.6
ηγ 1.26To onserve the eigenvalues of P and C, the (normalized) initial state of the two kaons, written inthe φ rest frame, has to be:

|i〉 =
1√
2
{
∣

∣K0 (−~p)
〉 ∣

∣K̄0 (+~p)
〉

−
∣

∣K̄0 (−~p)
〉 ∣

∣K0 (+~p)
〉

}. (21)It is easy to show that C |i〉 = − |i〉 and P |i〉 = − |i〉, as required.We an hange the basis of strangeness eigenstates (suitable for the desription of kaon pair produ-tion), {∣∣K0
〉 , ∣∣K̄0

〉}, to the basis of Hamiltonian eigenstates suitable for the desription of the deays,{|KS〉 , |KL〉} (refer to A.2.1 for preise alulations):
|i〉 =

N√
2
{|KS (+~p)〉 |KL (−~p)〉 − |KL (+~p)〉 |KS (−~p)〉}, (22)where
N =

√

(

1 + |ǫS|2
)(

1 + |ǫL|2
)

1 − ǫSǫL
≈ 1 (23)is a normalization fator.Given eq. (22), one an alulate a general formula for the double deay rate of the initial two kaonsstate, whih will be done in the following setion. Later a spei� ase of two idential �nal states isdisussed (setion 3.2), and �nally two (out of many) interesting examples of di�erent �nal states arepresented in setion 3.3.3.1 General aseFollowing quantum mehanis rules, the deay amplitude of the two kaons state (22) into �nal states

f1 and f2 at times t1 and t2 and momenta +~p and −~p, respetively, an be expressed as:
A (f1, t1; f2, t2) =

N√
2
{〈f1 |T |KS (t1)〉 〈f2 |T |KL (t2)〉+

− 〈f1 |T |KL (t1)〉 〈f2 |T |KS (t2)〉} =

=
N√
2
{〈f1 |T |KS〉 〈f2 |T |KL〉 e−iλSt1e−iλLt2+

− 〈f1 |T |KL〉 〈f2 |T |KS〉 e−iλLt1e−iλSt2} =

=
N√
2
{〈f1 |T |KS〉 〈f2 |T |KL〉 e−imSt1e−

1
2
ΓSt1e−imLt2e−

1
2
ΓLt2+

− 〈f1 |T |KL〉 〈f2 |T |KS〉 e−imLt1e−
1
2
ΓLt1e−imSt2e−

1
2
ΓSt2}, (24)where T is an operator whose expliit form is unknown, but also not needed here.12



The omplex onjuntion of this amplitude reads:
A∗ (f1, t1; f2, t2) =

N∗

√
2
{〈f1 |T |KS〉∗ 〈f2 |T |KL〉∗ eimSt1e−

1
2
ΓSt1eimLt2e−

1
2
ΓLt2+

− 〈f1 |T |KL〉∗ 〈f2 |T |KS〉∗ eimLt1e−
1
2
ΓLt1eimSt2e−

1
2
ΓSt2}. (25)The double deay rate of the two kaons into f1 and f2 orrespondingly at times t1 and t2 an nowbe alulated (detailed alulations an be found in A.2.2):

I (f1, t1; f2, t2) = |A (f1, t1; f2, t2)|2 = A (f1, t1; f2, t2)A
∗ (f1, t1; f2, t2) =

= C12{|η1|2 e−ΓLt1−ΓSt2 + |η2|2 e−ΓSt1−ΓLt2+

− 2 |η1| |η2| e−
ΓS+ΓL

2
(t1−t2)os [∆m (t1 − t2) + φ2 − φ1]}, (26)where we have denoted:

C12 =
|N |2

2
|〈f1 |T |KS〉 〈f2 |T |KS〉|2 (27)and introdued deay amplitude ratios ηi:

ηi = |ηi| eiφi ≡ 〈fi |T |KL〉
〈fi |T |KS〉

. (28)Experimental data may be easier to ompare with one-dimensional time distributions, when di�er-ene ∆t = t1 − t2 is used instead of deay times t1 and t2. To �nd the ∆t distribution it is neessaryto hange variables to t = t1 + t2 (the simplest hoie) and ∆t and then integrate the obtained formulaover t (see A.2.3 for additional omments and alulations). The results for positive and negative ∆tare as follows:
I (f1, f2,∆t ≥ 0) =

C12

ΓS + ΓL
{|η1|2 e−ΓL∆t + |η2|2 e−ΓS∆t+

− 2 |η1| |η2| e−
ΓS+ΓL

2
∆tos [∆m∆t+ φ2 − φ1]}, (29)

I (f1, f2,∆t ≤ 0) =
C12

ΓS + ΓL
{|η1|2 e−ΓS |∆t| + |η2|2 e−ΓL|∆t|+

− 2 |η1| |η2| e−
ΓL+ΓS

2
|∆t|os [∆m |∆t| + φ1 − φ2]}.

(30)3.2 Idential �nal statesIn the ase when �nal states f1 and f2 are the same, eqs. (29) and (30) are signi�antly simpli�ed.Straight from eq. (28) we have η1 = η2, so in partiular |η1| = |η2| and φ1 = φ2. Eqs. (29) and (30)beome:
I (f1 = f2,∆t ≥ 0) = I (f1 = f2,∆t ≤ 0) =

=
C12 |η|2
ΓS + ΓL

{e−ΓL|∆t| + e−ΓS |∆t| − 2e−
ΓS+ΓL

2
|∆t| cos (∆m |∆t|)} , (31)where eta's subsript is omitted for simpliity. It is lear that funtion I is even in ∆t. It is also visiblethat the shape of the urve I does not depend on the hoie of �nal states as long as they are the same.There are two regions of partiular interest. The �rst one, around 4τS , is the most sensitive to ∆mvalue, as presented in Fig. 1 on page 14. The seond one is lose to ∆t = 0. We easily see that:

I (f1 = f2,∆t = 0) =
C12 |η|2
ΓS + ΓL

{1 + 1 − 2} = 0.Therefore, for idential �nal states, no events are expeted in ∆t = 0 within the sope of quantummehanis. Deays to idential �nal states are desribed further in hapter 4.13



Figure 1: Double deay rate as a funtion of ∆t for idential �nal states. The solid urve is for urrent
∆m value, while the dashed line is for ∆m 10% bigger. It an be seen that the most sensitive regionfor ∆m is around the interferene peak (∼ 4τS).3.3 Other useful �nal states3.3.1 Double semileptoni �nal stateWe proeed to disuss a situation, in whih both kaons deay via semileptoni hannel, but todi�erent �nal states. This means that the produts of the deay are π+l−ν̄ and π−l+ν, where l an beeither an eletron (positron) or a muon.

(a) (b)Figure 2: Feynman diagrams for semileptoni K̄0 (a) and K0 (b) deays. In the �rst order, K̄0 andeay to π+e−ν̄, but not to π−e+ν, and vie versa for K0.It will be useful to show that in semileptoni deays neutral kaons obey a ∆S = ∆Q rule, where
∆S is the di�erene of strangeness between �nal and initial state, and ∆Q is the di�erene of harge,but only between partiles interating strongly - in this ase between a pion and a kaon (obviously,onsidering the whole reation, the harge is onserved). This an be explained basing on Feynmandiagrams for these proesses. Let us onsider K̄0 �rst (Fig. 2a). It onsists of two quarks, d̄ and s. Weassume that quark d̄ survives, while quark s deays weakly into quark u by emitting a W− boson. Then14



quarks d̄ and u form a positive pion π+, and W− deays into l−ν̄. Note that π− annot be reatedin this deay (at least with the same mehanism). Hene, it is eligible to assume that K̄0 deays into
π+l−ν, and not into π−l+ν. Analogous arguments lead us to the result, that K0 deays into π−l+ν(orresponding diagram is presented in Fig. 2b).A ommon onvention is to de�ne amplitudes for semileptoni deays obeying ∆S = ∆Q rule asfollows:

〈

π−l+ν |T |K0
〉

= a+ b, 〈

π+l−ν̄ |T | K̄0
〉

= a∗ − b∗; (32)and for proesses violating ∆S = ∆Q rule in a similar way:
〈

π+l−ν̄ |T |K0
〉

= c+ d, 〈

π−l+ν |T | K̄0
〉

= c∗ − d∗. (33)The CPT invariane requires the equality of the probabilities for a kaon and an antikaon to developinto themselves [10℄. Hene, a nonzero value of parameter b or d would imply CPT violation. Threenew parameters an be introdued:
y = − b

a
, x+ =

c∗

a
, x− = −d

∗

a
. (34)Parameter y measures CPT violation in proesses obeying the ∆S = ∆Q rule, whilst x+ and x− measure

∆S = ∆Q rule violation in proesses onserving and violating CPT transformation, respetively. Toobtain parameters ηl+ and ηl− for semileptoni deays, we �rst ombine eqs. (18), (28), (32) and (33).
〈

π−l+ν |T |KS

〉

=
1

√

2
(

1 + |ǫS|2
)

[(1 + ǫS) (a+ b) + (1 − ǫS) (c∗ − d∗)] ,
〈

π−l+ν |T |KL

〉

=
1

√

2
(

1 + |ǫL|2
)

[(1 + ǫL) (a+ b) − (1 − ǫL) (c∗ − d∗)] ,
〈

π+l−ν̄ |T |KS

〉

=
1

√

2
(

1 + |ǫS|2
)

[(1 − ǫS) (a∗ − b∗) + (1 + ǫS) (c+ d)] ,
〈

π+l−ν̄ |T |KL

〉

= − 1
√

2
(

1 + |ǫL|2
)

[(1 − ǫL) (a∗ − b∗) − (1 + ǫL) (c+ d)] .Let us assume that ∆S = ∆Q rule holds. We now alulate parameters ηl+ and ηl− for semileptonideays:
ηl+ =

〈π−l+ν |T |KL〉
〈π−l+ν |T |KS〉

=

√

1 + |ǫS|2

1 + |ǫL|2
· 1 + ǫL
1 + ǫS

≈ 1 · (1 + ǫL) (1 − ǫS) ≈ 1 + ǫL − ǫS = 1 − 2δ,
ηl− =

〈π+l−ν̄ |T |KL〉
〈π+l−ν̄ |T |KS〉

= −
√

1 + |ǫS |2

1 + |ǫL|2
· 1 − ǫL
1 − ǫS

≈ 1 · (ǫL − 1) (1 + ǫS) ≈ −1 + ǫL − ǫS = −1 − 2δ. (35)For ompleteness, the general formulae are given by [7℄:
ηl+ = 1 − 2δ − 2x+ − 2x−,
ηl− = −1 − 2δ + 2x∗+ − 2x∗−. (36)The plot of deay intensity for �nal states f1 = π−l+ν and f2 = π+l−ν̄ is shown in Fig. 3. Thedistributions are for δ = 0 (red line) and for δ = 5 · 10−4 + 0.05i (blue line).15



Figure 3: Double deay rate for semileptoni �nal states with the hoie f1 = π−l+ν and f2 = π+l−ν̄.Red and blue lines orrespond to δ = 0 and δ = 5 · 10−4 + 0.05i, respetively.3.3.2 Semileptoni and two pions �nal stateHaving shortly desribed deays to the same (setion 3.2) and similar (3.3.1) �nal states we proeedto a situation where kaons deay to dissimilar �nal states, namely to πlν and ππ. From the previoussetion we know that |ηl+ | ≈ |ηl− | ≈ 1 and from the de�nition (28) we see that |ηππ| is of the order of
CP violation, |ηππ| ≈ 10−3 both for π+π− and π0π0. Therefore the di�erene between double deayrates for positive and negative times (29,30) will be of more than �ve orders of magnitude.

Figure 4: Deay rate intensity I(πlν, ππ) for π−l+ν (solid line) and π+l−ν̄ (dashed line).16



Fig. 4 displays the double deay intensity with the hoie f1∓ = π±l∓ν, f2 = ππ. Interesting patternan be seen for events in whih ∆t < 0. We have:
I
(

π±l∓ν, ππ;∆t < 0
)

=
C1∓2

ΓS + ΓL

{

|∓1 − 2δ|2 e−ΓS |∆t| + |ηππ|2 e−ΓL|∆t| +

− 2 |∓1 − 2δ| |ηππ| e−
ΓL+ΓS

2
|∆t|os [∆m |∆t| + φπlν − φππ]

} . (37)We note that the right-hand side of the equation above has three terms orresponding to three regions inFig. 4. For small negative ∆t eq. (37) is dominated by the �rst term, whih deays rapidly as e−ΓS |∆t|,then there is interferene region with its term involving |ηππ|, ∆m and φππ, and �nally the seond termresults in KL deay shape suppressed by |ηππ|2 for ∆t < 20τS . Therefore from measuring distributionswith the �nal states onsidered we an gain knowledge about phases φ+− and φ00, absolute values of
η+− and η00 parameters and mass di�erene ∆m = mL −mS. However, more preise value of ∆m anbe extrated from measuring (π+π−, π+π−) �nal states, while for |η+−| and |η00| more aurate resultsmay be obtained from analysing inlusive ππ distributions [13℄.
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4 Connetion between double deay rate and CPT symmetry4.1 Quantum entanglement, EPR paradoxAs already desribed in setion 3.2, onsidering the double deay rate to idential �nal states,aording to quantum mehanis we do not expet any events in ∆t = 0. This is very ounterintuitive,as the two deays are spae-like separated events and one ould think that eah kaon should behaveindependently of the other one. This kind of orrelation is of the type �rst mentioned by Einstein,Podolsky and Rosen in their well-known artile [14℄, where the authors ritiize Bohr's view of quantummehanis and, basing on a thought-experiment whose outome is not only nonintuitive, but also appearsto be nonloal, suggest that quantum-mehanial desription of physial reality given by wave funtionsannot be onsidered omplete. This type of onnetion between partiles was soon investigated furtherby Shrödinger, who oined a term entanglement (Vershränkung) to desribe the perplexing bondbetween quantum systems [15℄. Obviously Shrödinger ould not have known about kaons at the timeof writing his paper, instead he onsidered a two-body deay and the measurement of positions andmomenta of partiles in view of Pauli exlusion priniple. An interested reader is also referred to Ref. [16℄.The term deoherene in general means the time evolution of a pure state into an inoherent mixtureof states [7℄. To aount for possible deoherene in the neutral kaons system phenomenologially, onean simply modify the equation for the double deay rate (26) by multiplying the interferene term bya fator (1 − ζ), where ζ is a deoherene parameter:
I (f1, t1; f2, t2) = C12{|η1|2 e−ΓLt1−ΓSt2 + |η2|2 e−ΓSt1−ΓLt2 +

− 2 (1 − ζ) |η1| |η2| e−
ΓS+ΓL

2
(t1−t2)os [∆m (t1 − t2) + φ2 − φ1]}. (38)By taking ζ = 0 eq. (26) is rereated (so it is quantum mehanis ase), while the ase of ζ = 1orresponds to total deoherene. As it turns out, the parameter ζ is basis-dependent [17℄. Currentmeasurements of ζ in the two main bases, {|KS〉 , |KL〉} and {∣∣K0

〉 , ∣∣K̄0
〉}, are ompatible with nodeviations from quantum mehanis [18℄:

ζSL =
(

0.3 ± 1.8stat ± 0.6syst) · 10−2,
ζ00̄ =

(

1.4 ± 9.5stat ± 3.8syst) · 10−7. (39)
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Figure 5: Deay rate as a funtion of ∆t for eq. (38). The blue and red lines are for ζ = 0 and ζ = 0.05respetively. The biggest disrepany between these two funtions is for ∆t lose to 0.18



Fig. 5 illustrates the di�erene between the double deay rates for two values of ζSL: ζSL = 0 and
ζSL = 0.05. From these plots one onludes that nonzero ζSL parameter would manifest itself mainlyin the region lose to ∆t = 0.4.2 Evolution of pure into mixed statesA disussion of a new soure of CPT and quantum mehanis violation was opened when Hawkingshowed that blak holes an reate partiles and evaporate by emitting them, resembling hot bodies [19℄.In his subsequent papers [20℄ he introdued the idea of the evolution of pure states into mixed states inthe viinity of blak holes. Assume one started from an initial pure quantum state (desribed in termsof a omplete set of ommuting observables), whih would partially fall through the event horizon insidethe blak hole. The desription of this quantum state in terms of observables in the future would requiretwo sets of observables, observables at in�nity desribing outgoing partiles, and observables inside theblak hole desribing what fell through the event horizon. As one even in priniple annot measure whatfell into a blak hole, the observation would have to be desribed by a mixed state obtained by summingover all possible blak hole states. This is in ontradition with quantum mehanis, where a pure stateremains pure through its evolution and is forbidden to evolve into a mixed one. Moreover, aording toproof by Wald [21℄, suh evolution from pure to mixed states is inompatible with T or CPT invariane.Hawking further predits that the most probable senario for a blak hole is its omplete disappearaneaompanied by the loss of information about its states, and argues that suh transitions from pureinto mixed states are also possible on a mirosopi (elementary partile) level beause of quantum�utuations of the metri, whih ould be interpreted as virtual blak holes whih appear and disappearagain.Theoretial onsiderations desribed above led Ellis et al. to develop an appropriate phenomenologi-al framework for disussing violations of quantum mehanis due to evolution of pure states into mixedstates [22℄. The formalism introdued is applied to neutron interferometry and to experiments involvingneutral kaons, on whih we will onentrate. In general, the approah is based on density matrix ratherthan on Hamiltonian equation. Let H be the Hamiltonian de�ned in eq. (5) and ρ the density matrix.The following modi�ation of Liouville-von Neumann equation is proposed (here a slightly simpli�ednotation from Ref. [7℄ is used):

dρ

dt
= −iHρ+ iρH† + iδ /Hρ (40)The last term on the right-hand side of the above equation is responsible for deoherene. When oneexpands ρ in terms of Pauli spin matries σi and the identity σ0 and uses the basis of CP eigenstatesfor kaons, δ /H an be represented by a 4×4 matrix δ /Hµν whih ats on a olumn vetor with ρµ asomponents. The elements of δ /H should respet two natural restritions, namely they ought to beonsistent with probability onservation and they should not derease the entropy of the system (inother words, mixed states should not be allowed to evolve into pure states). The authors of Ref. [22℄added a ondition that the new term annot hange strangeness. Taking into aount these onstraints,the δ /H matrix is found to have only four non-vanishing elements:

δ /H = −2









0 0 0 0
0 0 0 0
0 0 α β
0 0 β γ









. (41)Here α, β and γ are three real parameters violating CPT and quantum mehanis. To ensure thatTrρ2 does not exeed unity (so that we avoid states with omplex entropy), they should satisfy theinequalities α > 0, γ > 0 and αγ > β2 [22℄. See also setion 6.3 for expeted boundaries of theirvalues.The extension of this formalism to a pair of entangled kaons was done by Huet and Peskin [23℄.Among other results, they obtained the double deay rate in terms of deay times t1, t2 and α, β, γ19



parameters for the deay to (π+π−;π+π−):
I
(

π+π−, t1 ; π+π−, t2
)

=

= 2 |A0|4
{

RL
(

e−ΓSt1−ΓLt2 + e−ΓLt1−ΓSt2
)

− 2 |η̄+−|2 cos [∆m (t1 − t2)] e
−(Γ̄+α−γ)(t1+t2)

+ 4
β

|d| |η̄+−| sin (∆mt1 + φ+− − φSW ) e−(Γ̄+α−γ)t1e−ΓSt2+

+ 4
β

|d| |η̄+−| sin (∆mt2 + φ+− − φSW ) e−(Γ̄+α−γ)t2e−ΓSt1+

− 2

(

γ

∆Γ
+ 2

β

|d| |η̄+−|
sinφ+−

cosφSW

)

e−ΓS(t1+t2)

} , (42)where:
d = ∆m+

i

2
∆Γ (∆m and ∆Γ are de�ned to be positive, i.e. ∆m = mL −mS and ∆Γ = ΓS − ΓL),

|η̄+−|eiφ+− = ǫ−L ,
ǫ−L = ǫL − β

d
,

RL = |ǫ−L |2 +
γ

∆Γ
+

4β

∆Γ
ℑ
(

ǫ−Ld

d∗

) .Now we repeat the proedure desribed in setion 3.1, i.e. a swith to t = t1 + t2 and ∆t = t1 − t2variables followed by integration in t. Sine the �nal states in this ase are idential, it is enough toalulate the double deay rate for ∆t ≥ 0. The result is:
I
(

π+π−, π+π− ; ∆t
)

=

= |A0|4 |η̄+−|2
{

RL

|η̄+−|2 · Γ̄
(

e−ΓS∆t + e−ΓL∆t
)

− 2

Γ̄ + α− γ
cos (∆m∆t) e−(Γ̄+α−γ)∆t +

+
8β

|d| |η̄+−|
[

(

Γ̄ + α− γ + ΓS
)2

+ (∆m)2
] ·

·
[

[(

Γ̄ + α− γ + ΓS
)

sin (∆m∆t+ φ+− − φSW ) + ∆m cos (∆m∆t+ φ+− − φSW )
]

e−(Γ̄+α−γ)∆t +

+
[(

Γ̄ + α− γ + ΓS
)

sin (φ+− − φSW ) + ∆m cos (φ+− − φSW )
]

e−ΓS∆t
]

+

− 2

ΓS

(

γ

∆Γ |η̄+−|2
+

2β

|d| |η̄+−|
sinφ+−

cosφSW

)

e−ΓS∆t

} . (43)
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5 KLOE and KLOE-2 experimentsThe K Long Experiment (KLOE) [24, 25, 26℄, whih started data taking in 1999 and onludedin 2006, was loated at the rossing point of eletron and positron beams of DAΦNE ollider [27℄ atLaboratori Nazionali di Frasati (LNF) in Frasati, Italy. Now, in the year 2010, a new experiment -KLOE-2 [28℄ - is about to start at the same plae. When ompared to its predeessor, the main hangesin the new experiment are a new ollision sheme of DAΦNE ollider and additional detetors - innertraker, alorimeters and γγ taggers. In this hapter DAΦNE ollider is desribed (5.1), then KLOEdetetor omponents: drift hamber (5.2.1) and eletromagneti alorimeter (5.2.2) are introdued.Finally new detetors involved in KLOE-2 experiment are brie�y disussed (5.3)5.1 DAΦNE olliderDAΦNE (Double Annular Φ-fatory for Nie Experiments) is an eletron-positron ollider. As thename suggests, most of the time it operates with a entre of mass energy around the φ meson mass,
Mφ = (1019.455±0.020) MeV. The φ prodution ross-setion is large and peaks at about 3 mirobarns.Due to high luminosity and the fat that φ mesons deay predominantly to kaon pairs (harged andneutral, see Tab. 2), the φ-fatory is espeially suitable for investigations in the �eld of kaon physis.The omponents of DAΦNE are a 60 m long linear aelerator (LINAC), a 32 m long aumulator andtwo 100 m long main rings. The layout of the DAΦNE faility is presented in Fig. 6.

Figure 6: DAΦNE faility layout. The �gure is adapted from [25℄.LINAC an work in two modes, alternately produing and aelerating eletron and positron beamsto energies of 510 MeV (about half of the φ meson mass). One produed and aumulated, eletronsand positrons irulate in two separate rings to redue beam-beam interation. Partiles are formedinto bunhes, and most of the time the number of partiles in a bunh is kept on the level of 1010,although this number an be smaller for a given bunh. There are up to 120 bunhes in eah ring. InKLOE experiment every bunh ollided with its ounterpart from the other ring in one of two interationregions (see Fig. 7). The other interation region was used for other experiments onduted at LNF- FINUDA and DEAR. The situation is di�erent for KLOE-2, as there is going to be only one regionwhere the beams ross. Seleted parameters of DAΦNE an be found in Table 3.
21



Table 3: DAΦNE seleted parameters.Parameter ValueEnergy of partiles 510 MeVNumber of bunhes up to 120 per ringNumber of partiles in a bunh ∼ 1010Frequeny of ollisions ∼ 370 MHz

Figure 7: A fragment of the beam pipe surrounding the KLOE interation region. The �gure is adaptedfrom [29℄.5.2 DetetorsKLOE detetion system has already been desribed in details in many publiations - an interestedreader is referred to, for instane, Ref. [24℄ and [25℄. Here only essential omponents of the detetor- drift hamber and eletromagneti alorimeter - are brie�y reviewed. A shemati view of KLOE isgiven in Fig. 8.

Figure 8: KLOE ross-setion. The main omponents are the drift hamber and eletromagnetialorimeter (EMC), surrounded by a superonduting oil. The �gure is adapted from [30℄.22



5.2.1 Drift ChamberThe design of the drift hamber (see Fig. 9) was driven by the desire to observe kaons' deay produtsfrom the φ→ K0K̄0 reations. To aomplish this goal, it was needed to take into aount a relativelylong lifetime of KL, τL ≈ 51 ns (for this and more features of KL and KS , refer to Tab. 1). Knowingthat kaons are produed with momenta ∼ 115 MeV/, the mean path travelled by a KL meson is readilyobtained as λL = βγcτL ≈ 3.5 m (the mean path of KS , omputed in the same way, is λS ≈ 5.6 mm).The solution applied is a ylindrial drift hamber, whose diameter and maximal length are 4 m and3.3 m respetively (the inner radius is 25 m). This volume allows us to ath about 30 - 40% of KLdeays.

Figure 9: KLOE drift hamber after ompleting the assembly. Light re�etion on wires an be seen.The �gure is adapted from [26℄.

Figure 10: Cells on�guration of the KLOE drift hamber. Full points indiate sense wires, while pointsempty inside show �eld wires. The �gure is adapted from [26℄.23



Another important requirement for the drift hamber [26℄ is that it has a high and uniform reon-strution e�ieny over a large volume. Moreover, it is demanded to have a good momentum resolution.To meet this riteria, a uniform struture of drift ells ensuring high homogeneity over the whole volumewas planned. To ahieve this, the drift hamber was �lled with 58 oaxial layers of wires, giving a totalof 12582 almost square ells (eah with one sense wire). Altogether there are over 50 thousands ofwires, the ratio of the �eld to sense wires being 3:1. Sine the trak density is muh higher at smallradii due to the relatively small momenta of partiles produed in the φ meson deays [31℄, and beausereonstruting KS mesons verties is desired, 12 innermost layers have ells of smaller size, 2 m x 2m, while the ells of 46 outermost layers are of the size 3 m x 3 m. Con�guration of the drift ellsis presented in Fig. 10. Wires belonging to the same layer are parallel to eah other, while eah layeris slightly twisted with respet to the neighbouring ones. It turns out that the drift hamber is ableto measure harged verties of KS and KL with ∼ 1 mm auray and provides frational momentumresolution of σp

p ∼ 0.5% [32℄.One more feature demanded from the drift hamber, espeially important for neutral kaons physis,is its transpareny to partiles in order to minimize KL into KS regeneration, multiple sattering andonversion of low energy photons. For this reason, low-atomi-number materials were hosen: arbon�ber omposite for the mehanial struture, and the mixture of 90% helium - 10% isobutane for thedrift medium. Taking into aount also the presene of wires, the average radiation length in the wholehamber volume is estimated to be about XDC
0 ∼ 900 m [33℄.5.2.2 Eletromagneti alorimeterThere is a number of requirements that are expeted from KLOE eletromagneti alorimeter(Fig. 11). To start with, basing on the time measurement of the arrival of neutral deay produts

Figure 11: Eletromagneti alorimeter of KLOE. The �gure is adapted from [26℄.of kaons, it should allow to determine KS and KL neutral verties with an auray of few milimeters.As the �ight path of KL before it deays into neutral pions is alulated basing on the time of arrival ofthe photons from π0 deays, a good time resolution is neessary (with a preision of 100 ps, the �ightpath is determined to ∼ 0.6 m [34℄). Another task of the alorimeter is to distinguish CP-violating
KL → 2π0 from KL → 3π0 deay. For this reason, the alorimeter should over as muh of the 4πangle as possible and the e�ets of splitting and merging of signals should be minimised. To reah thisgoals, a alorimeter onsisting of a ylindrial, entral barrel and two endaps was built, all of themmarked red in Fig. 8. As a result, 98% of the 4π angle is overed. The barrel onsists of 24 modules oftrapezoidal shape, eah 23 m thik (whih orresponds to about 15X0 [30℄), whilst eah endap onsistsof 32 vertial modules, whih are bent on both sides into a C-shape. The length of these modules variesfrom 70 m to 3.9 m. Partiles rossing the eletromagneti alorimeter are deteted as loal energy24



deposits. When the deposits are lose in time and spae, they are grouped into lusters. Energy andtime resolutions for eletromagneti showers are [35℄:
σ(E)

E
=

5, 7%
√

E(GeV) , σ(t) =
57 ps

√

E(GeV) ⊕ 100 ps.5.3 KLOE-2 upgradesAs already mentioned, in KLOE-2 experiment several new detetors are going to be used. In thissetion a short desription of these new elements is provided. Fig. 12 illustrates the positions of theinner traker and eletromagneti alorimeters (CCALs and QCALs).5.3.1 Inner trakerWithout doubt this is the most important upgrade when kaon physis is onsidered. It is expetedto inrease the geometrial aeptane for low momentum traks, as well as to improve e�etiveness ofthe deay vertex reonstrution and the trak momentum resolution by reduing the trak extrapolationlength [35℄.

Figure 12: KLOE-2 detetor sheme around the interation point. CGEM denotes ylindrial gas ele-tron multipliers, CCAL stands for rystal alorimeters, and QCAL indiates quadrupole tile alorimeters.The �gure is adapted from [36℄.The inner traker will onsist of four ylindrial GEM (CGEM) detetors (GEM standing for gaseletron multiplier, detetor desribed for the �rst time in Ref. [37℄). It will be about 50 m long, plaedbetween the beam pipe and the drift hamber inner wall. While the radius of the outermost layer isnaturally limited by the presene of the drift hamber, the radius of the innermost layer should behosen in order not to destroy the interferene pattern (for example in Fig. 1) due to KS regenerationphenomenon. Taking into aount these onstrains, inner and outer radii of the inner traker have beendesigned to be 129.5 mm and 220 mm, respetively [36℄. 129.5 mm orresponds to about 23τS , so, asan be dedued from Fig. 1, the interferene pattern will not be destroyed. Simulations results [38℄indiate that thanks to this detetor the unertainty of the vertex position an be redued by a fator
∼2.5.
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5.3.2 CalorimetersThe motivation for using extra alorimeters (apart from the barrel and endaps desribed in 5.2.2)is to inrease the detetor aeptane for photons oming from the viinity of the interation region.Important analyses whih an bene�t from these detetors inlude the searh for KS → 3π0 deay andmeasurements of KS → γγ and η → π0γγ branhing ratios [39℄. Two types of alorimeters are going tobe used:
• CCALT [40, 41, 42℄ - rystal alorimeters with timing, loated between the end of the spherialbeam pipe (of 10 m radius) and the �rst quadrupole (30 m from the interation point). Thesedetetors will extend the angular overage of the KLOE-2 eletromagneti alorimeter from polarangle of 20◦ down to 8◦. Eah of them will onsist of two onentrial, ylindrial barrels. Thematerial used is erium-doped LYSO (Lu18Y0.2SiO5 : Ce). When ompared to PbWO4, its sin-tillation emission time is 4 times longer, but it is more than ompensated for by 300 times largerlight yield.
• QCALT [40, 41, 43℄ - quadrupole tile alorimeters sorrounding the inner quadrupoles. As QCALTsshould improve the reonstrution ofKL → 2π0 deays, there is a number of features required fromthese detetors, inluding high e�ieny to low energy (20-300 MeV) photons, time resolution ofless than 1 ns and spae resolution of few entimeters. QCALTs are 1 m long with dodeagonalstruture and they are omposed of �ve 5 mm thik sintillator plates alternated with 3.5 mmthik tungsten plates, together giving a depth of 5.5 X0.5.3.3 γγ taggersThe goal of using γγ taggers is, as the name suggests, to tag the presene of a pair of photons inthe drift hamber. To ahieve this goal, it is neessary to measure eletrons (positrons), whose energyis lower than nominal 510 MeV. From suh measurement one infers that e+ and e− interated, and it isassumed that the reation was of the form e+e− → e+e−γ∗γ∗ → e+e−X.

Figure 13: Positions of γγ-tagging detetors. Positions of Low Energy Tagger (LET) and High EnergyTagger (HET) are indiated by arrows. The �gure is adapted from [44℄.Simulation shows that eletrons with energies below 250 MeV will exit the beam pipe within 1 mfrom the interation point [45℄, while those with energies greater than 420 MeV, foused by the �rst26



fousing quadrupole, will leave the vauum hamber downstream the bending magnet [39℄. The detetorsmeasuring low- and high-energy eletrons are alled LET (standing for low energy tagger) and HET(high energy tagger), respetively, and their positions are shown in Fig. 13 (note that `low' and `high'here atually apply to the measured eletrons, not to tagged photons). For partiles reahing HET thereis a lear orrelation between energy and position, hene a position-sensitive detetor an be used [46℄.On the other hand partiles deteted in LET show no suh orrelation, and for this reason LET has tobe an energy-sensitive detetor, i.e. a alorimeter [45℄.
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6 Funtion I(π+π−, π+π− ; ∆t) with parameters α, β, γ - �t to dataIn this hapter the results of �tting the funtion (43) to the experimental data are reported. Theuts used in the data analysis are listed in setion 6.1, further tehnial information is provided insetion 6.2. Finally, in 6.3, obtained results are ompared to previous measurements published byKLOE and CPLEAR ollaborations.6.1 Cuts appliedThe following uts were applied to the preseleted [47℄ data set before making the �t:
• on KL invariant mass:
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• on KS and KL missing momenta:
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• on event global �t:
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< 15,where (see also Fig. 14):
V K
i − ith omponent of a kaon's vertex position,
V φ
i − φ deay position along the ith axis,
lK− kaon's deay length,
n̂Ki − kaon's diretion obtained from reonstruted traks,
σi− unertainty of the kaon's deay vertex (quantity derived from Monte Carlo).6.2 Assumptions6.2.1 Fitting funtionThe �tting funtion is of the form:

ni = N





∑

j

sijǫjIj (α, β, γ)



 , (44)
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Figure 14: Pitorial de�nition of variables in the event global �t. The �gure is adapted from [48℄.where ni is the expeted number of events in the ith bin, N is the normalizing fator (the number of
KSKL → π+π−π+π− events), sij and ǫj are the smearing matrix and e�ieny vetor, and �nally Ij isthe funtion (43) integrated over the bin width of the data histogram:
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} . (46)6.2.2 Smearing, e�ieny, binning, rangeSmearing matrix (Fig. 15) de�nes how the probabilities of reonstruting ertain ∆t values dependon atual ∆t values. E�ieny histogram (Fig. 16) desribes the probability of suessful reonstrution,in this ase for the (π+π−, π+π−) deay hannel, as a funtion of ∆t. Both smearing matrix and valuesof e�ienies used in this work are the same as those used in KLOE analyses (obtained from MonteCarlo simulations). As indiated by Figures 15 and 16, the data were grouped in 1τS bins, omparablewith KLOE resolution [35℄.

Figure 15: Smearing matrix presenting ∆t reonstruted (vertial axis) vs. real (simulated, horizontalaxis) values.

Figure 16: E�ieny for suessful identi�ation of (π+π−, π+π−) deay as a funtion of time di�erenebetween the deays. 30



What di�ers signi�antly from KLOE analyses is the range in whih the �ts have been performed. Inthis work only time di�erenes between 0 and 12τS have been taken into aount. This limit is justi�edby the observation, that for higher ∆t values the deay rate shape is onsiderably in�uened by KSregeneration on the beam pipe. In KLOE analyses this e�et was aounted for, whih allowed �ttingin the whole range overed by the smearing matrix, 0-50τS .6.2.3 Dealing with small numbersIn this setion information about programming approah is presented. It is ruial for understandingthe ode in appendix B, however a reader uninterested in omputational details an without muh lossskip to setion 6.3.As α, β and γ parameters an be as small as 10−20 GeV, a speial way of handling them in programsis needed so that they do not ause numerial problems. For this reason the following substitution wereused in the ode (the atual values are on the left side, the values used are after arrows):
~ = 6.58211915 · 10−25 GeV· s −→ ~ = 6.58211915

τS = 0.8958 · 10−10 s −→ τS = 0.8958

τL = 511.6 · 10−10 s −→ τL = 511.6

∆m = 0.5920 · 1010 ~s −→ ∆m = 0.529 · ~Using the above we an also write ΓS = ~

τS
, ΓL = ~

τL
and introdue a time onversion onstant tcc = τS

~
.After these rede�nitions ΓS , ΓL and ∆m are in the units of 10−15 GeV, while a produt t[in τS units] ·tccis in the units of 1015 GeV−1.6.2.4 Atual �tting funtion, normalisationWe start from modifying eq. (43) by multiplying every term with time by tcc. Instead of (46) weget:
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} . (46')The funtion (43) should be normalised before �tting in order to avoid any systematial e�ets fromnonzero values of α, β and γ parameters. Here eq. (46') turns out to be really useful, as it is enough tosubstitute t′ by zero and t′ + δt′ by ∆tmax (whih in this ase is 12τS). One then obtains a number bywhih funtion (43) should be divided to be normalised to unity.6.3 Results, omparison with previously published (KLOE, CPLEAR)6.3.1 In�uene of the parameters upon the deay rate shapeTo hek how a nonzero value of eah parameter separately would a�et the deay rate urve theFigures 17, 18 and 19 were prepared. To exaggerate the result, the numbers taken for values of theparameters are approximately an order of magnitude bigger than the ones obtained in the CPLEARexperiment [49℄. From these plots one an onlude that the urve is the least sensitive to α, that allthree parameters an manifest themselves in the interferene region, and that the plateau is mostlya�eted by β.

Figure 17: The e�et of nonzero α value on the double deay rate shape. The blak urve is for
α = β = γ = 0 and the red for α = 10−16 GeV, β = γ = 0.6.3.2 Fits with α, β and γ parametersThree kinds of �ts were performed. First, eah of the three parameters was allowed to di�er fromzero with the other two parameters vanishing. Then a �t was made assuming omplete positivityhypothesis (α = γ, β = 0). Finally a �t with all three parameters being free was performed. Eah timenormalisation was left as an extra parameter. The results are summarised in Tab. 4.
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Figure 18: The e�et of nonzero β value on the double deay rate shape. The blak urve is for
α = β = γ = 0 and the red for β = 2 · 10−18 GeV, α = γ = 0.

Figure 19: The e�et of nonzero γ value on the double deay rate shape. The blak urve is for
α = β = γ = 0 and the red for γ = 10−20 GeV, α = β = 0.
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Table 4: Fit summary table.Assumption α, GeV β, GeV γ, GeV χ2/ndf Figure
β = γ = 0 (1.184 ± 0.0013) · 10−15 � � 4.30 20
α = γ = 0 � (1.26 ± 0.11) · 10−18 � 3.82 21
α = β = 0 � � (1.93 ± 0.21) · 10−20 2.02 22
α = γ, β = 0 � � (1.93 ± 0.21) · 10−20 2.02 23� (2.662 ± 0.0025) · 10−16 (−2.76 ± 0.19) · 10−18 (4.25 ± 0.21) · 10−20 1.87 24

Figure 20: Fit with ondition β = γ = 0.
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Figure 21: Fit with ondition α = γ = 0.

Figure 22: Fit with ondition α = β = 0.35



Figure 23: Fit with onditions α = γ, β = 0.

Figure 24: Fit of the funtion (43) to data.36



The obtained values of paraeters an be ompared with KLOE and CPLEAR results:Table 5: Comparison with previous results for the �t with all parameters free.CPLEAR [49℄ KLOE 2007 (2002 data) [7℄ This work
α (−0.5 ± 2.8) · 10−17 GeV (−10+41

−31 ± 9) · 10−17 GeV (2.662 ± 0.0025) · 10−16 GeV
β (2.5 ± 2.3) · 10−19 GeV (3.7+6.9

−9.2 ± 1.8) · 10−19 GeV (−2.76 ± 0.19) · 10−18 GeV
γ (1.1 ± 2.5) · 10−21 GeV (−0.5+5.8

−5.1 ± 1.2) · 10−21 GeV (4.25 ± 0.21) · 10−20 GeVTable 6: Comparison to previous results with α = γ, β = 0 assumption.KLOE [28℄ This work
γ = (0.7 ± 1.2stat ± 0.3syst) · 10−21 GeV γ = (4.25 ± 0.21) · 10−20 GeVOne an notie that values obtained in this analysis are generally higher than than those obtainedbefore, in some ases the di�erene is of one order of magnitude. However, these results should betreated as less signi�ant than those from Ref. [49, 7, 28℄ for several reasons. Most importantly, the �twas performed only for the 0-12τS range, while in the KLOE analysis the range was 0-50τS , whih wasmade possible by aounting for KS regeneration on the beam pipe. What also matters is that hereonly a subset of all gathered data was used, namely the data from the year 2005. A small di�erenein favour of this analysis is that for the KLOE �t the integral (46) was only estimated, not obtainedanalytially.While KLOE and CPLEAR experiments gave only the upper bounds for the α, β and γ values,there are also preditions for their lower limits. For instane, a predition that will probably be veri�edby the KLOE-2 experiment is given in Ref. [50℄. Assuming that the so-alled �solar neutrino problem�(de�it of observed neutrinos from the Sun with respet to the theoretially expeted amount) is onlydue to mehanism of evolution from pure into mixed states, the authors derived:

γ ≥ 7.4 · 10−22 GeV for α < 2γ,
α ≥ 1.5 · 10−21 GeV for α > 2γ. (47)
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7 SummaryOne of the goals of this thesis was to desribe the time evolution of quantum entangled kaon pairsin a way intelligible for a reader unfamiliar with the physis of kaons. For this reason many alulationsand examples of Fortran ode used in programs have been inluded in the appendix.
CPT symmetry has not been observed to be violated. Nevertheless, several parameterisations havebeen invented that allow for its noninvariane for di�erent reasons. One of the ideas is that CPT mightbe violated by the evolution from pure to mixed states indued by quantum gravity e�ets. This isespeially interesting, as although the onept has been known for a long time, a theory of quantumgravity still eludes us and when desribing it we have to rely on intuition rather than on solid theoretialground.An approah was made to analyse a subset of KLOE data for the e�ets of quantum gravity. Theresults obtained, although less signi�ant than KLOE and CPLEAR ones, enourage further measure-ments, as they indiate that preision expeted in KLOE-2 experiment may be high enough to verify atleast a fration of theoretial preditions.Kaons seem to have a patent for breaking symmetries. With more and more preise tests, we maysoon for the �rst time witness a violation of the CPT symmetry thanks to the KLOE-2 data. Even ifnot, this experiment is ertain to deepen our understanding of these fasinating partiles.
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A CalulationsA.1 Calulations for hapter 2A.1.1 EigenvaluesHamiltonian from eq. (5) an be written using expliitly real and imaginary parts of M and Γmatries:
H =
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We now move to equation for ∆ (11). In the CPT limit (6) H11 = H22, so ∆ is redued to:
∆ = 4H12H21.We further simplify this expression by going to CP limit, whih means we assume that the phases of

M12 and Γ12 are the same. We an then write:
M12 = |M12| cosφ+ i |M12| sinφ, Γ12 = |Γ12| cosφ+ i |Γ12| sinφ.Using the above we rewrite H12 and H21:
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A.1.2 EigenstatesThe equation for eigenvetors is of the standard form:
(

H11 − λ± H12
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 = 0.From this we �nd the relation between u± and w±:
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A.2 Calulations for hapter 3A.2.1 |i〉 as a funtion of |KS〉 , |KL〉Calulations presented here are rather basi, but they are given for ompleteness.For the sake of brevity let us denote: α−1 :=

√

2
(

1 + |ǫS |2
), β−1 :=

√

2
(

1 + |ǫL|2
) and γ :=

1 − ǫSǫL. Using these variables we an rewrite (18):
|KS〉 = α

[

(1 + ǫS)
∣

∣K0
〉

+ (1 − ǫS)
∣

∣K̄0
〉] ,

|KL〉 = β
[

(1 + ǫL)
∣

∣K0
〉

− (1 − ǫL)
∣

∣K̄0
〉]From this we obtain ∣∣K0

〉 and ∣∣K̄0
〉 expressed by |KS〉 and |KL〉:
∣

∣K0
〉

=
1 − ǫL
2αγ

|KS〉 +
1 − ǫS
2βγ

|KL〉 ,
∣

∣K̄0
〉

=
1 + ǫL
2αγ

|KS〉 −
1 + ǫS
2βγ

|KL〉 ,so the initial state is:
|i〉 =

1√
2

([

1 − ǫL
2αγ

|KS (−~p)〉 +
1 − ǫS
2βγ

|KL (−~p)〉
]

·
[

1 + ǫL
2αγ

|KS (+~p)〉 − 1 + ǫS
2βγ

|KL (+~p)〉
]

+

−
[

1 + ǫL
2αγ

|KS (−~p)〉 − 1 + ǫS
2βγ

|KL (−~p)〉
]

·
[

1 − ǫL
2αγ

|KS (+~p)〉 +
1 − ǫS
2βγ

|KL (+~p)〉
]) .40



It is easy to see that the terms with produts |KS (+~p)〉 |KS (−~p)〉 and |KL (+~p)〉 |KL (−~p)〉 anel out,so the above equation gives:
|i〉 =

1

4
√

2αβγ2
{[(1 + ǫL) (1 − ǫS) + (1 − ǫL) (1 + ǫS)] |KS (+~p)〉 |KL (−~p)〉+

− [(1 + ǫS) (1 − ǫL) + (1 − ǫS) (1 + ǫL)] |KL (+~p)〉 |KS (−~p)〉} =

=
1

4
√

2αβγ2
{2γ |KS (+~p)〉 |KL (−~p)〉 − 2γ |KL (+~p)〉 |KS (−~p)〉} =

=
1

2
√

2αβγ
{|KS (+~p)〉 |KL (−~p)〉 − |KL (+~p)〉 |KS (−~p)〉}Therefore we an write:

|i〉 =
N√
2
{|KS (+~p)〉 |KL (−~p)〉 − |KL (+~p)〉 |KS (−~p)〉}where N , N = (2αβγ)−1, written in original variables ǫS , ǫL is:

N =

√

2
(

1 + |ǫS |2
)

√

2
(

1 + |ǫL|2
)

2 (1 − ǫSǫL)
=

√

(

1 + |ǫS|2
)(

1 + |ǫL|2
)

1 − ǫSǫL
≈ 1.A.2.2 Double deay rate I (f1, t1; f2, t2)We want to obtain eq. (26). We have:

I (f1, t1; f2, t2) = A (f1, t1; f2, t2)A
∗ (f1, t1; f2, t2) =

=
|N |2

2

{

〈f1 |T |KS〉 〈f2 |T |KL〉 〈f1 |T |KS〉∗ 〈f2 |T |KL〉∗ e−ΓSt1−ΓLt2+

+ 〈f1 |T |KL〉 〈f2 |T |KS〉 〈f1 |T |KL〉∗ 〈f2 |T |KS〉∗ e−ΓLt1−ΓSt2+

− 〈f1 |T |KS〉 〈f2 |T |KL〉 〈f1 |T |KL〉∗ 〈f2 |T |KS〉∗ ei(mL−mS)t1−i(mL−mS)t2e−
ΓS
2

(t1+t2)−
ΓL
2

(t1+t2)+

− 〈f1 |T |KL〉 〈f2 |T |KS〉 〈f1 |T |KS〉∗ 〈f2 |T |KL〉∗ e−i(mL−mS)t1+i(mL−mS)t2e−
ΓS
2

(t1+t2)−
ΓL
2

(t1+t2)
}

=

=
|N |2

2

{

|〈f1 |T |KS〉 〈f2 |T |KL〉|2 e−ΓSt1−ΓLt2 + |〈f1 |T |KL〉 〈f2 |T |KS〉|2 e−ΓLt1−ΓSt2+

− 〈f1 |T |KS〉 〈f2 |T |KL〉 〈f1 |T |KL〉∗ 〈f2 |T |KS〉∗ ei∆m(t1−t2)e−
ΓS+ΓL

2
(t1+t2)+

− 〈f1 |T |KL〉 〈f2 |T |KS〉 〈f1 |T |KS〉∗ 〈f2 |T |KL〉∗ e−i∆m(t1−t2)e−
ΓS+ΓL

2
(t1+t2)

}

=

=
|N |2

2

(

∣

∣

∣

∣

〈f1 |T |KS〉 〈f2 |T |KS〉
〈f2 |T |KL〉
〈f2 |T |KS〉

∣

∣

∣

∣

2

e−ΓSt1−ΓLt2 +

+

∣

∣

∣

∣

〈f1 |T |KL〉
〈f1 |T |KS〉

〈f1 |T |KS〉 〈f2 |T |KS〉
∣

∣

∣

∣

2

e−ΓLt1−ΓSt2+

− 〈f1 |T |KS〉 〈f1 |T |KS〉∗
〈f1 |T |KL〉∗
〈f1 |T |KS〉∗

〈f2 |T |KS〉∗ 〈f2 |T |KS〉
〈f2 |T |KL〉
〈f2 |T |KS〉

· ei∆m(t1−t2)e−
ΓS+ΓL

2
(t1+t2)+

− 〈f1 |T |KL〉
〈f1 |T |KS〉

〈f1 |T |KS〉 〈f1 |T |KS〉∗ 〈f2 |T |KS〉 〈f2 |T |KS〉∗
〈f2 |T |KL〉∗
〈f2 |T |KS〉∗

· e−i∆m(t1−t2)e−
ΓS+ΓL

2
(t1+t2)

)

=

=
|N |2

2
|〈f1 |T |KS〉 〈f2 |T |KS〉|2 ·

(

∣

∣

∣

∣

〈f2 |T |KL〉
〈f2 |T |KS〉

∣

∣

∣

∣

2

e−ΓSt1−ΓLt2 +

∣

∣

∣

∣

〈f1 |T |KL〉
〈f1 |T |KS〉

∣

∣

∣

∣

2

e−ΓLt1−ΓSt2 +

−
[(〈f1 |T |KL〉

〈f1 |T |KS〉

)∗ 〈f2 |T |KL〉
〈f2 |T |KS〉

ei∆m(t1−t2) +
〈f1 |T |KL〉
〈f1 |T |KS〉

(〈f2 |T |KL〉
〈f2 |T |KS〉

)∗

e−i∆m(t1−t2)

]

e−
ΓS+ΓL

2
(t1+t2)

)41



It is now onvenient to de�ne C12 and ηi, see eqs. (27) and (28). Using these quantities we an write:
I (f1, t1; f2, t2) = C12

{

|η1|2 e−ΓLt1−ΓSt2 + |η2|2 e−ΓSt1−ΓLt2 +

−
[

|η1| e−iφ1 |η2| eiφ2ei∆m(t1−t2) + |η1| eiφ1 |η2| e−iφ2e−i∆m(t1−t2)
]

e−
ΓS+ΓL

2
(t1−t2)

}

=

= C12

{

|η1|2 e−ΓLt1−ΓSt2 + |η2|2 e−ΓSt1−ΓLt2 +

− |η1| |η2|
[

ei[∆m(t1−t2)+φ2−φ1] + e−i[∆m(t1−t2)+φ2−φ1]
]

e−
ΓS+ΓL

2
(t1−t2)

}

=

= C12

{

|η1|2 e−ΓLt1−ΓSt2 + |η2|2 e−ΓSt1−ΓLt2 +

− 2 |η1| |η2| e−
ΓS+ΓL

2
(t1−t2)os [∆m (t1 − t2) + φ2 − φ1]

} ,where we have used the fat that cosα = eiα+e−iα

2 .A.2.3 Double deay rates I (f1, f2,∆t)Our starting point is eq. (26). Substituting t = t1 + t2, ∆t = t1 − t2; t1 = t+∆t
2 , t2 = t−∆t

2we obtain:
I (f1, f2, t,∆t) = C12

{

|η1|2 e−ΓL
t+∆t

2 e−ΓS
t−∆t

2 + |η2|2 e−ΓS
t+∆t

2 e−ΓL
t−∆t

2 +

− 2 |η1| |η2| e−
ΓS+ΓL

2
tos [∆m∆t+ φ2 − φ1]

}

=

= C12

{

|η1|2 e−
ΓL
2
te−

ΓL
2

∆te−
ΓS
2
te

ΓS
2

∆t + |η2|2 e−
ΓS
2
te−

ΓS
2

∆te−
ΓL
2
te

ΓL
2

∆t+

− 2 |η1| |η2| e−
ΓS+ΓL

2
tos [∆m∆t+ φ2 − φ1]

}

=

= C12

{

|η1|2 e−
ΓL+ΓS

2
te−

ΓL−ΓS
2

∆t + |η2|2 e−
ΓS+ΓL

2
te

ΓL−ΓS
2

∆t+

− 2 |η1| |η2| e−
ΓS+ΓL

2
tos [∆m∆t+ φ2 − φ1]

}

=

= C12

{

|η1|2 e−
ΓL−ΓS

2
∆t + |η2|2 e

ΓL−ΓS
2

∆t+

− 2 |η1| |η2| os [∆m∆t+ φ2 − φ1]
}

e−
ΓL+ΓS

2
t.Sine we want to get rid of the dependene on t = t1 + t2, we integrate the last equation in thisvariable. We observe that for non-negative numbers t1, t2 suh that t1 ≥ t2 we always have t1+t2 ≥ t1−t2and similarly we have t1 + t2 ≥ |t1 − t2| for t1 ≤ t2. So if we divide this integral into two parts, oneof them satysfying the ondition ∆t ≥ 0 and the other ∆t ≤ 0, the lower limits will be ∆t and |∆t|respetively and in�nity will be the upper limit in both ases.The Jaobian matrix for transformation from t1, t2 to t, ∆t oordinates is:

jac (t1,t2 → ∆t,T ) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂t1
∂T

∂t1
∂∆t

∂t2
∂T

∂t2
∂∆t

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.Knowing that t1 = t+∆t
2 and t2 = t−∆t

2 and performing simple alulations we get jac (t1,t2 → ∆t,t) = 1
2 .Taking that into aount we an �nally write:
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• for ∆t ≥ 0:
I (f1, f2,∆t ≥ 0) = jac (t1,t2 → ∆t,t) · ∞

∫

∆t

I (f1, f2,∆t, t) dt =

=
1

2

∞
∫

∆t

C12

{

|η1|2 e−
ΓL−ΓS

2
∆t + |η2|2 e

ΓL−ΓS
2

∆t+

− 2 |η1| |η2| os [∆m∆t+ φ2 − φ1]
}

e−
ΓL+ΓS

2
tdt =

=
1

2
C12

{

|η1|2 e−
ΓL−ΓS

2
∆t + |η2|2 e

ΓL−ΓS
2

∆t+

− 2 |η1| |η2| os [∆m∆t+ φ2 − φ1]
}

∞
∫

∆t

e−
ΓL+ΓS

2
tdt =

=
1

2
C12

{

|η1|2 e−
ΓL−ΓS

2
∆t + |η2|2 e

ΓL−ΓS
2

∆t+

− 2 |η1| |η2| os [∆m∆t+ φ2 − φ1]
}

·
[

− 2

ΓL + ΓS
e−

ΓL+ΓS
2

t

]t=∞

t=∆t

=

=
1

2
C12

{

|η1|2 e−
ΓL−ΓS

2
∆t + |η2|2 e

ΓL−ΓS
2

∆t+

− 2 |η1| |η2| os [∆m∆t+ φ2 − φ1]
}

· 2

ΓL + ΓS
e−

ΓL+ΓS
2

∆t =

=
C12

ΓS + ΓL

{

|η1|2 e−ΓL∆t + |η2|2 e−ΓS∆t+

− 2 |η1| |η2| e−
ΓS+ΓL

2
∆tos [∆m∆t+ φ2 − φ1]

},
• similarly for ∆t ≤ 0:

I (f1, f2,∆t ≤ 0) = jac (t1,t2 → ∆t,t) · ∞
∫

|∆t|

I (f1, f2,∆t, t) dt =

=
1

2
C12

{

|η1|2 e−
ΓL−ΓS

2
·(−|∆t|) + |η2|2 e

ΓL−ΓS
2

·(−|∆t|)+

− 2 |η1| |η2| os [∆m∆t+ φ2 − φ1]
}

·
[

− 2

ΓL + ΓS
e−

ΓL+ΓS
2

T

]t=∞

t=|∆t|

=

=
C12

ΓS + ΓL

{

|η1|2 e
ΓL−ΓS

2
|∆t| + |η2|2 e

ΓS−ΓL
2

|∆t|+

− 2 |η1| |η2| os [−∆m |∆t| + φ2 − φ1]
}

e−
ΓL+ΓS

2
|∆t| =

=
C12

ΓS + ΓL

{

|η1|2 e−ΓS |∆t| + |η2|2 e−ΓL|∆t|+

− 2 |η1| |η2| e−
ΓL+ΓS

2
|∆t|os [∆m |∆t| + φ1 − φ2]

}

.
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B Fortran odeB.1 Plotting a normalised funtionfuntion wfnorma(dt)real gkl,gks,gav,dg,taus,taul,hbar,dm,dfreal alpha,beta,gammareal rl,eta,wu,iks,igr,zet,dtmreal part1,part2,part3,part4,part5real np1,np2,np3,np4,np5,normhbar=6.58211915taus=0.8958taul=511.6dm=0.529*hbart=taus/hbargks=hbar/tausgkl=hbar/tauldg=gks-gklgav=(gks+gkl)/2alpha=0.0beta=0.00gamma=0.0000pi=4.*atan(1.)eta=0.002232phi1=43.51*pi/180phi2=atan(2*dm/dg)df=phi1-phi2dvar=sqrt(dm**2+0.25*dg**2)rl=eta**2+gamma/dg+4*beta/dg*eta/(dvar**2)& *(dm*dg*os(phi1)+(dm**2)& *sin(phi1)-0.25*(dg**2)*sin(phi1))igr=gav+alpha-gammaiks=igr+gkswu=8*beta/(dvar*eta*(iks**2+dm**2))zet=rl/(gav*eta**2)C maximal delta t value:dtm=50.part1=zet*(exp(-gks*dt*t)+exp(-gkl*dt*t))part2=-2/igr*os(dm*dt*t)*exp(-igr*dt*t)part3=wu*(iks*sin(dm*t*dt+df)& +dm*os(dm*t*dt+df))*exp(-igr*t*dt)part4=wu*(iks*sin(df)+dm*os(df))*exp(-gks*t*dt)44



part5=-2/gks*(gamma/(dg*eta**2)+2*beta/(dvar*eta)& *sin(phi1)/os(phi2))*exp(-gks*t*dt)np1=zet*(1/(gks*t)*(1-exp(-gks*dtm*t))& +1/(gkl*t)*(1-exp(-gkl*dtm*t)))np2=-2/(igr*(igr**2+dm**2)*t**2)& *(igr*t+exp(-igr*dtm*t)& *(dm*t*sin(dm*dtm*t)-igr*t*os(dm*dtm*t)))np3=wu*iks/((igr*t)**2+(dm*t)**2)& *(igr*t*sin(df)+dm*t*os(df)-exp(-igr*t*dtm)& *(igr*t*sin(dm*t*dtm+df)+dm*t*os(dm*t*dtm+df)))np4=wu*(iks*sin(df)+dm*os(df))/(gks*t)& *(1-exp(-gks*t*dtm))np5=-2/(t*gks**2)*(gamma/(dg*eta**2)+2*beta/(dvar*eta)& *sin(phi1)/os(phi2))*(1-exp(-gks*t*dtm))norm=np1+np2+np3+np4+np5wfnorma=(part1+part2+part3+part4+part5)/normreturnendB.2 FittingFitting was done in PAW (Physis Analysis Workstation). Examples of fortran and kuma �les arebelow.B.2.1 Fortran �lefuntion fitnorma(dt)parameter(nbin=50)real teo(nbin),eff(nbin),taul,dtmreal rl,eta,gks,gkl,dg,dm,gav,pi,dvarreal help,help1,t,hbar,phi1,phi2,df,tausreal np1,np2,np3,np4,np5,normvetor smearvetor nnbinvetor effiommon/pawpar/par(4)pi=4.*atan(1.)hbar=6.58211915taus=0.8958taul=511.6t=taus/hbargks=hbar/taus 45



gkl=hbar/tauldg=gks-gklgav=(gks+gkl)/2dm=0.529*hbarphi1=43.51*pi/180phi2=atan(2*dm/dg)df=phi1-phi2eta=0.002232dvar=sqrt(dm**2+0.25*dg**2)rl=eta**2+par(4)/dg+4*par(3)/dg& *eta/(dvar**2)*(dm*dg*os(phi1)& +(dm**2)*sin(phi1)-0.25*(dg**2)*sin(phi1))igr=gav+par(2)-par(4)iks=igr+gkswu=8*par(3)/(dvar*eta*(iks**2+dm**2))zet=rl/(gav*eta**2)C maximal delta t value:dtm=12.np1=zet*(1/(gks*t)*(1-exp(-gks*dtm*t))& +1/(gkl*t)*(1-exp(-gkl*dtm*t)))np2=-2/(igr*(igr**2+dm**2)*t**2)& *(igr*t+exp(-igr*dtm*t)& *(dm*t*sin(dm*dtm*t)-igr*t*os(dm*dtm*t)))np3=wu*iks/((igr*t)**2+(dm*t)**2)& *(igr*t*sin(df)+dm*t*os(df)-exp(-igr*t*dtm)& *(igr*t*sin(dm*t*dtm+df)+dm*t*os(dm*t*dtm+df)))np4=wu*(iks*sin(df)+dm*os(df))/(gks*t)& *(1-exp(-gks*t*dtm))np5=-2/(t*gks**2)*(gamma/(dg*eta**2)+2*beta/(dvar*eta)& *sin(phi1)/os(phi2))*(1-exp(-gks*t*dtm))norm=np1+np2+np3+np4+np5binw=50./nbinnnbb=nnbin(1)write(6,*)(par(i),i=1,4)nowa=0.aidt=0.i=int(dt/binw)+1do j=1,nbinif(smear(j,i).gt.0) thendt1=binw*(j-0.5)teo(j)=& par(1)/norm 46



& *(rl/(gav*eta**2)*(1/(gks*t)*(exp(-gks*t*(j-1))& -exp(-gks*t*j))+1/(gkl*t)*(exp(-gkl*t*(j-1))& -exp(-gkl*t*j)))& -2/(igr*(igr**2+dm**2)*t**2)& *(exp(-igr*t*j)*(dm*t*sin(dm*t*j)-igr*t& *os(dm*t*j))-exp(-igr*t*(j-1))*(dm*t& *sin(dm*t*(j-1))-igr*t*os(dm*t*(j-1))))& +wu/((igr**2+dm**2)*t**2)& *(iks*(exp(-igr*t*(j-1))*(igr*t& *sin(dm*t*(j-1)+df)+dm*t*os(dm*t*(j-1)+df))& -exp(-igr*t*j)*(igr*t*sin(dm*t*j+df)& +dm*t*os(dm*t*j+df)))& +dm*(exp(-igr*t*(j-1))*(igr*t& *os(dm*t*(j-1)+df)-dm*t*sin(dm*t*(j-1)+df))& +exp(-igr*t*j)*(-igr*t*os(dm*t*j+df)& +dm*t*sin(dm*t*j+df))))& +wu/(gks*t)*(iks*sin(df)+dm*os(df))& *(exp(-gks*t*(j-1))-exp(-gks*t*j))& -2/(t*gks**2)*(par(4)/(dg*eta**2)& +2*par(3)/(dvar*eta)*sin(phi1)/os(phi2))& *(exp(-gks*t*(j-1))-exp(-gks*t*j)))aidt=aidt+effi(j)*smear(j,i)*teo(j)endifend dofitnorma=aidtreturnendB.2.2 Kuma �lefor/fil 67 fitnorma.psopt nstaopt fitset fit 1111111111h/fil 1 tt.hbookset hol 1set mtyp 20k=50ve/re nnbin(1) r 4|ve/re tmax(1) r 30ve/re tmax(1) r 12ve/re smear([k℄,[k℄) rve/rea smear newsmear_hi15_1ts_full.datve/re effi([k℄) r|ve/rea effi ./neweff/eff_hi15_0.25ts.txtve/rea effi eff_orr_hi15_1ts_full.txtve/re par(4) r 120000. 0. 0. 0.ve/re step(4) r 300 0.0000001 0.0000001 0.0000001ve/re pmin(4) r 5000. -9.4 -0.4 -0.4ve/re pmax(4) r 200000. 10.0 0.4 0.4 47



ve/re errpar(4) rh/fit 118(0.:12.) fitnorma.f SBLE 4 par step pmin pmax errparh/plo 118(0.:12.) egraphis/hplot/atitle '[D℄t, [t℄?S!' 'number of events'meta 0lose 67
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