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ABSTRACT

Ultra-high dose rate (FLASH) proton radiotherapy is a promising treatment method 
for cancer patients. In our research, we want to compare the FLASH method with 
a conventional radiation method to show what effect they have on the biochemical 
structure of the tumour (3D model – spheroids) and the secretion of extracellular vesicles 
(EVs) and their cargo. The use of a modern method of creating spheroids will enable us 
to create conditions that are better able to mimic the tumour microenvironment.
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INTRODUCTION
The key task of radiotherapy, which is 
required in the treatment of cancer in 
60–70% of patients, is to eliminate the 
tumour without causing undesirable 
effects in non-malignant tissue [1, 2]. 
Ultra-high dose rate (FLASH) radiotherapy 
is considered one of the most promising 
breakthroughs in cancer treatment. This 
is the administration of ultra-high dose 
rate radiation (>40 Gy/s) several orders 
of  magnitude higher than what is 
currently used in standard of care (SOC) 

radiotherapy (0.5–5 Gy/min) [3, 4]. 
Different modalities are used to generate 
FLASH dose rates, depending on the 
type of radiation. For electrons, including 
electron beam-based FLASH linear 
accelerators or synchrotron, light sources 
are used, and for proton FLASH usually 
proton accelerators are tested [5]. It is also 
worth mentioning that there is ongoing 
development of new methods for flash 
proton beam range monitoring [6–8], and 
for monitoring the degree of tissue hypoxia 
by positronium produced in the body 
during proton beam irradiation [9–11].
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of mammalian cells through transient hypoxia (including cancer 
cells) [28–32], whereas hyperoxia can eliminate FLASH effects 
in mice [33].

METHODOLOGY
The use of common methods of studying tumourspheres, i.e. 
histology (reflection of the cellular structure of the tumoursphere) 
and confocal microscopy (the role of hypoxia after tumoursphere 
irradiation, e.g. HIF-1 staining), wound healing and angiogenesis 
assays (evaluation by vascular formation on matrigel), in 
combination with modern methods, i.e. spectral flow cytometry (for 
EVs analysis – annexin V, CD9, CD63, CD81 and CD87 – uPAR), 
confocal Raman microscopy and FTIR (analysis of protein and 
lipid spectra in spheroids), will allow us to delve into the changes 
occurring within the irradiated tumourspheres (Fig. 1.). In our study, 
we plan to develop a methodology to produce melanoma and 
glioblastoma tumourspheres, which are three-dimensional (3D) 
cell aggregates (about 1–2 mm diameter) that can mimic tissues 
and microtumours (Fig. 2.). The use of a 3D model undoubtedly 
reproduces the conditions of the tumour to a greater extent 
compared to 2D cultures, but it should be remembered that in 
the human body the size of the tumour is much larger. A study 
of 104 glioblastoma scans showed the median area of cross- 
-sectional method on 2D was 1151 mm2 [34].

We decided to use melanoma cells because of the possibility of 
referring to the 2D studies conducted by Jasińska-Konior and 
the currently conducted clinical trial on FLASH radiotherapy. As 
the second research model, we chose glioblastoma because of 
its aggressiveness and a two-year survival rate of 10.4 percent 
(total dose 60 Gy, fractionated focal irradiation in daily fractions 
of 2 Gy, given 5 days per week for 6 weeks). Studies in mice 
have shown that FLASH-RT administered in hypo-fractionated 
regimens (daily fractionated doses of 4 × 3.5 Gy or 2 × 7 Gy; or 
3 × 10 Gy spaced by 48 hours) is able to spare the normal brain 
from radiation-induced toxicity without compromising cancer 
treatment [35].

We would like to focus on the use of the proton beam with FLASH 
intensity (60 Gy/s) and deliver doses of 6 and 20 Gy and a dose 
of 3 Gy, using SOC proton radiotherapy (0.15 Gy/s) to compare 
the effect of two different dose rates on the biological systems 
of tumourspheres and on EV secretion and origin.

STUDY OBJECTIVES
We would like to answer the following questions:

1. Do EVs released from tumourspheres differ depending on 
dose rate?

2. Do secreted EVs affect vascular cells?

The first clinical trials focus on the use of proton FLASH radiation 
therapy for bone symptomatic cancers with painful bone 
metastases in the extremities  [12, 13]. In the FLASH Radiotherapy 
for Skin Cancer (LANCE) clinical trial, is planned to use the electron 
beam-based in a 22 Gy single dose and a fractionated dose 
(5 × 6 Gy) for small (T1) or large (< 2 cm T2 ≤ 4 cm) Cutaneous 
Squamous Cell lesions [14]. Only a few clinical trials have been 
published with high-dose proton beam therapy for non-ocular 
malignant melanoma, showing promising results for sinonasal 
mucosal melanoma treatments [15].

STATE-OF-THE ART
Despite huge progress in moving FLASH radiotherapy to clinical 
trials, the molecular radiobiology underlying the FLASH effect is 
scarcely understood and in vitro experiments are necessary. An 
emerging need is to develop a preclinical model for radiotherapy 
dose monitoring in FLASH proton therapy, where tumourspheres 
are a proven research tool [8, 16].

Previous studies conducted on 2D melanoma cell lines have shown 
that conventional proton beam irradiation at doses of 1, 3, or 
5 Gy, causes a decrease in beta-1-integrin in the Mel270 cell line, 
an increase in the level of vimentin (EMT marker) in the BLM cell 
line, and an inhibition of migratory capacity [17]. Another study 
conducted by Jasińska-Konior et al. showed that low-LET proton 
beam causes changes in the organisation of the actin cytoskeleton 
and reduces cell elasticity, which remains at a reduced level long 
after irradiation [18]. A cell sublethal dose (3 Gy) of proton- 
-beam radiation causes a 2.3-fold decrease in the vimentin level, 
which is a marker of metastatic properties and the epithelial to 
mesenchymal transition of melanoma [19].

Extracellular vesicles (EVs) are double-membrane vesicles, of size 
100–1000 nm, which are secreted by cells into the extracellular 
space [20]. A cargo of EVs consists of proteins, lipids and nucleic 
acids. EVs may serve as a therapeutic target or therapeutic medium 
in radiotherapy. In proton therapy for glioblastoma, miR-574-3p 
carried by EVs may be considered a biomarker for monitoring the 
efficacy of radiotherapy, because of an explicit decrease in the 
level of such miRNAs in plasma exosomes after irradiation [21]. 
EVs derived from mesenchymal stem cells (MSCs), combined with 
radiotherapy, are determinant in the enhancement of radiation 
effects observed in the control of the metastatic spread of 
melanoma cells [22]. Exosomes increase the levels of mRNAs 
and survival-promoting pathway proteins, carcinogenic miRNAs 
(miR-889), but also decrease the levels of tumour suppressive 
miRNAs (miR-365 and miR-516) and mRNAs, hence EVs are 
supposed to promote the survival rate of cells exposed to 3 Gy 
or 12 Gy doses [23].

Hypoxia (low oxygen) is a common feature of solid tumours, which 
is significantly associated with radiation outcomes and poor patient 
survival [24–27]. FLASH irradiation might induce the protection 
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irradiated using the conventional method, where the irradiation 
time is much longer than the FLASH method. Within a short 
time (approx. 24 hours) after irradiation, lipid oxidation and 
lipolytic activity are increased in cells, which is associated with 
a decrease in lipid content. After about 48 hours after radiation, 
their level increases as a result of cellular ER stress response 
or apoptotic processes [36]. We expect to obtain an increased 
signal from lipids spheroids irradiated with ultra-high dose rate 
proton FLASH (approx. 60 Gy/s).

Our pilot studies so far have shown that spheroids secrete EVs. We 
expect to demonstrate that EVs secreted by irradiated spheroids 
differ in their cargo and therefore can modify processes related to 
carcinogenesis (i.e. angiogenesis, wound healing assay).
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3. What is the relationship between tumour hypoxia and the 
response to radiotherapy depending on the method used?

4. How do different radiotherapy methods change the 
biochemical composition of spheroids (lipid – protein content)?

EXPECTED RESULTS
Raman spectroscopy and IR microscopy are label-free optical 
and non-destructive spectroscopic techniques with the potential 
for in vivo tracking of overall biomolecular changes in tissue and 
cells. We expect to show a decrease in the spectra for amide 
1 and 2 in the irradiated spheroids compared to the control 
spheroids. A greater decrease should be observed in spheroids 

Fig. 1.  Research scheme.

Fig. 2.  (A) Celvivo ClinoStar Incubator; (B) Celvivo ClinoStar Incubator – 
external appearance of the device; (C) Example image of spheroid 
produced in 96-well plate; (D) The rotor with spheroids; (E) Example 
image of spheroid produced in ClinoStar Incubator.

Fig. 3.  (A) Sample in Eppendorf vessel located in PMMA phantom at proton 
irradiation station; (B) configuration of proton FLASH irradiation line.
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