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Abstrakt

Głównym celem poniższych studiów jest wyznaczenie poprawki do wydajności selekcji
pod hipotezą KSKL → π+π−π0π0 uzyskanej z Monte Carlo. Użyto do tego eksperymen-
talnie zebranej próbki danych, a wydajność znaleziono w funkcji różnicy czasów własnych
kaonów ∆t w momentach ich rozpadów. Praca stanowi kontynuację analizy prowadzącej
do zdeterminowania parametrów łamania symetrii CP Re(ε′/ε) i Im(ε′/ε) rozpoczętej w
[1].

Zasada pomiaru jest oparta na selekcji kanałów tła mających własności wspólne z
KSKL → π+π−π0π0. Wybranymi rozpadami sąKSKL → π±l∓νπ0π0,KSKL → π+π−3π0

oraz KSKL → π+π−π+π−, które odpowiadają rozpadom K → π0π0 i K → π+π− wystę-
pującym w sygnale.

Pierwszym krokiem był o wykonanie selekcji pod hipotezą każdego z rozpadów tagują-
cych (K → π±l∓ν,KL → 3π0 alboKS → π+π−) i osiągnięcie najwyższej możliwej czysto-
ści próbki. Póniej liczba zdarzeń tagujących była ważona poprzez stosunek rozgałęzie
odpowiedniego rozpadu znajdującego się w sygnale, aby otrzymać tak zwaną oczekiwaną
dystrybucję różnicy czasów rozpadów. Dodatkowa selekcja pod hipotezą K → π0π0 albo
K → π+π− była nakładana na zdarzenia po selekcji tagującej w celu uzyskania próbki
naśladującej wyselekcjonowaną dla KSKL → π+π−π0π0 przy użyciu MC. Co ważne, za-
chowana musiała być niezależność rekonstrukcji między rozpadami naładowanymi i neu-
tralnymi, więc do ustalenia wierzchołka neutralnego zaadaptowano metodę trilateracji.
Ostatecznie, mając wyznaczone zarówno oczekiwane i wyselekcjonowane dystrybucje
∆t zdeterminowano poprawkę do wydajności poprzez podzielenie wydajności uzyskanej
z danych przez wydajność z Monte Carlo. Wynik nie jest rozkładem jednorodnym, więc w
istocie każdemu podprzedziałowi histogramu∆t odpowiada specyficzny czynnik. Niepew-
ności wyznaczone zostały za pomocą standardowej propagacji niepewności pomiarowej.
Wyznaczona poprawka zostanie użyta w dalszych studiach nad łamaniem symetrii CP w
układach kaonów splątanych.
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Abstract

The main goal of these studies is to determine a correction factor for the efficiency of
selection obtained using KSKL → π+π−π0π0 Monte Carlo events using experimentally
collected data in the function of time difference ∆t between decays of kaons. It constitutes
a continuation of an analysis for Re(ε′/ε) and Im(ε′/ε) parameters, which began in [1].

Measurement principle is based on the selection of background channels having com-
mon properties with KSKL → π+π−π0π0. The chosen decays were KSKL → π±l∓νπ0π0,
KSKL → π+π−3π0 and KSKL → π+π−π+π− corresponding to signal-like parts K →
π0π0, K → π+π−, respectively.

The first step was to perform a selection under the hypothesis of each tagging decay
(K → π±l∓ν, KL → 3π0 or KS → π+π−) and reach the highest possible purity. Then, the
number of tagging events was weighted with a branching ratio for each signal-like part
to obtain so-called expected distributions of the time difference. The additional selection
under the hypothesis of K → π0π0 or K → π+π− was imposed on the events after tagging
to mimic the selection performed for KSKL → π+π−π0π0 using MC. Importantly, inde-
pendence between charged and neutral parts of decay had to be conserved, so the method
of trilateration was adapted to reconstruct a neutral vertex. Finally, having determined
the expected and selected distributions of ∆t, a correction factor can be calculated via
the division of efficiency obtained from data by the efficiency from MC. The result is not
a uniform distribution, so there exists a specific factor for each bin of the ∆t histogram.
Final uncertainties were determined using a standard propagation of a measurement error.
A measured correction will be used in the further studies over CP symmetry breaking in
the entangled kaons’ systems.
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1 Introduction

1.1 Physical transformations

Physical transformations are the operations developed in the mathematical formalism.
They correspond to the change of variables of wave functions or observables themselves
and can be divided into independent types, which are extensively described below.

The continuous transformations correspond to the operations tied with classically un-
derstood physical reality, like spatial translation or rotation of a system. Its action on wave
functions can be reached by the elements Û of certain Lie groups dependent on continuous
parameters θ(x), noted in general as:

Û = exp (i[θ(x)]aT̂
a), (1.1)

where T̂ a is a-th generator of a given Lie group and [θ(x)]a - a-th component of param-
eters vector. They are unitary by definition, so cannot lead to the change in the result
of a measurement of observables. If parameters are dependent on a spacetime point, the
transformations are called local, while for independent - global. Local transformations
specify the gauge independence of the theory and forms of all its derivatives, e.g., field
strength tensor. The significance of global ones is magnified by Noethers theorem (firstly
proved in [2]), which states that each conserved global symmetry generates a conservation
law and a conserved current. An example could be the invariance of QED with respect
to U(1), which proves charge conservation and form of QED probability current. Despite
their importance, these transformations are not directly studied in the thesis.

Discrete symmetry is represented by the operator Â having a property:

ÂÂ = α1, (1.2)

where 1 is an identity and α - complex number of unit magnitude. Obviously, acting
twice with a given operator leaves the state unchanged. These symmetries can be de-
termined from measurable, intrinsic characteristics of a system, e.g., differential cross-
section. More general theory of symmetry operators allows stating, that with a suitable
phase convention every discrete operator is linear and unitary or anti-linear and anti-
unitary [3]. As was mentioned before, unitary ones are responsible for the conservation
laws, which in this case are decay selection rules and superselection rules like law of con-
servation of statistics. There are three distinguished elementary transformations, out of
which two will have a notable importance for the reader.

First is known as parity, P , an operation defined by the inversion of three spatial co-
ordinates of a wave function, x → −x, y → −y, z → −z, which leads, as well, to the
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transformation of position and momentum observables in a way:

P̂ r̂P̂−1 = −r̂,

P̂ p̂P̂−1 = −p̂.
(1.3)

Such a symmetry is certainly violated in weak interactions - first recognition in β decay
of 60

27Co [4], which lead to their theoretical description of weak interactions by V-A term
in Standard Model Lagrangian [5].

The second transformation is called charge conjugation, C, which replaces charge Q,
hypercharge Y , baryon number B and two lepton numbers Le and Lµ with correspond-
ing opposites (particle-antiparticle interchange). Moreover, by quark SU(3) model, these
quantities can be tied with strangeness S and isospins z-component Iz by relations:

S = Y −B,

Iz = Q− 1

2
Y,

(1.4)

so conjugation of these numbers is obvious in this notation. Charge conjugation is not
an exact symmetry of nature, which was proved in the experiment [6], which observed
inverted helicity of positrons with respect to electrons coming from muon decays.

A third operation, known as time reversal T , leads to the inversion of the time com-
ponent in wave functions, but the corresponding operator is anti-linear and anti-unitary.
Invariant quantities under its action are helicity σ̂ · p̂ and position r̂, while momentum p̂,
orbital angular momentum L̂ and spin σ̂ are inverted. Most of the other observables are in
fact left unchanged. Its anti-unitarity eliminates the possibility of a conservation law, but
squared time reversal TT leads in fact to the law of conservation of statistics. The proof
can be found, for example, in [3].

Moreover, action of discrete operators can be joint, so that more complex symmetries
can be studied as well. The most important for todays understanding of Standard Model
physics is CPT symmetry, which still seems to be an exact symmetry of nature. The most
constraining results are extracted from neutral kaons systems and can be found in [7]. The
greatest importance for this thesis, however, will have a CP transformation, being under
the constant examination since 1960s. It will be discussed more extensively in the next
subsection. T symmetry violation was shown for B0 system by BaBar collaboration [8],
while no violation was noticed for K0 system by KLOE-2 collaboration (preprint of [9]
submitted to peer-review).

1.2 CP violation in quark sector

CP transformation is a sequential action of parity and charge conjugation operators on
a quantum state. From a classical intuition there is no reason for the violation of this

6

6:1967093830



symmetry and this is proved for strong interactions and electromagnetism. First premises
about its breaking came by studies of β-decay:

n → p+ e− + νe, (1.5)

for which experimentally found weak interactions’ strength was systematically smaller
than for purely leptonic one:

µ → e+ νe + νµ. (1.6)

Proof of CP symmetry violation was, however, established in the experiment of James
Cronin and Val Fitch (1964) regarding neutral kaons [10], for which the Nobel Prize 1980
was awarded.

The first theoretical description approach was taken in 1963 by Nicola Cabibbo through
the assumption of a so-called Cabibbo matrix in [11], which lead to (u,d,s) quark dou-
blets with mixed down and strange quarks in the second component. It fixed the problem
with Fermis constant incompatibility within the theory, but generated the problem of non-
observed flavor changing neutral current in weak interactions. It exposed itself in strange
mesons’ branching ratios’ asymmetry:

BR[K+ → π+ + ν + ν]

BR[K+ → π0 + µ+ + νµ]
≤ 10−5. (1.7)

The problem was finally resolved by the introduction of c quark (charm) by Glashow, Il-
iopoulos and Maiani in 1970 [12], known as GIM mechanism, which existence was proved
by observation of J/Ψ meson in SLAC [13] and BNL [14]. Formally, GIM allowed a cre-
ation of two quark doublets consisting of (u,d) and (s,c). This theory, however, could not
lead to CP violation - it was explained by a more general CKM formalism presented in
[15].

A way to reproduce the result is to use Yukawa terms LY from Standard Model La-
grangian as was presented in [7],

LY = −Y d
ijQ

I
Liφd

I
Rj − Y u

ijQ
I
Liεφ

∗uI
Rj + h.c, (1.8)

whereQI
L stands for left-handed quark doublets, dIR and uI

R for right-handed quark singlets,
Y d,u are 3 × 3 complex matrices, φ is a Higgs field generating mass for quarks through
spontaneous symmetry breaking, ε - the antisymmetric 2 × 2 tensor and i(j) ∈ 1, 2, 3

are indices enumerating rows and columns of multiplied tensors. Finally, this is the form
in weak interactions eigenbasis. By unitary transformations it can be changed to mass
eigenbasis, where Y d,u are diagonalized to the forms of mass matrices Mu,d,

Mu,d = V u,d
L Y u,dV u,d†

R (v/
√
2), (1.9)

7
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where V u,d
L(R) are basis transformation matrices for left- and right-handed representations

respectively and v stands for a scalar field from Higgs field’s vacuum expectation value.
Considerations can be extended to Weak Interaction terms for charged currents, where
transformation matrices act on W+,− gauge fields and the final coupling between left-
handed physical quark fields in this basis is not diagonal, but has the form:

Lcc =
−g√
2

(
uL cL tL

)
γµW+

µ VCKM

dL

sL

bL

+ h.c, (1.10)

where γµ are the 4× 4 Dirac’s matrices, g stands for the coupling constant of Weak Inter-
actions and (uL, dL, sL, cL, tL, bL) are the left-handed quark mass states. The new matrix
is defined as:

VCKM = V u
L V

d†
L =

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

 . (1.11)

It is called the CKM matrix (Cabibbo-Kobayashi-Maskawa) and belongs to SU(3) group.
Basically, it mixes quark families between each other, but at a glance it is not apparent how
CP violation appears here and a few more steps are needed.

The most general complex 3×3matrix can be parametrized by 9 moduli and 9 complex
phases (due to the exponential form of complex numbers), while the unitarity conditions
absorb 6 moduli and 3 phases. At this point, there are still 3 moduli and 6 phases left as
free parameters. Another 5 complex phases can be deleted by the redefinition of quark
fields by U(1) transformations:

qL → eiφqqL, (1.12)

where qL = uL, dL, sL, cL, tL, bL. This action leaves the matrix with 3 moduli and
1 complex phase as free parameters, so that the CKM matrix can be decomposed into:

VCKM =

1 0 0

0 c23 s23

0 −s23 c23


 c13 0 s13e

−iδ

0 1 0

−s13e
iδ 0 c13


 c12 s12 0

−s12 c12 0

0 0 1

 , (1.13)

where sij = sin θij , cij = cos θij , θij is a mixing angle between i-th and j-th quark family
and δ stands for the resting phase. Phase will contribute to a transformed wave function,
which is a reason of direct CP symmetry breaking. This theoretical result could explain this
effect in kaon decays observed in the experiment described in [10], as it acts in the quark
sector. Direct and more appropriate formalism will be defined and discussed extensively
in the next subsection.
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Measurements of matrix elements were being done in the experiments for last few
decades. The most recent result from PDG fit ([7]) is:

sin θ12 = 0.2250± 0.00067, sin θ13 = 0.00369± 0.00011,

sin θ23 = 0.04182+0.00085
−0.00074, δ = 1.144± 0.027.

(1.14)

It can be noticed, that mixing between different families have different strengths, so that
possible observation of CP violation in quark compounds is connected with the weaken-
ing of a probability amplitude by all trigonometric functions. Experimentally, this fact
states a serious obstacle, as is directly connected with low branching ratios and makes the
requirement for a very careful analysis due to low statistics.

The most important example of CP violation for this thesis are kaons, whose contri-
bution will be explained deeply in the next subsection as well.

1.3 Strange mesons in the context of CPV

Kaons are one of the most iconic examples of complex particles, which were discovered
in 1947 in cosmic rays ([16]). Their unexpected behavior, different from other particles
known at that time, allowed to state a hypothesis about an existence of strange quark,
which became an inevitable supplement to the early theory of quarks created by M. Gell-
Mann and independently by G. Zweig. Moreover, it introduced a new quantum number,
strangeness, as well.

Group theory approach to find dependencies between particles properties gave a pos-
sibility to organize them using a so-called „eightfold way”, which through isospin I , hy-
percharge Y and strangeness S led to nontrivial predictions about particles consisting of
quarks. Moreover, SU(3) hypothesis to describe their interactions became a base for the
future QCD theory, while the „eightfold way” stays only an approximation.

The topic of the thesis is focused on considerations about neutral kaons, which are
produced through strong interactions with |K0〉 and |K0〉 being their eigenstates. Thus,
the initial state of kaon is described by the mixture:

|K(0)〉 = a(0) |K0〉+ b(0) |K0〉 , (1.15)

where a(0) and b(0) are the initial probability amplitudes for neutral and anti-neutral com-
ponent, respectively. Moreover, CKM formalism and quark flavor changing show, that
kaonic beam will always undergo the equalization of K0 and K0 abundances. This pro-
cess is called strangeness oscillations and is described by the box diagram visible in Fig. 1,
which is a direct implication of quark families mixing.

9
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Fig. 1: Box diagram describing strangeness oscillations.

Moreover, kaon propagating in its proper time t can decay into multiple final states.
However, due to creation time much shorter than propagation, description of this system
can be narrowed down to a subspace of {K0, K0}, which is known as Wigner-Weisskopf
approximation. Now the total Hamiltonian of the evolution amplitudes can be represented
by a Schrödinger equation:

i
∂

∂t

(
a(t)

b(t)

)
= H

(
a(t)

b(t)

)
, (1.16)

where the effective Hamiltonian H is a complex 2 × 2 matrix, but due to approximation
its hermiticity is lost. It can be decomposed into:

H = M− i

2
ΓΓΓ, (1.17)

where M stands for an actual mass matrix and ΓΓΓ for a decay matrix, both hermitian,
however, multiplication by −i/2 introduces anti-hermiticity to − i

2
ΓΓΓ. The connection of

this effective expression and the general Hamiltonian of a system, which has the form
H = H0+Hweak, is given by the perturbation theory. In this notation H0 governs EM and
strong interactions, while Hweak is responsible for the weak ones, thus, due to the much
smaller strength of the weak sector, it can be treated as a perturbation. An actual form of
the connection is not needed for further discussion, but can be found in [17].

Generally, H can be represented in a form:

H =

(
H11 H12

H21 H22

)
, (1.18)

where indices 1 and 2 correspond to K0 and K0 respectively. Elements of H are complex,
so in the real domain there are 8 independent parameters - 7 observables and 1 arbitrarily
chosen, nonphysical phase. Their concrete configurations give predictions about behavior

10
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of certain symmetries:

H11 6= H22 ⇒ CPT violation,

|H12| 6= |H21| ⇒ T violation,

H11 6= H22 or H11 6= H22 ⇒ CP violation.

(1.19)

To check, however, CP symmetry violation quantitatively a set of appropriate measurable
parameters can be established. The first step is a diagonalization of H, giving the eigen-
values:

λS = mS − i
ΓS

2
,

λL = mL − i
ΓL

2
,

(1.20)

where mS,L and ΓS,L are the masses and decay widths of both eigenstates respectively.
As these are the stationary states, time evolution multiplies them by a scalar exponential.
In fact, they can be noted in a mass basis, i.e. {K0, K0},

|KS〉 =
1√

2(1 + |εS|2)

[
(1 + εS) |K0〉+ (1− εS) |K0〉

]
,

|KL〉 =
1√

2(1 + |εL|2)

[
(1 + εL) |K0〉 − (1− εL) |K0〉

]
.

(1.21)

This form is especially useful to describe CP symmetry violation, as εS,L are small, com-
plex parameters introducing impurities due to this phenomenon. By convention, however,
their linear combinations are preferred:

ε =
εS + εL

2
, δ =

εS − εL
2

, (1.22)

and moreover they can be represented by H elements in a way:

ε =
H12 −H21

2(λS − λL)
,

δ =
H11 −H22

2(λS − λL)
.

(1.23)

Off-diagonal terms of H are phase dependent, so ε is not defined uniquely.
Before the measurements, a certain convention of phase value has to be adapted. After

some manipulations, included in [17], it can be found, that:

4<ε ≈ |H12|2 − |H21|2

|H12|2 + |H21|2
, (1.24)
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where phase independence makes it a physical quantity. Finally, experimentally useful
relations can be stated basing on derived parameters:

δ 6= 0 ⇒ CPT violation,

<ε 6= 0 ⇒ T violation,

<ε 6= 0 or δ 6= 0 ⇒ CP violation.

(1.25)

Additionally, H can be parametrized with 7 observables: 4 in complex eigenvalues λS,L,
2 in the complex parameter δ and 1 as the real part of ε.

Moreover, another phenomenon having an impact on further analysis can be described
for strange mesons. Regeneration effect is caused by KL interacting with the atoms of the
material it flies through. KL then has a non-zero probability to become a KS . The first
observation is described in [18].

1.4 Decays of correlated kaons

For the purposes of this thesis, a system of correlated kaons has to be explained. It
appears, that kaon pairs can be produced in strong decays of light, unflavored mesons,
especially φ(ss) characterized with (data taken from [7]) JPC = 1−−, S = 0, a mass:

mφ = (1019.461± 0.016) MeV/c2, (1.26)

and:
BR(φ → KSKL) = (33.9± 0.4)%. (1.27)

Properties of φ meson actually narrow down the possibilities of produced kaons to two
cases:

|K0(+p)〉 |K0(−p)〉 ,

|K0(+p)〉 |K0(−p)〉 ,
(1.28)

where momentum p is in CM frame of φ. It can be shown, however, that an initial state of
propagation coming from the decay of vector mesons is ([17]):

|i〉 = N√
2
[|KS(+p)〉 |KL(−p)〉 − |KL(+p)〉 |KS(−p)〉] , (1.29)

with the normalization constant:

N =

√
(1 + |εS|2)(1 + |εL|2)

1− εSεL
. (1.30)

The probability amplitude of the decay into final states f1 and f2 can be calculated
using standard rules of quantum mechanics. Firstly, the initial state is transformed using

12
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continuous time evolution and finally the amplitude is determined as:

A(f1, t1; f2, t2) =
N√
2

[
〈f1|Ŝ|KS〉 〈f2|Ŝ|KL〉 e−iλSt1e−iλLt2

−〈f1|Ŝ|KL〉 〈f2|Ŝ|KS〉 e−iλLt1e−iλSt2

]
,

(1.31)

where t1(2) indicate the proper time of a given kaon and Ŝ - a scattering matrix. According
to [17], the double differential decay rate integrated over t1+t2 for Eq. (1.31) in the function
of ∆t = t2 − t1 is:

I(f1, f2; ∆t) =
C12

ΓS + ΓL

[
|η1|2e−ΓL∆t + |η2|2e−ΓS∆t

−2|η1||η2|e−
ΓS+ΓL

2
∆t cos [∆m∆t+ φ2 − φ1]

]
,

(1.32)

valid for ∆t ≥ 0, while for ∆t < 0 substitutions ∆t → |∆t| and 1 � 2 have to be applied.
The parameters are equal to:

ηi = |ηi|eiφi =
〈fi|Ŝ|KL〉
〈fi|Ŝ|KS〉

,

C12 =
|N |2

2
| 〈f1|Ŝ|KS〉 〈f2|Ŝ|KL〉 |2.

(1.33)

In Eq. (1.32) a term proportional to trigonometric contribution is called an interference
term, which leads to the characteristic correlation between two kaon decays. The mathe-
matical form of the interference function is, however, arbitrary on the level of parametriza-
tion. For the special case of KSKL → π+π−π0π0 decay analyzed in these studies, the
conventionally used parameter to measure the level of direct CP symmetry violation is
ε′/ε. This type of breaking is interpreted as the direct decays of CP -even states into CP -
odd ones and vice versa, which should be forbidden. For the completeness, the indirect
one (ε 6= 0 is tied with the non-existence of a common eigenbasis of H and CP operators,
so it has to occur every time, if the linear algebra is correct. Connection of ε′/ε with ηi is
given by:

η+− = |η+−|eiφ+− = ε+ ε′,

η00 = |η00|eiφ00 = ε− 2ε′,
(1.34)

13
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and using it Eq. (1.32) can be transformed in a more suitable form for CP violation mea-
surement in KLOE experiment, which is:

I(f1, f2; ∆t ≥ 0) =

C12
|ε|2

ΓS + ΓL

[
(1 + 2Re(ε′/ε))e−ΓL∆t + (1− 4Re(ε′/ε))e−ΓS∆t

−2e−
ΓS+ΓL

2
∆t((1− Re(ε′/ε)) cos (∆m∆t) + 3Im(ε′/ε) sin (∆m∆t))

]
.

(1.35)

depending explicitly on ε′/ε - derivation is available in Appendix A. Level of symmetry
violation is connected with these parameters and is visible through the shape of a graph
shown in Fig. 2. Interference can be noticed around ∆t = 0, where τS = (8.954±0.004) ·
10−2 ns is a mean lifetime of KS . Number of events drops exactly in the center and then,
around |∆t| ∼ 5 τS , reaches maximal values.

Fig. 2: Graph of Eq. (1.35) with recent parameters from [7] equal toRe(ε′/ε) = 1.66·10−3

and Im(ε′/ε) = −1.97 · 10−3. Due to non-zero Im(ε′/ε) the maxima around |∆t| ∼ 5 τS
are not symmetric.

The actual asymmetry of peaks is connected with a non-zero Im(ε′/ε), so could indi-
cate, as will be discussed later, the violation of CPT symmetry. Finally, all of the branching
ratios for the considered decays are shown in Table 1. Thus, jointly with Eq. (1.27), the
total event’s branching ratio is equal to:

BR(φ → KSKL → π+π−π0π0) ≈ 0.04%, (1.36)
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which shows how precise should be the measurements of CP violation in strange mesons’
systems.

Decay channel Value [%] Error [%]

BR[KS → π0π0] 30.69 0.05

BR[KS → π+π−] 69.20 0.05

BR[KL → π0π0] 0.0864 0.0002

BR[KL → π+π−] 0.197 0.001

Table 1: Branching ratios of the considered decays. Details can be found in [7].

1.5 Experimental results in the field

As was said before, CP violation in neutral mesons systems stays under a constant study
for last over 60 years. Due to its long history, it is important to build a base of results and
approaches used before to compare with final results. Here only the experiments taken for
the average and fit of Re(ε′/ε) and Im(ε′/ε) by PDG are taken into account. Values of
mentioned parameters are collected in Table 2.

Re(ε′/ε)× 10−3 Im(ε′/ε)× 10−3 Collaboration

0.74± 0.52± 0.29 − E731 [19]

2.30± 0.65 − NA31 [20]

1.47± 0.22 − NA48 [21]

1.92± 0.21 −1.72± 2.02 (not assuming CPT) kTeV [22]

1.68± 0.20 − PDG average [7]

1.66± 0.23 −1.92± 1.92 (not assuming CPT) PDG fit [7]

Table 2: Results of previous experiments taken for PDG average and fit. PDG fitted values
will be used in all calculations.

Re(ε′/ε) and Im(ε′/ε) determined in kTeV was actually a result of second analysis,
first one is available in [23], but used only half of the available collected data. PDG fit,
being a combined result, took into account both Re(ε′/ε) and Im(ε′/ε), so it will be used
as the reference point of a whole analysis.

Most of the previous approaches were based on the collision of hadrons accelerated
in the attached collider with a static target. There, through strong interactions, a beam of
kaons and anti-kaons was produced, but a propagation extending over τS left it in the state
of a pure KL beam. KS therefore was produced through regeneration on another target,

15

15:5221336185



so that products of two beams, one consisting of KS and one of KL, were registered in
the detectors. In this context KLOE can be described as a novel approach to this topic,
where regeneration is treated as a background, rather than a source of measured quantities.
It is believed to be a more convenient approach, as regeneration is in fact a complicated
process, which could introduce subtle, unforeseen impact on the final result. Absolute
uncertainties of Re(ε′/ε) for all the experiments stay at the order of, 10−4 and KLOE
was designed to reach such level of precision ([24]). Predicted value of Re(ε′/ε) minimal
statistical uncertainties basing on MC-MC fit (described extensively in [1]) can be seen in
Fig. 3.

Fig. 3: Prediction of minimal uncertainties of Re(ε′/ε) determination. Analysis was
done on Monte Carlo reconstructed events, so determination of errors without selection
used the total sample before cut analysis, while after selection - with cuts imposing signal
hypothesis. Plot adapted from [1].

It can be seen, that all the experiments, besides kTeV collaboration, did not determine
Im(ε′/ε) at all. Instead, CPT symmetry was qualified as a fundamentally conserved sym-
metry during the analyses, which implicated Im(ε′/ε) = 0. KTeV experiment, however,
decided to lead two analyses, one assuming CPT symmetry conservation and the other
without this premise. This constituted the first measurement of Im(ε′/ε) parameter, but its
precision stays at the level of 100% relative uncertainty. Using the interference function in
KLOE it is a natural step to fit it leaving Im(ε′/ε) as a free parameter giving a possibility
to study CP violation fully, which makes it a first approach to determine both parameters at
once. Similar plot as before, involving absolute uncertainty of Im(ε′/ε) visible in Fig. 4.
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Fig. 4: Prediction of minimal uncertainties of Im(ε′/ε) determination. Analysis was
done on Monte Carlo reconstructed events, so determination of errors without selection
used the total sample before cut analysis, while after selection - with cuts imposing signal
hypothesis. Plot adapted from [1].

2 Experimental setup

Before getting into the details on the analysis, it is worth to mention the structure of
a used experimental setup. This section will be divided into three parts describing the
DAΦNE e+e− collider, KLOE detector used in 2005-2006 operation and upgrades made
for 2014-2018 data collection.

2.1 DAΦΦΦNE accelerator

Titular electron-positron collider is placed in Laboratori Nazionali di Frascati INFN
and belongs to the separate class of synchrotrons named Φ-factories. A scheme of the
complex with detailed naming of system’s elements is visible in Fig. 5. An electron beam
up to 10 Awith 120 keV average energy is initially delivered from triode gun to the LINAC
and after ∼3 m of an accelerating section is focused by the magnetic quadrupoles to hit
the static target and produce positrons with an efficiency ∼0.9% ([26]). Positrons are
collected by electromagnets, the second beam is formed and accelerated up to 550 MeV.
At the same time, the e− beam reaches the energy of around 800MeV and finally both enter
the accumulator, which is the intermediate step before the injection into the main rings.
The energy of each beam is adjusted to ∼510 MeV, which states the most optimal situation
for φ meson production in CM frame for two opposing beams it corresponds to φ meson’s
mass. Finally, beams are injected into the actual DAΦNE rings, where the collision was
allowed in the interaction region inside the KLOE detector with the crossing angle of
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Fig. 5: Complex of Φ-factory with detailed elements. The system is adjusted to√
s ≈ 1020 MeV corresponding to the mass of φ meson. Scheme available in [25].

25 mrad. According to Eq. (1.27) production of φ meson gives an actual opportunity to
study correlated kaons and possible CP violating events.

More technical details of the accelerator complex along with the documentation can
be found on webpage in [26].

2.2 KLOE detector

The main tool used for the measurements was KLOE detector, which had a multi-layer
construction visible in Fig. 6 revealing the y-z plane. For the completeness, z-axis is par-
allel to the beam pipe, x-axis is perpendicular to it and horizontal, while y-axis is verti-
cal. KLOE can be divided in two main parts: drift chamber (DC) and electromagnetic
calorimeter (EMC). Due to the requirement of ∆t measurement being at the order of τS ,
innovative solutions were applied to reach needed resolutions to resolve a structure near
∆t = 0. The properties of each element will be described in the following paragraphs.

2.2.1 Interaction Point (IP)

KSKL pairs are produced in the IP (close to the geometrical center of a detector), but
to reach the drift region one has to pass the beam pipe and the inner wall of DC, mostly
KL due to long mean decay length of ∼340 cm (in [7]). Exactly here importance have
the regeneration. Formally, for KLOE it gives KSKL → KSKS → π+π−π0π0 decay, so
although the products are the same as expected, there is no CP violation engaged. Finally,
it constitutes one of the background components for the further analysis and has to be
minimized by the construction of a beam pipe and DC themselves.
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Fig. 6: Scheme of KLOE detector with denoted dimensions and the components on y-z
plane. Image adapted from [25]

Beam pipe, visible in Fig. 7, of a 10 cm radius centered at IP has a thickness 500µm and
is made out of 62% beryllium and 38% aluminum alloy. Regeneration strongly depends
on the distance flown in the material, so the shape of a beam pipe around IP is spherical
to minimize it. These properties reduce the impact of regeneration and, moreover, decay
length ofKS (∼0.6 cm) ensures, that it stays inside the spherical region. As was mentioned
before, regeneration can occur at the inner wall of DC [27], as well it is placed at the radius
25 cm from the IP and has layers of 750 µm thick carbon fiber and 150 µm thick aluminum.

Fig. 7: Construction of a spherical beam pipe around IP. Image adapted from [28].
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2.2.2 Drift chamber

It is a main part of the system, allowing the precise measurement of vertex position and
momenta of charged products of kaon decays. Geometrically, it has a shape of a cylin-
der with 4 m diameter and 3.3 m length, which were chosen due to the mentioned large
mean decay length of KL. Moreover, due to EMC being at the boundary, DC has to be
transparent to all neutral particles to let them reach the calorimeter.

The principle of operation is based on the ionization of gas filling the chamber by
charged particles passing through the region. Actually, a gaseous mixture of 90% helium
and 10% isobutane playing a role of quencher is the active fulfillment. After a primary
ionization, due to the strong electric field close to the wires, an ionization cascade has
place and after approaching the wire a signal is detected. Position of a pass is given by
a time difference between signals in different wires, i.e., length from track to each wire
can be calculated. To provide a very good resolution of track reconstruction, KLOE use
∼52000 wires. Cells allowing measurement on x-y plane are visible in Fig. 8, while for
z-coordinate a mutual twist of wires was applied.

Fig. 8: Arrangement of x-y plane wire cells in the DC. Image adapted from [29].

To determine particles’ momenta, DC is placed inside a uniform magnetic field of
∼0.52 T directed along z axis and causing bending of trajectories due to Lorentz’s Force.
Basic quantities, due to cylindrical shape of DC, are RT (transverse radius), ϕ (azimuthal
angle), θ (polar angle), which give compact formulas for momentum:

px = qBRT cos (ϕ),

py = qBRT sin (ϕ),

pz = qBRT cot (θ),

(2.1)
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and as can be seen, x-y momentum value depends only on charge of particle q and magnetic
field B. KLOE DC allows measuring momenta with a relative resolution at the order of
∼0.3%. Vertex of origin of charged tracks is found using a tracking algorithm. It is based
on the determination of point of intersection of extrapolated tracks details are available in
[30].

Finally, it is worth mentioning, that KLOE DC was a state-of-the-art being the biggest
drift chamber in the world at the time of construction as well as at the moment of decom-
missioning. More information and details about calibration can be found in [27].

2.2.3 Electromagnetic calorimeter

It is third and the outermost element. Kinematics of neutral particles passing the DC is
not perturbed due to its high transparency. The task of EMC is, thus, to absorb them and
measure their energy with the resolution as good as possible. Most importantly, however,
as CPV events partially consist of KL → π0π0 → 4γ decays, EMC can detect localization
of absorbed photons and using them reconstruction of the vertex and finally time of flight
of KL is possible. The excellent time resolution of EMC is at the order of interference
function scale, so it gives a possibility to measure CP violation usingKSKL → π+π−π0π0.
An overview of EMC composed with KSKL → π+π−π0π0 event is visible in Fig. 9.

Fig. 9: x-y plane projection of EMC with a visible end cap in front and a barrel-shaped
part surrounding it. Image adapted from [24].

EMC consists of two main parts: 4.3 m long cylindrical barrel parallel to z axis made
from trapezoidal blocks of scintillating fibers submerged in epoxy between 0.5 mm thick
lead foils and two end caps of a rectangular cross-section covering x-y plane both visible
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in Fig. 6. Their overlap creates almost 4π detector with an only dead part around the beam
pipe to register these particles, QCAL detector was included (not used in the analysis of
this thesis). Collection of secondary photons was realized using light guides, for which
the measured efficiency was better than 80 %, ending with photomultipliers. To protect
them from the impact of the magnetic field, cavities in pole pieces were placed reducing
the component transverse to photomultipliers to about 0.07 T. [24]

Reconstruction of photon showers starts with a clustering algorithm determining, which
fibers were activated by the same particle entering the active region. Resolution of a read-
out in x-z plane gives ∼1.3 cm, which corresponds to the shower size [24]. Energy reso-
lution was determined by the use of minimum ionizing particles and EM showers, while
calorimeter timing was calibrated using cosmic rays and radiative events (Bhabha scat-
tering, 2γ and φ decays). Final resolutions for both energy and time used in the further
analysis are [24, 29]:

σE/E = 5.7%/
√
E(GeV), σt = 54 ps/

√
E(GeV)⊕ 50 ps, (2.2)

and high efficiency of energy reconstruction is set to be above 20 MeV for a cluster.
More technical details, a specified description of electronics used in a read-out and

measurements of resolutions are available in [24, 29].

2.3 KLOE-2 upgrades

KLOE experiment worked in two stages, 2001-2002 and 2004-2005, when it collected
a total integrated luminosity of 2.5 fb−1. A second experiment, however, was planned
to reach even higher luminosity to increase statistics and improve the detector. KLOE-
2 collaboration was collecting the DATA in a term 2014-2018 and got the luminosity
of 5 fb−1. The detector was enriched with a gas-electron multiplier part ([31]) placed
between the spherical beam pipe and the inner wall of the DC and playing the role of
an Inner Tracker. IT had the task to register decays close to IP and include them in the
analysis, which was not possible in KLOE. Moreover, an improved QCAL detector ([32])
was developed to register particles directed in the dead angle of a beam pipe, along with
new crystal ones (CCALT) described in [33]. KLOE-2 DATA are not used in the analysis
of this thesis, description was included for the completeness.

3 Measurement principle

Before the actual analysis, an idea of a measurement and all assumptions taken for
the selection of channels and determination of the final quantity have to be established.
In this section the control samples definition will be given along with a general outline of
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an algorithm for their selection. Moreover, the significant differences between efficiency
determined from Monte Carlo and from collected DATA will be a foundation of the deter-
mination of a correction factor, which will be used to improve the final result of Re(ε′/ε)
and Im(ε′/ε).

3.1 Significance of control samples in the context of CPV studies

Measurements of CP violation in KSKL → π+π−π0π0 channel need an increased preci-
sion due to very low abundance of such events in the collected Data vide Table 1. Actually,
measurement path can be divided into a few steps:

1. Reconstruction of physical quantities using initially filtered events.

2. Selection under the hypothesis of KSKL → π+π−π0π0 channel step fulfilled in [1].

3. Subtraction of resting background from the resulting spectra.

4. Correction of the obtained distribution by KSKL → π+π−π0π0 selection efficiency
ε(∆t) to get the expected signal’s spectrum.

5. Fit of Eq. (5.10) by minimizing χ2 between ∆t distributions first one obtained from
DATA and second one being reconstructed MC, which is weighted with mentioned
Eq. (5.10) (method described in details in [1])

6. Determination of uncertainties and values of Re(ε′/ε) and Im(ε′/ε).

This thesis focuses on the proper determination of efficiency to get the most reliable result
of Re(ε′/ε) and Im(ε′/ε) in the end of the analysis.

In this context, efficiency is defined in the function of ∆t by:

ε(∆t)i =
N sel

i

N tot
i

, (3.1)

where i = {K → π+π−, K → π0π0} enumerates the channel and sel (tot) indicates
a number of selected (total) events for i-th channel, respectively. By default, to avoid
additional indices, every ε(∆t)i, N sel

i and N tot
i is actually calculated for the given bin of

∆t distribution. To determine it one can directly use Monte Carlo (will be further used as
ε(∆t)MC

i ) as it fully describes predicted channels and effects with luminosities known from
the actual measurements and with respect to the knowledge available at the moment of its
creation. The very last part constitutes the most serious flaw of this approach - possible
impact of earlier wrong expectations on the current measurement.

For the special case of KLOE experiment, however, it is possible to fix it using DATA,
which brings the actual physical information about the numbers of events. Practically,
KSKL → π+π−π0π0 consists of two differently reconstructed parts: K → π+π− and the
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ones decaying into K → π0π0. Thus, two separate situations have to be considered - they
are visible in Fig. 10.

(a)

(b)

Fig. 10: Visualization of two possible signal events. In the analysis, identical decays of
KS and KL are mixed, but separation is needed to choose control samples, which will be
used to fix MC efficiency.

Worth mentioning is the fact, that there is no assignment of K to KS and KL - due to
Table 1 they should be mixed in both charged and neutral decays. The main goal is to
find correction factor from DATA to both charged and neutral parts, but using so-called
control samples. The corrected efficiency then is defined as:

ε(∆t)corr = f(∆t)× ε(∆t)MC, (3.2)

where f(∆t) is a correction factor - will be defined in more detail in next subsection. Such
an approach is based on an assumption, that decays’ probabilities of K → π+π− are totally
independent of K → π0π0, thus mathematically their branching ratios are multiplicative
and allow constituting a single factor.

Control samples mentioned earlier are subsamples of available DATA, which can be
used to calculate a correction factor independently of KSKL → π+π−π0π0 events. The
actual three decay channels were chosen and are listed in Table 3 along with their branching
ratios.

As can be seen, KSKL → π+π−3π0 provides only KS → π+π−, but is abundant in
DATA. To get KL → π+π−, a CPV violating channel KSKL → π+π−π+π− is chosen as
well. Moreover, KSKL → π±l∓νπ0π0 fulfills KS and KL decays simultaneously. Finally,
they are being selected using a following algorithm:
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Decay channel BR [%] Tagging part Signal-like part

KSKL → π±l∓νπ0π0 20.74 K → π±l∓ν K → π0π0

KSKL → π+π−3π0 13.51 KL → π0π0π0 KS → π+π−1

KSKL → π+π−π+π− 0.14 K → π+π− K → π+π−2

Table 3: Chosen decay channels used for the determination of control samples.

1. Choice of channel in which one decay branch is identical to signal’s.

2. Independent reconstruction of both charged and neutral branches to avoid their mu-
tual correlations

3. Selection of a chosen channel basing on kinematics constraints and topology of an
event, but imposing cuts only on the tagging part.

4. Imposing selection under signal hypothesis on the signal-like part basing on [1].

The independence of reconstruction between two decay branches is crucial - it removes
correlations, so finally an obtained signal-like sample does not depend on cuts of a tagging
part and can serve as the estimation of KSKL → π+π−π0π0 events. Having the algorithm
fulfilled, it is possible to calculate correction factor.

3.2 Correction factor determination method

Before approaching the correction factor f(∆t), the properties of general efficiency
calculation have to be established. Starting with a case of Monte Carlo events, the formulas
for both decays of kaons can be written explicitly as:

ε(∆t)MC
K→π+π− =

N sel
K→π+π−

N tot
K→π+π−

,

ε(∆t)MC
K→π0π0 =

N sel
K→π0π0

N tot
K→π0π0

,

(3.3)

and if these selections were performed independently and decays are not correlated, the
total efficiency for KSKL → π+π−π0π0 can be calculated as a multiplication. This is not
the case for the directKSKL → π+π−π0π0 selection, because the reconstruction method of
neutral vertex (i.e., K → π0π0) uses direction and magnitude of K → π+π− momentum,

1Decay close from IP
2Decay far from IP
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so introduces dependence between both vertices (method described in details in Appendix
BAppendix B). Thus, the final formula for ε(∆t)MC

KSKL→π+π−π0π0 is:

ε(∆t)MC
KSKL→π+π−π0π0 =

N sel
KSKL→π+π−π0π0

N tot
KSKL→π+π−π0π0

. (3.4)

Approach with the independent selection, however, has an application for control samples.
As was mentioned in the previous subsection, after selection of a control sample channel,
the signal selection for K → π+π− or K → π0π0 is imposed on it. To make it clear, the
algorithms for both signal-like parts are described explicitly in Table 4 and Table 5. It has
to be denoted, that N tag

K→π0π0 consists of two possible combinations of decays: KSπ
±l∓ν

and KLπ
0π0 or the other way around, similarly for N tag

K→π+π− . Due to this fact, the propor-
tions of both tagging decays have to be estimated to properly assign branching ratios for
expected decays - they are called pi, where i = 1, 2, 3, 4, and are equal to:

p1 =
BR[KS → π±l∓ν]

BR[KS → π±l∓ν] +BR[KL → π±l∓ν]
≈ 0.18%,

p2 =
BR[KL → π±l∓ν]

BR[KS → π±l∓ν] +BR[KL → π±l∓ν]
≈ 99.82%,

p3 =
BR[KS → π+π−]

BR[KS → π+π−] +BR[KL → π+π−]
≈ 99.72%,

p4 =
BR[KL → π+π−]

BR[KS → π+π−] +BR[KL → π+π−]
≈ 0.28%,

(3.5)

Signal-like K → π0π0

Decay KSKL → π±l∓νπ0π0

1. Tagging part
selection N tag

K→π0π0

2. Expected number of
signal-like events

N exp
K→π0π0 =

Ntag
K→π0π0 × (p1BR[KL → π0π0] + p2BR[KS → π0π0])

3. Signal-like part
selection N sel

K→π0π0

4. Determination of efficiency ε(∆t)DATA
K→π0π0 = N sel

K→π0π0/N
exp
K→π0π0

Table 4: Algorithm to determine efficiency of K → π0π0 using KSKL → π±l∓νπ0π0 con-
trol sample.

Branching ratios used in the algorithms to determine expected numbers of events for
semileptonic case are equal to [7]:

BR[KS → π±l∓ν] ≈ 0.12%,

BR[KL → π±l∓ν] ≈ 67.59%,
(3.6)
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Signal-like K → π+π−

Decay KSKL → π+π−3π0 KSKL → π+π−π+π−

1. Tagging part
selection N tag

KS→π+π− N tag
K→π+π−

2. Expected number of
signal-like events

N exp
K→π+π− =

Ntag
KS→π+π− ×BR[KS → π+π−]+

Ntag
K→π+π− × (p3BR[KL → π+π−] + p4BR[KS → π+π−])

3. Signal-like part
selection N sel

KS→π+π− N sel
K→π+π−

4. Determination of efficiency ε(∆t)DATA
K→π+π− = (N sel

KS→π+π− +N sel
K→π+π−)/N

exp
K→π+π−

Table 5: Algorithm to determine efficiency of K → π+π− using KSKL → π+π−3π0

and KSKL → π+π−π+π− control samples. It is important to pay attention, that
from KSKL → π+π−3π0 only KS → π+π− quantities are determined, while for
KSKL → π+π−π+π− for total K → π+π−.

while rest can be found in Table 1. It has to be said, however, that N sel
K→π0π0 is found

imposing cuts under signal hypothesis, but only on neutral part. Thus, for N sel
K→π+π− and

N sel
KS→π+π− only cuts tied with charged part are used. They do not include, however, the

ones connected with the kinematic fit under signal hypothesis, as it correlates both parts
of the event. It is assumed, that all selection conditions are independent of each other, so
the calculation of f(∆t) can be done at the earlier stage. Under this assumption f(∆t)

could be applied to the actual MC efficiency with all the cuts involved.
Efficiencies for K → π+π− and K → π0π0 are in principle mutually independent, as

they are calculated from independent control samples. This allows to calculate a total
efficiency as:

ε(∆t)DATA
KSKL→π+π−π0π0 = ε(∆t)DATA

K→π+π− × ε(∆t)DATA
K→π0π0 , (3.7)

and simultaneously for Monte Carlo with the use of the control samples as:

ε(∆t)MC
KSKL→π+π−π0π0 = ε(∆t)MC

K→π+π− × ε(∆t)MC
K→π0π0 , (3.8)

Having it determined, the final step is to calculate a proper correction factor using the
formula:

f(∆t) = ε(∆t)DATA
KSKL→π+π−π0π0/ε(∆t)MC

KSKL→π+π−π0π0 , (3.9)

which is the result of this thesis.
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4 Determination of control samples and results

In the following section, firstly I focus on the specification of data sets used in the anal-
ysis, along with applied filtering algorithms. Moreover, the choice of selection conditions
for control samples is justified and finally cuts under the signal hypothesis are imposed.
Finally the correction factor f(∆t) is determined.

4.1 Chosen decay channels for control samples

As was mentioned earlier, the total integrated luminosity of KLOE experiment was
2.5 fb−1 = 0.8 fb−1 + 1.7 fb−1 for runs 2001-2002 and 2004-2005, respectively. In this
thesis 2001-2002 run is not used due to its worse resolution quality, so all results are based
on 2004-2005 part. There are used Monte Carlo and collected DATA events corresponding
to run range 30300-41902. A plot revealing integrated luminosity collected for KLOE
experiment in successive years is shown in Fig. 11.

Fig. 11: Integrated luminosity for successive years of DAΦNE operation for KLOE ex-
periment. Figure adapted from [26].

The actual set of events used in the analysis corresponding to 1× luminosity for DATA
(1×1.7 fb−1×30% = 0.51 fb−1) and 2× luminosity for Monte Carlo (2×1.7 fb−1×70% =

2.38 fb−1) due to a generation providing greater statistics. The 30% and 70% factors are
due to the technical problem of accessing the tape library with DATA and MC samples at
the time of preparation of this thesis.
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To save disk space and provide preselected channels for specific analyses lead in KLOE
experiment, an initial filtering is applied. Events are assigned by ECL algorithm (Event
CLassification algorithm) to streams divided further into tagging sub-algorithms. Tech-
nically, they are sets of physical conditions, which maximize the probability, that a given
event has properties assumed in a tag. I take under consideration the KSL stream, which
is divided into:

• KSTAG ⇒ KL decay was detected,

• KLTAG ⇒ KS → π+π− decay was detected,

• KSNEUT ⇒ KS → π0π0 decay was detected,

• KLCRASH ⇒ KL in EMC interaction was found,

• KSEMIL ⇒ event is a candidate for KS → πlν decay,

• KLNEUT ⇒ KL → 3π0 decay was detected,

• INTERTAG ⇒ event is a good candidate for interferometric studies,

• KLPPPTAG ⇒ KL → π+π−π0 was found independently of KS.

If any of these tags is fulfilled for a given event, it is assigned to the KSL stream. The
detailed description of tagging algorithms, along with all physical constraints, can be found
in [34]. It is worth mentioning, that streams are not exclusive within their conditions, so a
given event can be assigned to a few streams.

4.2 Conditions of the selection

Before approaching the actual analysis, it is worth to define some quantities, which will
be used frequently. The first one is the 4-momentum of a particle used in a convention:

pn = (E(mn), ~pn),

E(mn) =
√

m2
n + ~p2n,

~pn = (pxn, p
y
n, p

z
n),

(4.1)

where ~pn stands for spatial momentum of n-th particle and E(mn) - for the energy of an n-
th particle with mass m. Masses of particles used during the studies are listed in a Table 6
[7].
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Mass Value [MeV/c2] Error [MeV/c2]

mφ 1019.461 0.016

mK0 497.611 0.013

mπ0 134.9768 0.0005

mπ± 139.57039 0.00018

Table 6: Masses of particles used during the studies. Values and uncertainties can be found
in [7].

Second aspect are the variables of registered EMC clusters. They can be uniquely
characterized via space-time 4-vectors:

Vcl,i =


Tcl,i

Xcl,i

Ycl,i

Zcl,i

 , (4.2)

where Tcl,i is a cluster time of i-th cluster, i.e. time passed since collision at IP until
activation of the i-th cluster, while ~Vcl,i = (Xcl,i, Ycl,i, Zcl,i) stands for the spatial position
of a cluster’s centroid with respect to the geometrical center of DC. Moreover, an energy
of a cluster is indicated as Ecl,i.

4.2.1 Reconstruction and selection of KSKL → π+π−π0π0 events

The basis of the studies is KSKL → π+π−π0π0 channel, which is reconstructed using
two main algorithms. First one is focused on the best choice of K → π+π− vertex, condi-
tions are shown below:

• at least 1 charged vertex in an analyzed event,

• exactly 2 tracks with opposite signs connected to the vertex,

• vertex, for which invariant mass of tracks is closest to mK0 , is chosen as the origin
of π+π−.

This method results in the reconstructed kaon’s 4-momentum prec
K→π+π− as a sum of two

reconstructed momenta under assumption of mπ± . The invariant mass spectrum is visible
for all considered channels in Fig. 12.

To improve the resolution of an energy, the hypothesis of 2 body decay, due toφ → KSKL,
can be used. This so-called boost method is derived in Appendix B and finally gives
pboost
K→π+π− , which is a starting point for the reconstruction of a neutral
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Fig. 12: Reconstructed invariant mass of K → π+π− using an algorithm described above.
Decays fulfilling the condition of 2 body decay are centered around mK0 .

K → π0π0 vertex. It is possible to determine a 4-momentum of K → π0π0 as:

pK→π0π0 = pφ − pboost
K→π+π− , (4.3)

using total 4-momentum conservation and worth mentioning is, that pφ is an average 4-
momentum determined run by run using Bhabha scattering events measured during the
calibration. Reconstruction of a neutral vertex is done using the time of flight algorithm
(details can be found in Appendix C) and the invariant mass of 4γ is visible in Fig. 13.

It can be seen, that for KSKL → π+π−π0π0 peak is centered around mK0 , but with
worse resolution, than for invariant mass of charged pions. For KSKL → π±l∓νπ0π0 it is
worth noticing, that even when it has a decay K → π0π0, a bad reconstruction of momen-
tum using an algorithm mentioned earlier has an impact on the determination of proper
clusters and its peak is shifted. Finally, kaons’ proper times at the moment of decay are
determined for both vertices and ∆t can be calculated all these variables are shown in
Fig. 14.

It can be seen, that the proper times are peaked around zero, but extend farther, be-
cause KS and KL are mixed in both charged and neutral decays. Interference pattern in
KSKL → π+π−π0π0 ∆t distribution is introduced directly via Eq. (5.10). Values of this
function act as weights for a given ∆t during filling of the histogram. Finally, it has to
be renormalized to the number of events of an initial, unweighted KSKL → π+π−π0π0
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Fig. 13: Reconstructed invariant mass of K → 4γ using time of flight algorithm. Decays
fulfilling the condition of 4γ hypothesis are centered around mK0 , but with worse resolu-
tion than in the minv

π+π− case.

histogram details can be found in [1]. It is not clearly visible in Fig. 14, because of a used
logarithmic scale.

For the completeness, it is worth mentioning, that after the reconstruction the kinematic
fit under the signal hypothesis is applied. It uses a least-squares method, described for
example in [35, 36], with 36 free parameters, among which are:

• curvature, azimuthal angle and cotangent of the polar angle of two charged tracks
(2× 3),

• Ecl,i, Xcl,i, Ycl,i, Zcl,i, Tcl,i for each photon (4× 5),

• Neutral vertex and IP coordinates (2× 3),

• 4-momentum of φ meson (1× 4).

Physical constraints are imposed via Lagrange multipliers for 10 conditions:

• time of flight of photons from neutral vertex to cluster’s centroid (4),

• 4-momentum conservation of a system (4),

• invariant mass of π+π− equal to mK0 (1),
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(a) Proper time of kaon from K → π+π−.
Due to much bigger abundance of
KL → π±l∓ν peak around zero is not
visible for KSKL → π±l∓νπ0π0.

(b) Proper time of kaon from K → π0π0.
KSKL → π+π−3π0 contains only KL →
π0π0, so the peak around zero is not visible.

(c) ∆t calculated from reconstructed kaons’ proper times. Minimum in the center of
KSKL → π+π−π0π0 is not visible due to limited resolution of reconstruction.

Fig. 14: Reconstructed kaons’ proper times at the time of decay and ∆t for all channels
taken for the analysis. Via (a) and (b) it can be seen, that both decays consist of a mixture
of KS and KL, which is predicted by corresponding branching ratios from Table 1.

• invariant mass of 4γ equal to mK0 (1).
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This kinematic fit is used both for the adjustment of the parameters and rejection of events,
which fulfill KSKL → π+π−π0π0 hypothesis the worst. In this thesis, however, only re-
constructed variables (kin. fit not in use) will be used to determine efficiencies, due to the
character of control samples, which require independence.

Finally, studies in [1] revealed the optimal cuts to use forKSKL → π+π−π0π0 selection
they are gathered in Table 7. For the purposes of this thesis, they could be divided into two
classes acting on K → π+π− or acting on K → π0π0. Conditions using fitted variables
are not involved here.

K → π+π− K → π0π0

|minv
π+,π− −mK0| < 1.2 MeV/c2 |minv

4γ −mK0 | < 76 MeV/c2

Qmiss < 3.75 MeV tr,sum > −1

cosαπ+π− < −0.8 (in CM frame of kaon) -

Table 7: Optimal cuts chosen under KSKL → π+π−π0π0 hypothesis (without fitted vari-
ables) can be found in [1].

απ+,π− stands for the angle between reconstructed charged pions’ tracks and tr,sum is
equal to:

tr,sum =
4∑

i=1

[
Tcl,i −

||~Vcl,i − ~Vneu||
c

− ||~Vneu − ~VIP||
vK

]
, (4.4)

where vK is a velocity of kaon decaying into K → π0π0. Moreover, considering K →
π+π−, Qmiss stands for the missing 4-momentum comparing reconstructed and corrected
via boost method 4-momenta of kaon, which can be expressed as:

Qmiss = ||prec
K→π+π− − pboost

K→π+π−||, (4.5)

and as it is calculated in Minkowski’s metric, it is a Lorentz invariant quantity.
After getting the proper overview of the signal selection, the corresponding control

samples can be considered.

4.2.2 Selection of KSKL → π±l∓νπ0π0 events

The first control sample taken into account is the one tied with KSKL → π±l∓νπ0π0

events. Tagging decay in this context is K → π±l∓ν and the signal-like is K → π0π0, so
this channel saturates all possible situations for the neutral part.

As was mentioned in the previous section, selection is divided into two stages: selec-
tion of a pure KSKL → π±l∓νπ0π0 sample using tagging decay’s properties and then im-
posing the conditions under the K → π0π0 hypothesis. It can be noticed, that the tagging
part is in fact a 3 body event, where the neutrino, due to its interaction cross-section, is not
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registered and flies away with a fraction of
√
s. It is especially visible in Qmiss. Charged

vertex here is chosen according to the method described in the last subsection. The inherent
sense of this variable in the context of semileptonic sample is tied with the assumption of 2
body decay, both in reconstruction of charged vertex and the boost method. The actual cut
was chosen by the use of a sampled plot of efficiency and purity for KSKL → π±l∓νπ0π0

decay actual spectra and plots can be seen in Fig. 15. The cut range is determined to:

|Qmiss − 71.13 MeV| < 25 MeV. (4.6)

so that every event beyond it is rejected. Purity along with the efficiency after this cut are
equal to:

Purity = 74.65%, εKSKL→π±l∓νπ0π0 = 27.14%. (4.7)

Another variable, which keeps information about 3 body decay in KSKL → π±l∓νπ0π0

is απ+,π− , i.e., angle between π+ and π− in the CM frame of kaon. For 2 body decay it
should be peaked at 180◦, as π+ and π− are kinematically identical, while for 3 body decay
it is shifted. The choice of cut is justified by efficiency and purity plots both distributions
and graphs for all channels are visible in Fig. 16. In this context, the cut range was chosen
as:

|απ+,π− − 145.8◦| < 10◦. (4.8)

so that every event beyond it is rejected. Purity along with the efficiency after this cut are
equal in the end to:

Purity = 81.06%, εKSKL→π±l∓νπ0π0 = 12.08%. (4.9)

This cut actually ends the stage of tagging part selection for KSKL → π±l∓νπ0π0 and the
KSKL → π+π−π0π0 hypothesis conditions can be imposed.

K → π0π0 cannot be reconstructed here using time of flight method, because of the
independence condition between tagging and signal-like part for control samples. This is
resolved by a trilateration method, which was developed in the context of KLOE in [37]
and its description for the purpose of these studies is available in Appendix D. It uses
only information about clusters themselves without momentum direction of K → π+π−,
so the condition is fulfilled. A set of 4 clusters, which best suits K → π0π0 → 4γ the
hypothesis, corresponds to the minimal |minv

4γ −mK0| for a given event. Only events, for
which a formal solution exists (conditions listed in Appendix D) are taken for a further
analysis. Thus, efficiency and purity of KSKL → π±l∓νπ0π0 after this step are:

Purity = 74.67%, εKSKL→π±l∓νπ0π0 = 3.11%. (4.10)

35

35:2847777140



(a) Efficiency and purity plots used to determine symmetric cut. The half-width of a cut window
was chosen to 25 MeV due to the stability of a predicted purity.

(b) Distributions of a Qmiss variables for all channels. Vertical lines stand for the symmetric cut
events beyond them are rejected.

Fig. 15: Plots for Qmiss variable used in the analysis.
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(a) Efficiency and purity plots used to determine symmetric cut. Cut windows’ half-width 10◦ was
chosen due to the value and stability of a predicted purity.

(b) Distributions of a απ+,π− variable for all channels. Vertical lines stand for the symmetric cut
events beyond them are rejected.

Fig. 16: Plots for απ+,π− variable used in the analysis.
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Using neutral vertex determined with trilateration algorithm and charged vertex re-
constructed with an algorithm described in the previous subsection, paths of kaons can be
found along with ∆t. They are visible in Fig. 17. Here can be seen a different shape of dis-
tributions w.r.t. Fig. 14, e.g., broadened ω peak. It can be caused both by the imposed cuts
during tagging selection, but also by worse resolution of trilateration for 4γ, than in the
time of flight method. This should be kept in mind for the purpose of efficiency analyses.

(a) Path of kaon from K → π+π−. (b) Path of kaon from K → π0π0.

(c) ∆t calculated from reconstructed kaons’ paths using trilateration method.

Fig. 17: Reconstructed kaons’ paths and ∆t for all channels taken for the analysis. Via
(a) and (b) it can be seen, that both decays consist of a mixture of KS and KL, which is
predicted by corresponding branching ratios from Table 1.
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This point ends the selection ofKSKL → π±l∓νπ0π0. The actual considerations about
efficiencies basing on Table 4 will be continued in the next subsection.

4.2.3 Selection of KSKL → π+π−3π0 events

For this control sample, the tagging part is KL → 3π0, while the signal-like is KS →
π+π−. Due to the independence, the trilateration method has to be used one more time, but
for 6γ case it is described in Appendix D. It does not use information about the invariant
mass of kaon, but only the geometrical constraints for all 6 clusters, so it does not impose
the additional hypothesis to the selection of KL → 3π0. To reject events, which poorly
suit this hypothesis, an additional cut is imposed on a total spread, R, of 15 trilateration
solutions of all possible combinations of 4 out of 6 clusters. basing on efficiency and purity
plot results are visible in Fig. 18.

After the application of trilateration method, the purity and efficiency for
KSKL → π+π−3π0 sample are equal to:

Purity = 98.10%, εKSKL→π+π−3π0 = 26.29%. (4.11)

Similarly to the previous case, a neutral vertex has to be found using a trilateration
algorithm for the potential 4γ set. This will provide the independence of reconstruction
between neutral and charged vertices. In this case, kaons’ paths and the resulting time
difference are shown in Fig. 19. Similarly, as for KSKL → π±l∓νπ0π0 different shape of
distributions is visible. Thus, earlier conclusions are also appropriate here.

Just like before, this point ends the selection of KSKL → π+π−3π0 channel. Further
analysis concerning determination of efficiencies will be continued in the next subsection.

4.2.4 Selection of KSKL → π+π−π+π− events

Finally, to complete the control sample forK → π+π−, the selection ofKSKL → π+π−π+π−

can be performed. It is a CP violating channel, so number of events is very low, however,
due to existence ofKL → π+π− it is a supplement to an already selectedKSKL → π+π−3π0

control sample. The algorithm of selection here is based on a few main points:

1. Only events with at least two vertices, each with exactly two tracks, are taken into
consideration.

2. Fiducial volume around an averaged run by run IP selection: RT < 10 cm and
|zch − zIP| < 20 cm

3. Iteration over all vertices. Vertex is chosen if it lies inside the fiducial volume and
its minv

π+π−,1 is closest to mK0 ⇒ K1 kaon reconstruction (good candidate for KS).
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(a) Efficiency and purity plots for cut on total spread of solutions.

(b) Total spread with an indicated rejected region.

Fig. 18: Efficiency-purity plot and a total spread histogram with an indicated rejected
region. The sharp peak around zero stands for the very well reconstructed events.
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(a) Proper time of kaon from KS → π+π−. For
KSKL → π+π−3π0 it corresponds to KS →
π+π−

(b) Proper time of kaon from neutral decay.
It is worth noticing, that it corresponds only
to KL → π0π0 for KSKL → π+π−3π0 his-
togram.

(c) ∆t calculated from reconstructed kaons’ proper times using trilateration method.

Fig. 19: Reconstructed kaons’ proper times and ∆t for all channels taken for the analysis.
Via (a) and (b) it can be seen, that both decays consist of a mixture of KS and KL, which
is predicted by corresponding branching ratios from Table 1.

4. Iteration over vertices in the entire detector, besides the one chosen for K1. Vertex
with minv

π+π−,2 closest to mK0 is taken ⇒K2 kaon reconstruction (good candidate for
KL).
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5. Event taken for the further analysis if both K1 and K2 were reconstructed properly.

RT here stands for the transversal radius, but calculated w.r.t an averaged run by run IP, i.e.
RT =

√
(xch − xIP)2 + (ych − yIP)2 and ch subscript indicates the charged vertex. Con-

ditions for the fiducial volume are based on the maximum length, which can be covered
by, KS according to MC generated events.

Invariant masses of both reconstructed kaons are visible in Fig. 20. As selection can

(a) Invariant mass of K1. (b) Invariant mass of K2.

Fig. 20: Invariant masses of kaons reconstructed using the described algorithm. It can be
seen, that for KSKL → π+π−π+π−, both are sharply peaked around mK0 .

be performed only on K1 → π+π−, it was chosen to cut minv
π+π−,1 symmetrically around

mK0 . Rejection should be possible at an efficiency of ∼30%, but due to the low abundance
of KSKL → π+π−π+π− channel w.r.t other ones the purity is low. Cut value was set to:

|minv
π+π−,1 −mK0| < 2 MeV/c2, (4.12)

to reject as many background events as possible without lowering the efficiency of
KSKL → π+π−π+π−. Efficiency-purity plots and histogram of minv

π+π− with indicated re-
jected regions can be found in Fig. 21. Finally, efficiency and purity forKSKL → π+π−π+π−

are equal to:
Purity = 0.04%, εKSKL→π+π−π+π− = 32.05%. (4.13)

This channel needs a redefinition of ∆t, because trilateration would, in fact, give a com-
bination of clusters, which for sure are not originating in a neutral decay of kaon. For this
purpose, it is assumed, that due to the very good resolution of charged vertices’ coordi-
nates, they can be always assigned to KS or KL, depending on which vertex was registered
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(a) Efficiency and purity plots for cut on minv
π+π−,1.

(b) minv
π+π−,1 with an indicated rejected region. Bin width is the same w.r.t. Fig. 20.

Fig. 21: Efficiency-purity plots and histogram with indicated rejected regions forminv
π+π−,1.

farther from IP. Thus, the definition for KSKL → π+π−π+π− is:

∆tKSKL→π+π−π+π− = tKL
− tKS

, (4.14)
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where the order was chosen arbitrarily. Finally, histograms of proper times of kaons
and the ∆t distribution can be seen in Fig. 22. Comparison with Fig. 14 reveals, that
KSKL → π+π−π0π0 channel is well suppressed, while the most abundant one is
KSKL → π+π−3π0 this will change after the K → π+π− cuts. Simultaneously, tKS

and
tKL

are well separated w.r.t. the lifetimes of kaons. In Fig. 14 they are mixed, which is
visible by the peak around zero for both distributions, while here only tKS

contains it, tKL

is spread to longer times.

(a) Proper time of kaon from KS → π+π−. (b) Proper time of kaon from KL → π+π−.

(c) ∆t calculated from reconstructed kaons’ proper times, specifically for KSKL → π+π−π+π−

using K1 and K2.

Fig. 22: Reconstructed kaons’ paths and ∆t for all channels taken for the analysis after
KS → π+π− tagging decay selection.
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This point ends the entire selection part and analysis of efficiencies can be started. The
next subsection is devoted to separate studies on the efficiencies resulting from control
samples along with DATA distributions.

4.3 Efficiency correction measurement and error determination

Beginning from this moment, samples will not be decomposed into individual channels,
but will be treated entirely as a properly selected decays for the purpose of efficiency cor-
rection. Moreover, these distributions will be fitted to DATA to control the appropriateness
of the performed steps w.r.t the shapes of histograms.

The first step is to find the expected ∆t distribution, basing on assumptions from Ta-
ble 4 and Table 5. Technically, it comes to the filling of histograms of ∆t with weights
equal to probabilities assigned in Nexp parts of both tables.

As the signal selections have been discussed in the beginning of the section, they
have to be imposed now on the corresponding expected distributions of DATA to mimic
KSKL → π+π−π0π0 selection performed on MC. Values of selections are kept with re-
spect to the original assumptions. The only difference between control samples selec-
tion and efficiency estimated from MC generated KSKL → π+π−π0π0 events is based on
K → π0π0 conditions. Important is, however, how behave the efficiencies for control sam-
ples determined fromKSKL → π+π−3π0 andKSKL → π+π−π+π−, respectively. Predic-
tion of their efficiencies in the function of kaon’s path length can be found in Fig. 23.

As can be seen, efficiency from KSKL → π+π−3π0 corresponds to KS → π+π− and
the one from KSKL → π±l∓νπ0π0 is compatible with the prediction of KL → π+π− for
this control sample. They overlap in the region ∼2 cm, so complementary can be used to
define the control sample for the total K → π+π−, as was assumed in the beginning of the
analysis.

Finally, the behavior of the efficiency determined from DATA is cross-checked with
the efficiency determined from Monte Carlo. The efficiency plot is determined via the
combination of sub-efficiencies connected to all control samples. Technically, it was done
using TEfficiency:Combine - detailed description can be found in [38]. Uncertainties
of such a distribution are found basing on the binomial method from [39] in the form:

σε,i =

√
εi(1− εi)

Ni

, (4.15)

where εi is the estimator of an efficiency and Ni stands for the total number of events in the
i-th bin. With the statistics available in these studies, binomially determined errors behave
properly and, moreover, are symmetric, which is desired for their propagation in the final
result. The final determination of a correction factor was done using Eq. (3.9) on the distri-
bution of efficiency connected with KSKL → π+π−π0π0 selection from MC (gray points)
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Fig. 23: Comparison of efficiencies for control samples for KS → π+π− (determined
from KSKL → π+π−3π0) and for KL → π+π− (determined from KSKL → π±l∓νπ0π0).
As can be seen, they overlap around 2 cm length, so jointly can be used to determine an
efficiency for K → π+π−.

and the one determined from DATA (black points), which are visible in Fig. 24a. Thus,
literally, it is the division of these two histograms by each other. The final result is visible
along with them on Fig. 24b. The efficiencies from Fig. 24a are in good correspondence
for the positive side of the ∆t axis, while the differences can be noticed for the negative
∆t. It proves, that all undertaken selections were controlled well during the analysis from
the last subsection, but still exist some differences, which will be corrected using f(∆t).

As was mentioned earlier, uncertainty for each point was estimated using a standard
propagation of errors, as they do not have mutual correlations. The explicit formula is
then:

σi =

√(
1

εMC
i

σεDATA,i

)2

+

(
εDATA
i

(εMC
i )2

σεMC ,i

)2

, (4.16)

where i enumerates a bin. The average here was calculated using the formula for a weighted
arithmetic mean:

f(∆t) =

∑
iwif(∆t)i∑

i wi

, (4.17)
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(a) Efficiency calculated for control samples from DATA (black points) and cross-checked with
MC control samples (gray points).

(b) Correction factor determined from DATA. Distribution is non-uniform and uncertainties were
estimated using the standard propagation of errors.

Fig. 24: Efficiencies for KSKL → π+π−π0π0 from Monte Carlo cross-checked with the
efficiency from DATA and a determined correction factor, which is the final result of this
work.
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wi = 1/σ2
i corresponds to the weight of each element. Thus, the standard deviation of this

mean is defined by:

σf(∆t) =

√
1∑
iwi

. (4.18)

Finally, the average along with its standard deviation is equal to:

f(∆t) = 0.934± 0.001, (4.19)

so with a good accuracy it is uniform on the entire range of ∆t. It has to be noticed,
however, that within ∆t ∈ [−5, 5] τS , where the interference pattern is expected to appear,
it varies stronger. It gives the conclusion, that f(∆t) should be indeed used independently
for each bin, so that the compensation will be much more precise for the further studies of
Re(ε′/ε) and Im(ε′/ε).

5 Discussion and summary

Clearly, the main problem in this analysis was the independence between two sides of
decays. Using the trilateration resolved it, as it does not take into account momentum of
kaon from K → π+π− to determine neutral vertex’s position. On the other hand, however,
the time of flight method for 4γ case provides much better quality of vertices’ coordinates.
minv

4γ found using trilateration could successfully mimic the corresponding variable from
the optimized KSKL → π+π−π0π0 selection, but tsum,r has much worse quality in the
case of control samples. Due to this fact, the selection of K → π0π0 from a tagging
K → π±l∓ν will be checked in the further studies.

For the K → π+π− control sample, cutting variables were reconstructed using the
standard methods with similar qualities. Therefore, this part should constitute the result
well controlled and behaving appropriately, taking into account the standard efficiency
estimation from Monte Carlo.

To summarize, an additional analysis of the K → π0π0 control sample is needed to
ensure the appropriateness of the determined correction factor. The quality of the trilater-
ation for 4γ case could be improved using the kinematic fit. It should be rebuilt, however,
w.r.t the approach from [37] to keep the independence of both reconstructions. Moreover,
to improve the purity of K → π±l∓ν tagging sample, an identification of leptons could be
performed to adapt analysis from [40].

Finally, the correction factor behaves properly and uniformly w.r.t the Monte Carlo
analysis, so it can be used in the further studies of CP violation in entangled kaons’ systems.
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Appendices

Appendix A

To derive an interference function visible in Eq. (1.35) one can start with the expression
from Eq. (1.32), which, for example, can be found in [17]. Two relations here are, in fact,
crucial:

η1 ≈ ε+ ε′,

η2 ≈ ε− 2ε′.
(5.1)

In the beginning, a trigonometric identity involving angles addition can be used to expand
cosine in the form:

cos (∆m∆T + (φ2 − φ1)) = cos (∆m∆T ) cos (φ2 − φ1)

− sin (∆m∆T ) sin (φ2 − φ1).
(5.2)

Introduction of the upper expression in the Eq. (1.32) and its rearrangement results in:

I(f1, f2; ∆T ≥ 0) =
C12

ΓS + ΓL

[
|η1|2e−ΓL∆T + |η2|2e−ΓS∆T

− 2|η1||η2| cos (φ2 − φ1)e
−ΓS+ΓL

2
∆T cos (∆m∆T )

+ 2|η1||η2| sin (φ2 − φ1)e
−ΓS+ΓL

2
∆T sin (∆m∆T )

]
.

(5.3)

Basing on Eq. (5.1) a formula for ε′/ε can be found:

ε′/ε =
η1 − η2
2η1 + η2

, (5.4)

but a goal is to find an expression explicitly depending on its real and imaginary parts. It
can be achieved by a simplification of a complex number in the denominator to its modulus,
which finally gives the results:

Re(ε′/ε) =
2|η1|2 − |η2|2 − |η1||η2| cos (φ2 − φ1)

4|η1|2 + |η2|2 + 4|η1||η2| cos (φ2 − φ1)
,

Im(ε′/ε) = − 3|η1||η2| sin (φ2 − φ1)

4|η1|2 + |η2|2 + 4|η1||η2| cos (φ2 − φ1)
.

(5.5)

This is a set of linear equations for |η1||η2| sin (φ2 − φ1) and |η1||η2| cos (φ2 − φ1), which
could be solved using, for example, Mathematica [41]. Finally, it is found, that:

|η1||η2| sin (φ2 − φ1) = − 4|η1|2 − |η2|2

1 + 4Re(ε′/ε)
Im(ε′/ε),

|η1||η2| cos (φ2 − φ1) =
2|η1|2 − |η2|2 −

(
4|η1|2 + |η2|2

)
Re(ε′/ε)

1 + 4Re(ε′/ε)
.

(5.6)
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|η1| and |η2| have to be found explicitly, before the introduction of these results into
the Eq. (5.3). It can be done by manipulations of Eq. (5.1), which give expressions:

|η1|2 = |ε+ ε′|2 = |ε|2
∣∣∣∣1 + ε′

ε

∣∣∣∣2 = |ε|2(1 + 2Re(ε′/ε) +

∣∣∣∣ε′ε
∣∣∣∣2),

|η2|2 = |ε− 2ε′|2 = |ε|2
∣∣∣∣1− 2

ε′

ε

∣∣∣∣2 = |ε|2(1− 4Re(ε′/ε) + 4

∣∣∣∣ε′ε
∣∣∣∣2),

(5.7)

but knowing, that
∣∣ ε′
ε

∣∣2 should be a few orders of magnitude smaller, than the other com-
ponents it can be neglected, so that:

|η1|2 = |ε|2(1 + 2Re(ε′/ε)),

|η2|2 = |ε|2(1− 4Re(ε′/ε)).
(5.8)

These results can be joint and Eq. (5.6) simplified to the final form:

|η1||η2| sin (φ2 − φ1) = −3|ε|2Im(ε′/ε),

|η1||η2| cos (φ2 − φ1) = |ε|2 (1− Re(ε′/ε)) .
(5.9)

Both Eq. (5.8) and Eq. (5.9) can be applied in the Eq. (5.3) and give the final expression
for the interference function, which is used in the entire studies:

I(f1, f2; ∆T ≥ 0) =

C12
|ε|2

ΓS + ΓL

[
(1 + 2Re(ε′/ε))e−ΓL∆T + (1− 4Re(ε′/ε))e−ΓS∆T

−2e−
ΓS+ΓL

2
∆T ((1− Re(ε′/ε)) cos (∆m∆T ) + 3Im(ε′/ε) sin (∆m∆T ))

]
.

(5.10)

Appendix B

After obtaining the reconstructed 4-momentum of kaon from K → π+π− decay, it is
possible to improve the resolution of energy using boost method. It is based on the hy-
pothesis of a 2 body decay φ → KSKL, so equally it can be used to reject events, which
physically do not fulfill this condition, e.g., KSKL → π±l∓νπ0π0, where the reconstruc-
tion of K → π±l∓ν is affected by the neutrino’s momentum not taken into account.

Due to this assumption, the plane of reaction can be fixed to x-z plane. For the purpose
of comfort, x-direction is placed along ~pLAB

φ , so 4-momentum of the system in LAB is
defined by:

pLAB
φ =


√
s

||~pLAB
φ ||
0

0

 , (5.11)
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so simultaneously kaon’s 4-momentum in LAB frame is defined as:

pLAB
K =


ELAB

K

||~pLAB
K || cosα

||~pLAB
K || sinα

0

 , (5.12)

where α is an angle between ~pLAB
K and ~pLAB

φ and ||~pLAB
i || stands for the value of a spatial

momentum of i-th particle. Lorentz transformation to φ’s CM frame is thus equal to:

Λ =


γ −βγ 0 0

−βγ γ 0 0

0 0 1 0

0 0 0 1

 , (5.13)

where β = ||~pLAB
φ ||/

√
s and γ = 1/

√
1− β2. Its manifest application on both 4-momenta

gives the actual forms in CM frame:

pLAB
φ =


γ
√
s− βγ||~pLAB

φ ||
0

0

0

 , (5.14)

pCM
K =


γELAB

K − βγ||~pLAB
K || cosα

γ||~pLAB
K || cosα− βγELAB

K

||~pLAB
K || sinα

0

 . (5.15)

On the other hand, state is KSKL, so for their almost equal masses
(mKL

− mKS
≈ 3.48 × 10−12 MeV/c2 [7]) it kinematically behaves as an event with

identical particles. Thus, the 4-momentum of kaon from K → π+π− decay is in φ’s CM
frame equal to:

pCM
K =

(
(γ
√
s− βγ||~pLAB

φ ||)/2
~pCM
K

)
. (5.16)

Eq. (5.15) and Eq. (5.16) can be compared, so that:

γ
√
s− βγ||~pLAB

φ ||
2

= γELAB
K − βγ||~pLAB

K || cosα, (5.17)
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and explicitly ||~pLAB
K || =

√
(ELAB

K )2 −m2
K0

. Both sides of the expression can be squared
up and after reordering the terms a quadratic equation for ELAB

K is found:

γ2(1− β2 cos2 α)(ELAB
K )2+

γ(βγ||~pLAB
φ || − γ

√
s)ELAB

K +

1

4
(γ
√
s− βγ||~pLAB

φ ||)2 + β2γ2m2
K0

cos2 α = 0.

(5.18)

Parameters of an equation can be identified as:

A = γ2(1− β2 cos2 α),

B = γ(βγ||~pLAB
φ || − γ

√
s),

C =
1

4
(γ
√
s− βγ||~pLAB

φ ||)2 + β2γ2m2
K0

cos2 α,

(5.19)

so the discriminant is equal to:

√
B2 − 4AC = βγ2

√
cos2 α

(
(
√
s− β||~pLAB

φ ||)2 − 4m2
K0
(1− β2 cos2 α)

)
. (5.20)

Formally, there are two possible solutions in the form:

ELAB
K,1(2) =

−B + (−)
√
B2 − 4AC

2A
, (5.21)

Here, if discriminant is negative, it is recognized as zero, so only one solution is found
according to the equation above. However, if it is positive, an algorithm to decide on
physicality of a solution is needed:

• if ELAB
K,1(2) > 0 and ELAB

K,2(1) < 0, then the positive one is taken,

• if both solutions are positive, two subcases have to be considered:

– if ~pLAB
K0

· ~pLAB
φ > 0, then ELAB

K,1 is taken,

– if ~pLAB
K0

· ~pLAB
φ < 0, then ELAB

K,2 is taken.

The algorithm saturates all possible situations, so for every event it is possible to find a
corrected kaon’s energy in LAB.

Appendix C

To determine ∆t needed for the measurement of interference in the system of entangled
kaons, reconstruction of a neutral vertex has to be done. It is based on a so-called time of
flight algorithm, which will be described below. In fact, due to the lifetime of π0 (τπ0 ≈
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Fig. 25: Scheme of the sought neutral decay. Use of the method is possible even for one
registered photon. It is an illustrative scheme method can be used for both KS(L) → π0π0.
Figure adapted from [42].

8.43 × 10−12 ns) measured particles are 4γ, which hit the EMC and their energy and
position of clusters can be reconstructed.

The problem here is to find the length of flight path lK of kaon and finally reconstruct
neutral vertex ~Vneu = (xneu, yneu, zneu) using:

Tcl,i =
lK
βKc

+
lγ,i
c
,

l2γ,i = D2 + l2K − 2DlK cos θ,

(5.22)

where βK is a velocity of kaon determined using pK→π0π0 and the corresponding paths
are:

lγ,i = ||~Vcl,i − ~Vneu||,

lK = ||~Vneu − ~VIP||,

D = ||~Vcl,i − ~VIP||,

(5.23)

where ~VIP stands for the position of IP. Having lK determined, coordinates of neutral vertex
are found using the formula:

~Vneu,i =
~pK→π0π0

||~pK→π0π0||
lK,i, (5.24)
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where i stands for the solution found using an i-th cluster. In general, the algorithm uses
all events with number of reconstructed clusters ≥ 4, so then the proper set of exactly 4

clusters has to be chosen. For this set, the final ~Vneu is calculated as a weighted average in
the form:

~Vneu =

∑4
i=1 Ecl,i

~Vneu,i∑4
i=1Ecl,i

, (5.25)

which takes into account better resolutions of clusters with bigger energy. Finally, it was
determined, that the resolution ofK → π0π0 vertex reaches up to∼3 cm using this method
quantitative studies and details of the determination can be found in [42].

Appendix D

A method of a neutral vertex reconstruction without use of a 4-momentum of kaon
from K → π+π− is called trilateration method and was developed in [37], initially for 4γ
decays. It can be, however, used for 6γ events as well with an extension taking into account
all 6 cluster used in [9] analysis.

Mathematically, the method is a search for an intersection point of 4 spheres, each
centered at a given cluster’s centroid scheme is visible in Fig. 26.

Fig. 26: Illustrative scheme of 4γ decay, with spheres indicated via colored dashed lines.
Figure adapted from [37].

Unlike for the time of flight method described in Appendix C, this approach needs all
4 reconstructed clusters. The point of intersection, along with the time of flight of kaon is
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found from a system of equations in a form:

(Xcl,i − xneu)
2 + (Ycl,i − yneu)

2 + (Zcl,i − zneu)
2 = c2(Tcl,i − tneu)

2, (5.26)

where i = 1, 2, 3, 4 is a number of a given cluster. Details corresponding to the solution
of the system can be found in [37]. Formally, it gives two, one or no solutions, so due to
the numerical character of this issue a set of conditions was established:

• time of flight of kaon has to fit in the range: tneu,n ∈ [0, 60] ns,

• spatial coordinates of the neutral vertex must lie inside the geometrical limits of the
detector, i.e.,

√
x2
neu,n + y2neu,n < 200 cm and |zneu,n| < 169 cm,

• kaon created at IP has to be able to reach neutral vertex with its velocity within the
time tneu,n,

where n = 1, 2 enumerates the solutions. Technically, the first two conditions are strictly
geometrical, while the third one is somewhat a crosscheck of solution’s correctness. Math-
ematically, it can be described by:

vK,ntneu,n = Sn, (5.27)

where vK,n is kaon’s velocity for n-th solution and Sn = ||Vneu−VIP|| is a distance covered
by kaon from IP to the neutral vertex. As the measurements of properties of given clusters
are statistically spread, this condition is not fulfilled exactly, but only to some extent. Thus,
for the analysis of this thesis, a strict boundary was chosen as:

vK,ntneu,n − Sn < 0.1 cm. (5.28)

Finally, if only one of the solutions fulfills aforementioned criteria, it is chosen as the
physical one. On the other hand, if both fulfill them and |tneu,1 − tneu,2| < 1 ns - they
are recognized as one solution and their arithmetic average is taken to the further analysis.
However, if no solution fulfills the conditions, the event is rejected.

Generally, in a given event more than 4 clusters can be reconstructed at one time, so
a method to choose an appropriate set has to be mentioned. It is done by checking the
compatibility of an invariant mass from a set of clusters taken under consideration with
mK0 . The algorithm is iterated over all possible combinations of clusters, and the one with
the minimal difference |minv

4γ −mK0 | is taken for the further analysis.
Finally, a reconstruction of a neutral vertex from 6γ decay has to be explained. It is

strictly based on the algorithm described above method to decide on the physical solution
is identical, but a choice of the proper set is rather based on a total error. For a given set of
6 clusters, it is possible to calculate 15 different solutions for all their combinations from
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a system of 4 equations. Then, due to the spread, 15 errors in a form:

rk =
4∑

i=1

√
(Xcl,i − xneu)2 + (Ycl,i − yneu)2 + (Zcl,i − zneu)2 − c(Tcl,i − tneu), (5.29)

can be determined and finally their sum:

R =
15∑
k=1

rk, (5.30)

is calculated for each combination of 6 clusters and the proper set minimizes R.
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