
FACULTY OF PHYSICS, ASTRONOMY
AND APPLIED COMPUTER SCIENCE

Mateusz Haber
Album number: 1063770

Development and implementation
of Electronic Logbook for J-PET research group

using Symfony2 framework

Diploma thesis
in the field of Applied Computer Science

Diploma thesis supervised by:
Dr inż. Marcin Zieliński

Nuclear Physics Department

KRAKÓW 2015

Oświadczenie autora pracy

Świadom odpowiedzialności prawnej oświadczam, że niniejsza praca dyplmowa została napisana
przeze mnie samodzielnie i nie zawiera treści uzyskanych w sposób niezgodny z obowiązu-
jącymi przepisami. Oświadczam również, że przedstawiona praca nie była wcześniej przed-
miotem procedur związanych z uzyskaniem tytułu zawodowego w wyższej uczełni.

Kraków, dnia Podpis autora pracy

Oświadczenie kierującego pracą

Potwierdzam, że niniejsza praca została przygotowana pod moim kierunkiem i kwalifikuje
się do przedstawienia jej w postępowaniu o nadanie tytułu zawodowego.

Kraków, dnia Podpis kierującego pracą

Abstract

The main aim of this thesis was to develop and implement an interactive Electronic
Logbook for Jagiellonian Positron Emission Tomography research group. Using the modern
and innovative Symfony2 framework, Bootstrap, jQuery and Angular.js technologies we have
created a fully working client-server web application based on the Model-View-Controller
architecture. The data storage was organized using two database engines: MySQL, and
PostgreSQL, served in back-end by the Doctrine package. Application was designed in the
Responsive Web Design (RWD) approach, making it possible to use it on the any portable
devices (e.g. like tablets and smartphones).

Application was prepared according to the functional requirements provided by the J-
PET group. The main functionality of the application is a multifunctional and intuitive
activity logging system, which allows to register and further monitor the situation of the
experimental work. Secondly the application allows to associate the laboratory work infor-
mation with the experimental parameters available from external database. Furthermore,
we have implemented the error and warning handling system, allowing to monitor and report
all the custom situations encountered during the laboratory work. Application was supple-
mented with the Shift Management module, allowing to organize weekly laboratory work of
the research group.

Streszczenie

Głównym celem pracy magisterskiej było zaprojektowanie i stworzenie interaktywnego
dziennika badawczego dla grupy Pozytonowej Tomografii Emisyjnej J-PET. Korzystając z
najnowszych i innowacyjnych technologi internetowych takich jak Symfony 2, Bootstrap,
jQuery i Angular.js, stworzono w pełni działającą aplikację o architekturze Klient-Serwer,
opartą na wzorcu projektowych Model-Widok-Kontroler (MVC). Dane aplikacji są prze-
chowywane w dwóch niezależnych bazach danych: MySQL oraz PostgreSQL, obsługiwanych
przez pakiet Doctrine. W trakcie projektowania i implementacji aplikacji zadbano aby strony
były dostępne na dowolnych urządzeniach, w tym mobilnych takich jak tablet lub smart-
phone.

Aplikacja została przygotowana zgodnie z wymaganiami funkcjonalnymi grupy J-PET.
Główną funkcjonalnością aplikacji jest możliwość tworzenia indywidualnych wpisów dzien-
nika badawczego. Dodatkowo każdy wpis dziennika można uzupełnić o dane eksperymen-
talne pobierane z zewnętrznej usługi bazodanowej. Ważną zaimplementowaną funkcjonal-
nością jest system zgłaszania błędów i ostrzeżeń, pozwalający na bieżące monitorowanie i
raportowanie wszystkich niestandardowych sytuacji zaistaniałych w tracie pracy labolato-
ryjnej. Aplikacja zotała również wyposażona w funkcjonalnosć pozwalającą na zarządzanie
godzinami pracy w laboratorium, co przyczynia się do jej wydajnej organizacji.

Contents

1 Introduction 9

2 Motivation and main functionality of the application 11

3 Architecture of the application 13
3.1 MVC and Symfony2 framework . 13
3.2 Front-end technologies . 16
3.3 Database management systems . 19

3.3.1 MySQL . 19
3.3.2 PostgreSQL . 19

3.4 GIT version control system . 20
3.5 Other Open Source libraries . 21

4 Implementation of main functionalities of developed Logbook system 23
4.1 Logbook database . 23
4.2 User authentication . 27
4.3 Main Views of the Logbook . 30
4.4 Logbook functionality . 32

4.4.1 Adding logbook entry . 32
4.4.2 Single logbook view . 34
4.4.3 Logbook search module . 37

4.5 Experimental error and warning handling system 38
4.6 Shifts managements system . 41

4.6.1 Shift planner . 41
4.6.2 Shift calendar . 42

4.7 Administration panel . 43

5 Summary 45

A Installation of the application 47

Bibliography 49

Podziękowania 51

1. Introduction
Nowadays organization and storage of information in electronic form is commonly used

by the large corporations and small companies in most industry sector. There is a strong
tendency to replace the paper information flow with the electronic version only. Also this
trend from many years is observed in field of the research. Currently researchers commu-
nicate between each other via electronic mail, dedicated websites or on-line chats. Also,
the experimental data is stored on large farms of servers and in the cloud services. Thus,
the good organization of the information flow and methods of keeping them are crucial for
efficient scientific work.

One of the common thing done by researchers is to record results of the experimental
work in the accessible form for other researchers. Up to few years ago very popular way of
recording the laboratory activity was to write a short note in the paper notebook. However,
as the development of computers and internet technologies has grow also the researchers
started to use electronic tools to store laboratory information. One of the reasons to use
the electronic form of logbook, was the number of people working at the same time in one
group but, not necessary in the same geographical place. However, as the work of each
experimental group has it own specific it is hard to use the commercially available software.
Therefore, the main aim of this thesis was to design, develop and implement an Electronic
Logbook dedicated for Jagiellonian Positron Emission Tomography research group, in order
to support and improve the information storage and data flow. Developed application will
be used to report, control and store data from laboratory work in fully electronic form.
The projected features allow to prepare a single electronic entry with the description of the
laboratory work at given time. Also, the developed solution has a feature of managing the
time and task in the laboratory.

The system was design to be intuitive, clear and user friendly to working in the Client-
Server architecture in the form of the web based application. One of important features was
to design it to work on every modern device like PC, tablet and smartphone. The applica-
tion was created utilizing Symfony2 framework as the back-end1 technology and Bootstrap,
jQuery and Angular.js, as the front-end2 technologies. For the data storage MySQL and
PostgreSQL databases were used, with the Doctrine tool to support the object-relational
mapping (ORM).

In the second chapter of this thesis we will describe motivation and main functionality of
implemented application. The third chapter is a detailed introduction to the architecture of

1Back-end is commonly used in web applications as a name for the technologies used on server side.
2Front-end is commonly used in web applications as a name for the technologies used on client side in

the web browser.

10 1. Introduction

the application, supplemented with the description of the utilized back-end, and front-end
technologies, as well as the database management systems. In the fourth chapter we will
describe the implementation of main functionalities of developed Logbook system. The fifth
chapter contains a short summary. The work has one appendix which describes the method
of the installation of the application on server side.

2. Motivation and main functionality of
the application

One of the most popular diagnostic techniques is Positron Emission Tomography (PET),
which relies on a mapping of the spatial distribution of the selected substance in the volume
of the body and allows the measurement of the substance concentration changes over time,
which will determine the rate of metabolism of the individual tissue cells.

In general, this method allows for non-invasive imaging of physiological processes in the
body, but now is primarily the most technologically advanced diagnostic method of early
stages of cancer and to determine the degree of cancer malignancy, using the fact that cancer
cells show an increase in metabolic activity compared to normal tissue. Accordingly, in the
highly-developed countries PET plays an important and unique role in medical diagnostics
and monitoring the effects of cancer therapies.

Typical PET detectors are built out of inorganic scintillating detection modules, which
enable the registration of the annihilation γ quanta in coincidence. In the newer of PET
detectors, the resolution of the tomographic image is improved by the determination of the
annihilation point along the line of response (LOR). It is based on measurements of the time
difference between the arrivals of the γ quanta to the detectors. This technique is known as
time flight (TOF) and improves the reconstruction of PET images by increasing signal-to-
noise ration due to reduction of noise propagation along the LOR during the reconstruction.

Jagiellonian Positron Emission Tomography [1–4] (J-PET) is a research group from the
Jagiellonian University in Krakow, working on a novel solution for the construction of
Positron Emission Tomography, for the whole human body imaging. J-PET team is de-
veloping a novel device which will allow to determine the impact position as well as time
of the annihilation of gamma quanta. The device is comprised of scintillation chamber con-
sisting of organic scintillation detectors surrounding the body of the patient (Fig. 2.1). The
application of the fast scintillation detectors will enable to take advantage of the difference
between time of the registration of the annihilation quanta. The invented method will permit
to use a thick layers of detector allowing to determine the Time of Flight for the annihilation
gamma quanta. This will allow for increasing the size of the diagnostic chamber without a
significant increase of costs.

The J-PET project gathers a large group of scientists working together on construction of
the novel diagnostic device. One of the main drawbacks in such projects is the information
flow and the logging of all experimental activities. Therefore, in the framework of this
master thesis we have develop fully functional Electronic Logbook for J-PET research group.

12 2. Motivation and main functionality of the application

Figure 2.1: J-PET scintillation detectors system: (left) - view of the diagnostic chamber
consisting of scintillating individual modules with photomultipliers attached at the end of
each module [4], (right) - visualisation of the J-PET tomography scanner.

Developed solution is a fully WEB2.0 application driven by the users. Proposed solution
will replace the currently used system based on open source MediaWiki [5] software.

Commercially, there are many “ready-made” Content Management System (CMS) [6]
solutions like e.g. MediaWiki, Wordpress [7], Drupal [8] or Joomla! [9], which could be
adopted to be a Logbook system. However, these constitutes a general software which do
not posses the dedicated functionality related with the research conducted in the J-PET
group. Therefore, we have prepared completely new software system with the functionalities
dedicated for the J-PET group.

The main aim of developed application is to facilitate the information flow with in the
experimental group and allow to preserve individual information from the experiment in the
electronic form. Additionally, system allows to: add, view, delete, and search existing log-
book content. All the information are stored in the form of chronological posts with the pos-
sibility of attaching media content like e.g. graphics, plots, equations, video. Furthermore,
each individual post can be supplemented, if needed, with the experimental data parameters
downloaded on-line from external J-PET database. In such way the experimentalist will
automatically be able to comment on the current situation in the laboratory providing the
actual experimental data. Furthermore the developed system provides standard authenti-
cation features enabling access to the content of the logbook to limited authorized users
only.

The second important functionality of the developed application is the shift management
system which is strictly related to the logbook ability. Shift planner allow users to mark
their availability for the laboratory work and help them to maintain efficiently the work.
This feature allows to mange duties of the experimental group members in the laboratory.

Finally, the third functionality of developed application is the experimental error and
warning handling system. This function allow users to report warning or error during the
experiment.

3. Architecture of the application
The aim of the this work was to create an intuitive, efficient and secure web application

utilizing the most modern and innovative solutions available in the domain of web devel-
opment. The main requirement for the design Electronic Logbook, was to make it work in
the web browser, independent of the hardware and software platform. Therefore we have
utilized the Client-Server application model, with the communication between two parts
using the HTTP (Hypertext Transfer Protocol) protocol. The simple scheme of the appli-
cation model is presented on Fig. 3.1. As a core of developed application on the server side
(back-end), we have used the fully scalable and object oriented Symfony2 framework [10]
with the architecture based on the most reliable and efficient Model-View-Controller (MVC)
design pattern [11]. The Symfony2 framework was supported by the Doctrine package for
the database management, and with the TWIG templates to facilitate the view preparation.
On the Client side (front-end) for the presentation and data processing, we have used the
Twitter Bootstrap, Angular.js and jQuery libraries.

In this chapter we will introduce all the technologies utilized during the implementation
of the application in the context of the used design pattern.

Figure 3.1: Scheme of the architecture of the Logbook application in view of the commu-
nication and Client-Server technologies.

3.1 MVC and Symfony2 framework

Developed web application was prepared using the Symfony2, which is a free, fully object
oriented PHP5 [12], released under the MIT [13] licence, developers framework. Symfony2
was created by the SensioLabs [14] company in 2005 year. This framework supports fully
the MVC design patter making the development of web application much more flexible and
efficient. Additionally, this programming environment is supported by numerous developers
community which is a very important feature.

14 3. Architecture of the application

Symfony2 speeds up the process of building objected oriented application, assuring at
the same time full security of software and data. It automatizes many of the operations like
entity creation, and object-relational-mapping (ORM) [15]. It uses many of the PHP Open
Source [16] projects as a part of itself. It utilizes, framework Propel [17] and Doctrine [18]
as object relational mapping layers and to build database abstraction level. To build fast
and flexible views Symfony2 uses TWIG [19] as a template engine. Software also uses
PHPUnit [20] for the unit tests.

Symfony2 is based on the Model-View-Controller (MVC), one of the most popular and
widely used design patterns in most of the web and native applications. In this approach,
MVC pattern forces partition of software into three interconnected parts:

• Model represents the application logic, which means that it stores and specifies the
methods of operation on data. The data from the Model can be retrieved by the
Controller and then displayed by the View layer. Model does not know about the
existence of Controller and View.

• View receives data sent by the Controller, requested from the Model, and generates
user output with the data. One can say that the View is the graphical representation
of Model. However it is not associated with the way of presentation, and therefore it
not entails any changes to the Model.

• Controller responds to user actions, often triggered by links in the View. The main
role of the Controller is to be responsible for the changes of the state of the Model and
refreshing the View.

In the MVC approach firstly User is taking an action, which then triggers the method in
the Controller. Then the controller communicates with the Model to acquire data, which is

Figure 3.2: The basic scheme of the three layer MVC based application.

3.1. MVC and Symfony2 framework 15

sent to the View to be presented to the User. The basic scheme of the MVC pattern with
the information flow between layers is shown in Fig. 3.2.

In Symfony2, Doctrine entities and Twig templates match MVC Model and View parti-
tion. Every user request to the server is processed by the HTTP kernel, and according to the
defined route1 determines the active controller. Than controller on demand downloads the
data from Doctrine entities (Model) and displays them by the Twig template engine (View).
The developed application was prepared taking into account all the rules of the MVC design
pattern. Figure 3.3 shows the partition of the Logbook application files according to the
function held in the MVC pattern.

Figure 3.3: Representation and partition of the Logbook application files according to the
MVC design pattern. Each small rectangle denotes the name of the file in particular layer.

In the case of developed application for comprehensive support of the communication
with database we have chosen to use Doctrine package. It is featured with Doctrine Query
Language to write database queries in an object oriented SQL language2. One of the useful
features of Doctrine, is that it is capable of performing database operations on data like:
joins and fetches with related objects automatically, so in most cases writing queries is not
required. In the Doctrine approach database structure is described in the application logic
by annotation mechanism or by XML [21] and YAML [22] formats. One of the very useful
features of Doctrine is the ability to create entity classes based on the existing database

1All routes are defined in file: app/conf/routing.yml available in the in project directory.
2Alternative to this is QueryBuilder class to build queries in an intuitive way.

16 3. Architecture of the application

structure, and conversely, to generate database table structure based on existing entity
classes in the application. This property of Symfony2 automatizes many operation related
with the database operations.

In the Symfony2 framework the presentation layer is organized using the TWIG template
engine. This special meta language is more concise than the pure PHP expressions and the
syntax is more human readable and intuitive, extended with shortcuts for common patterns.
TWIG was developed with PHP5, therefore it is fully flexible and extensible with user
defined tags, filters and domain-specific language (DSL) [23]. Also, it is a very fast, because
templates are compiling down to pure PHP code each time the action of rendering a view
is requested. Furthermore, TWIG originally was developed by Symfony2 authors, therefore
both libraries are fully compatible.

For the interaction of the Client and Server sides we have implemented two different
ways of communication: synchronous, and asynchronous. Utilization of these two different
solutions allows to improve usability and introduce more intuitive GUI of the application.
Synchronously requests are performed each time while user requests action in the MVC
controller. In contrast, asynchronously requests are executed on demand by the Angular.js
library, without refreshing the web page. The model of used Client-Server communication
is shown on Fig. 3.4.

Figure 3.4: Client-server communication in Logbook application.

3.2 Front-end technologies

One of the most important aspects of the application development is to prepare user
friendly Graphical User Interface (GUI) [24]. Therefore, developed Electronic Logbook sys-
tem interface should be characterized by usability, intuitive and easy to handle features.
In order to achieve these objectives, we have utilized the newest, Open Source, front-end
technology.

In most of modern web application one can not use directly only basic internet tech-
nologies such as: HTML5 [25], CSS3 [26] and JavaScript [27] to design the fully dynamic
GUI. Therefore, nowadays programmers and developers uses complex libraries based on
these technologies to prepare presentation layers. In the developed Logbook application to
implement GUI, we have used the Twitter Bootstrap [28], FontAwesome [29], jQuery [30]
and Angular.js [31] libraries.

3.2. Front-end technologies 17

Twitter Bootstrap [28] is very popular HTML, CSS and JavaScript framework created by
Twitter [32] company. It is commonly used to prepare responsive3 and modern websites [33].
It contains prepared CSS and JavaScript files which includes predefined: fonts, blocks, panels,
forms, and many others graphical features. Bootstrap library enables to prepare easily and
efficiently scaled websites for all existing devices, from computer to smartphone (Fig. 3.5).
Each element of library can be customize using on-line creator tool available on the Bootstrap
web page [34].

(a) Desktop

(b) Mobile

Figure 3.5: Simple "Hello, world!" website, developed with Twitter Bootstrap where (a)
shows the layout of the site displayed on standard PC computer with high resolution wide
screen, and (b) the same site displayed on the portable device like e.g. smartphone.

Moreover, to achieve a very modern design of the developed application we have used
the FontAwesome [29] package which is the iconic font and CSS library specially design to
work together with the Bootstrap. With FontAwesome one has access to 519 vector icons
that can be freely customize. To use the FontAwesome icons within the website one needs
to add a special class attribute in the <i> tag starting with the fa prefix. Few examples of
popular icons together with the code are shown in Fig. 3.6.

To design fully dynamic front-end of the application we have used the jQuery library [30]
which is based on the JavaScript language. It was release in 2006 by the Open Source
community, under the MIT license. Nowadays, jQuery library is the one of the most popular
tool supporting web design used by the largest internet companies like: Wordpress, IBM,
Mozilla, Adobe, Intel and MaxCDN [35]. In principle jQuery allows to manipulate HTML
DOM4 structure and supports event handling. jQuery is browser independent, flexible and

3The term “responsive” (or Responsive Web Design - RWD)is commonly used in the sense of adaptation
of the application layout to the screen size of the device on which the application is displayed.

4DOM - Document Object Model

18 3. Architecture of the application

Figure 3.6: Examples of FontAwesome usage.

characterized by brevity and clarity, because a large part of functions can be written in a
form of chain of objects. Figure 3.7 shows an example of jQuery usage, where $ is a factory
method for the jQuery object with chain of functions. As a result shown in this example, each
div element will be extended by p element, with qoute class, and class attribute “red” will
be added to each matched element, together with slowly slide down animation. Nowadays
65% of websites with highest traffic in the Internet uses jQuery. This makes jQuery the most
popular JavaScript library in whole Internet.

Figure 3.7: Example of jQuery chain usage.

In order to facilitate some front-end operations we have used also the Angular.js [31] pack-
age which is an open source web development framework original designed by Google. The
main idea of library is to support creation and development of single-page web applications.
In order do this it uses the Model-View-Controller (MVC) and Model-View-View-Model
(MVVM) architectures on clients-side.

In the classical website approach, the template systems works with one-way data binding
mode as it is shown in Fig. 3.8. This means that after one-time merge, changes to the
model are not automatically refreshed in the view. Whereas, Angular.js adopts and extends
traditional HTML pages by presenting dynamic content in real-time through two-way data
binding mode (Fig. 3.9). In this case any changes in the model are immediately projected
to the view and vice versa, any changes in the view are sent to the model.

Angular.js contain $scope object which refers to the application model. The $scope
service detects changes in both sides of view and model, and promotes changes via controller.
$scope is like observer responding to any changes in the application.

Another Angular.js feature are directives which are HTML-like elements and attributes
that define behaviour of DOM elements and responds for data binding. The most popular
used directives are e.g.: ng-app, ng-bind, ng-model, ng-model-options, ng-class, ng-controller.

3.3. Database management systems 19

Figure 3.8: Data binding in clas-
sical website template systems. Figure 3.9: Data binding in Angular.js website tem-

plates.

3.3 Database management systems

The projected Logbook application could not work without the support of the database
management system (DBMS) [36]. These systems enables to store data in the ordered digital
form, with the capabilities of adding, modifying and removing existing data. Most famous
database engines are MySQL [37], PostgreSQL [38], Microsoft SQL Server [39], Oracle [40],
Sybase [41] and IBM DB2 [42]. Since 1980 all of the DBMS supports Structured Query
Language (SQL) [43] language. In case of the Logbook application we will work only with
MySQL and PostgreSQL systems.

3.3.1 MySQL

MySQL is a relational database management system (RDBMS) [44], which constitutes
the most popular database solution for web applications. Because of a very good integration
of this database engine with Linux, Apache, and PHP the biggest internet portals like e.g.
Facebook, Google Twitter or YouTube are using it to serve data. MySQL is written in C and
C++, but works on many system platforms like e.g: AIX, FreeBSD, Linux, OS X, Microsoft
Windows, Oracle Solaris, and SunOS. MySQL project is more focused on performance than
on compatibility with SQL standard. However, over the years project started to be in
agreement with ISO/IEC 9075-1:2003 standard, which supports more primary SQL functions
like transactions, stored procedures, triggers, views, cursors, partitioning of tables, schedule
of tasks. MySQL technology is now using the newest SQL:2003 [45] standard.

3.3.2 PostgreSQL

PostgreSQL is the second most popular DBMS, specifically object-relational database
management system (ORDBMS) [46]. In contrast to MySQL, PostgreSQL is much more
consistent with SQL standards, concretely SQL:2011 [47]. It is available for the most of the
operating systems, but especially for Linux distributions. The most significant function of

20 3. Architecture of the application

PostgreSQL engine is the multi version concurrency control (MVCC) to manage transactions.
In PostgreSQL one can also write predefined rules, which can rewrite incoming query. It also
supports much more index types, data types and large sizes of data queries than the MySQL
engine. Technology is full of add-ons, scalability and customization to suit developer needs
and the application requirements.

3.4 GIT version control system

The whole process of the Logbook application development and implementation was
managed and supported by using GIT system. GIT [48] is a application design to safely store
and manage the IT project with the ability of controlling the programmers code version.
Originally it was developed for Linux to replace Concurrent Versions System (CVS) [49],
improving operations atomicity, optimization of the storage space and support for distributed
version control system. GIT provides security for single project and comfort for shared
projects. In our case, we use GitHub [50] - web-based GIT repository hosting service.
GitHub is supported by intuitive and simple GUI to manage whole project commits as it is
shown in Fig. 3.10. On the left side of Fig. 3.10 one sees the list of commits, and on the
right side the developers changes to the application code are visible.

Figure 3.10: GitHub GUI with Logbook project commits.

3.5. Other Open Source libraries 21

3.5 Other Open Source libraries

Despite the usage of large front-end frameworks, they do not support many of specific
features which were required to developed the Electronic Logbook application. Therefore,
we have used many additional open source libraries available for the developers. We list
them with a very brief description, with references giving additional and rich information.

List of front-end libraries:

1. CKEditor [51] - WYSIWYG, rich in features HTML editor.
2. MathJax [52] - JavaScript display engine for LaTeX.
3. Moment.js [53] - JavaScript date-time library for manipulating, formatting and parsing

dates.
4. Angular ngInfiniteScroll [54] - Angular.js module for infinity scroll effect to dynamically

load data, without pagination in the asynchronously mode.
5. Angular.js ngAnimate [55] - Angular.js module for animating HTML DOM elements.
6. Angular.js Gravatar [56] - Angular.js module for generate avatar images from email in

real time.
7. Angular.js SmartTable [57] - Angular.js module to display data table with filtering and

sorting features.
8. Angular.js ResponsiveCalendar [58] - Angular.js module with calendar templates.
9. Symfony2 ornicar/GravatarBundle [59] - Gravatar bundle for Symfony2.
10. Symfony2 friendsofsymfony/rest-bundle [60] - Symfony2 bundle to develop RESTful

API.
11. Symfony2 jms/serializer-bundle [61] - Symfony2 bundle to serialize and unserialize

data.
12. Bootstrap DateTimePicker [62] - Functional date time picker for Bootstrap.
13. Bootstrap Dialog [63] - Modal dialog boxes for Bootstrap.

4. Implementation of main
functionalities of developed Logbook
system

Implementation of an Electronic Logbook for the J-PET group, required to utilize and
combine many existing technologies and frameworks, and to design entirely new dedicated
solutions. In this chapter we will show the most interesting functional solutions used in the
application together with the short user description.

4.1 Logbook database

Logbook database structure and relationships was designed based on the application
functional requirements. In order to store various logbook data we have used a MySQL
relational database. To design and implement database structure together with the relations
we have used MySQL Workbeanch [64], which is a visual tool for data modelling and SQL
database development. To design the relation between entities we have used Crow’s foot
notation, where each relation is marked with different symbol. The explanation of used
Crow’s notation symbols is given in Fig 4.1.

Figure 4.1: Used database relation symbols according to the Crow’s foot notation.

Designed database consist of nine entity interconnected with different types of relations.
Entities reflects three main functionality of the design application:

1. saving the logbook entries,
2. shift planner management,
3. error and warning handling system.

Moreover, two entities are related with the user management and user settings of the applica-
tion. The entity relational diagram (ERD) is presented in Fig. 4.2. The detailed description

24 4. Implementation of main functionalities of developed Logbook system

of each entity with the explenation of each data field is given in tables: 4.1, 4.2, 4.3, 4.4, 4.5,
4.6, 4.7, 4.8, 4.9.

Figure 4.2: The designed Entity Relation Diagram (ERD) for the developed Electronic
Logbook application.

USER

ID User id (from J-PET User Database)
NICK_NAME Login name (from J-PET DB)
REAL_NAME First name and surname (from J-PET DB)
PASSWORD Encrypted user password (from J-PET DB)
EMAIL User email (from J-PET DB)
LOG_VIEW Preferable user main view
ROLE User role in application (ADMIN, USER or INACTIVE)

Table 4.1: Entity USER, containing information about the users.

4.1. Logbook database 25

LOG

ID Log Id
AUTHOR_ID User id (Reference to USER table)
TITLE Log title
CONTENT Log content
DATE Log creation date
ACTIVE Log is active(1) or deleted(0)
COLOR_DICTIONARY Log shift color based on create time (Reference to

COLOR_DICTIONARY table - can be null)

Table 4.2: Entity LOG, containing single post information.

EXTERNAL_DATA

ID Unique Id
LOG_ID Log id (Reference to LOG table)
RUN_ID Current test run id (from J-PET Parameter DB)
RUN_FILE Measurement Run number (from J-PET Parameter DB)
RUN_DESCRIPTION Run description (from J-PET Parameter DB)
SETUP Setup identifier (from J-PET Parameter DB)
PM_CALIBRATION PM calibration identifier(from J-PET Parameter DB)
SCINTILATION Scintillation detector calibration identifier(from J-PET Pa-

rameter DB)
FRAME Frame id with description (from J-PET Parameter DB)

Table 4.3: Entity EXTERNAL_DATA, containing information from the external experi-
mental database.

COMMENT

ID Comment id
LOG_ID Log id (Reference to LOG table)
AUTHOR_ID User id (Reference to USER table)
DATE Comment date-time of creation
CONTENT Content of the comment field
ACTIVE Comment is active(1) or deleted(0)

Table 4.4: Entity COMMENT, containing information about the comments to the logbook
posts.

26 4. Implementation of main functionalities of developed Logbook system

SHIFT_PLANNER

ID Shift planner id
YEAR Current year
WEEK Current week
COORDINATOR_ID User id (Reference to USER table)

Table 4.5: Entity SHIFT_PLANNER, containing information about the shift plan for each
week.

SHIFT_PLANNER_TIME

ID Shift planner time id
SHIFT_PLANNER_ID Shift planner id (Reference to SHIFT_PLANNER ta-

ble)
START_TIME Shift start hour (0-23)
END_TIME Shift end hour (0-23)
MAX_PEOPLE Max people for shift (1-5)
COLOR_DICTIONARY Shift color based on start hour (Reference to

COLOR_DICTIONARY table)

Table 4.6: Entity SHIFT_PLANNER_TIME, containing information about the single
shifts time intervals allocated in the weekly shift plan.

SHIFT_PLANNER_USER

ID Shift planner user id
SHIFT_PLANNER_TIME_ID Shift planner time id (Reference to

SHIFT_PLANNER_TIME table)
USER_ID User id (Reference to USER table)
START_DATE Shift start date
END_DATE Shift end date

Table 4.7: Entity SHIFT_PLANNER_USER, containing information about the users
assigned for each shift time interval in the weekly shift plan.

COLOR_DICTIONARY

ID Color id and shift start hour (0-23)
COLOR Color in hex code

Table 4.8: Entity COLOR_DICTIONARY, containing information about the colors for
each shift hour shown in the weekly shift plan.

4.2. User authentication 27

ERROR

ID Error id
LOG_ID Log id (Reference to LOG table)
DATE_OPEN Error create date
DATE_CLOSE Error close date
CONTENT Error content
TYPE Error type (ERROR or WARNING)
ACTIVE Error is active(1) or deleted(0)

Table 4.9: Entity ERROR, containing information about reported errors and warnings.

4.2 User authentication

The developed application it is a part of a larger project and dedicated to specific group
of users, therefore the access to the information should be secured and limited. Symfony2
provides the security system which can authenticate users using three methods: (i.) database,
(ii.) Active Directory, and (iii.) OAuth server. In case of developed system we will use
authentication via users database with the support of the Doctrine entity manager. In this
manner the security module will identify the user trying to gain access to the application,
and than it will check if the user has appropriate access right to view the application content.
If the authorization module will not find the given authentication data in the database the
user will not be granted access to the application.

The main requirement of the designed authentication module was to integrate it with
existing J-PET user account database. However to prevent numerous connections to the
external database, user authentication data is synchronized with the local Logbook database
(Fig. 4.3) on demand. In this solution system maps only the most important informations
such as: login, password, email, and the name of the user.

Figure 4.3: Structure of the User Entities in the (left) J-PET-User database and (right)
locally synchronized Logbook database.

28 4. Implementation of main functionalities of developed Logbook system

In the developed application, the users authentication data comes from external database,
therefore, a dedicated user login service had to be written. In the external database the user
authentication data is kept in the form of encrypted password and the security phrase called
“salt”. These two special words are saved in the database in the form of a string kept in a
TinyBlob [65] format. Example of such encrypted string is shown in Fig. 4.4. First element

Figure 4.4: The password encrypted with the MD5 algorithm consisting from three parts:
encryption type, salt and MD5 hash, kept in the TinyBLOB format.

of the string is a prefix which determines whether the password is encrypted with salt or no:
A - means that the password has not salt encryption, B - denotes that the password is salt
protected. In the case of J-PET users database all user accounts were created with the salt,
therefore all the encrypted strings in the database are preceded by :B: prefix. The second
part of the string is the salt (in type A this field is empty). Accordingly, the third part of
the string is the encrypted password with the MD5 [66] algorithm.

The Symfony2 framework and Doctrine tool, by default does not handle properly Tiny-
Blob format. Therefore, we had to directly use the User entity, together with the ded-
icated written “getter function”. This method uses special PHP5 stream function called
stream_get_contents, which can convert the password stream into a plain string [67]. The
function code is shown in Fig. 4.5.

Figure 4.5: Function providing the service for the proper reading of the TinyBLOB format.

After obtaining the authentication data in a form of a plain string, the next step was
to implement Symfony2 password encoder service, which can validate the correctness of the
password provided by the user during the authentication process. The corresponding code
of validating function is shown in Fig. 4.6. To proceed with the user authentication we have
prepared special function called isPasswordValid which accepts following three parameters:

1. $encoded - encrypted string from database,
2. $raw - password given by user during authentication,
3. $salt - special salt phrase.

4.2. User authentication 29

Figure 4.6: Dedicated password encoder service function providing the password validation
and user authentication.

During this process the $encoded string is divided to a list of three strings corresponding
to: $type, $salt and $passwordMD5, as it was described previously. Next the parameter
$raw is encrypted using the MD5 algorithm and saved to the new $pwd_hash variable. In
the case when the $type is equal to B value, than $passwordMD5 is compared with the
MD5 encrypted result of the $salt-$pwd_hash operation. In case when $type is equal to A
value, than the function is comparing only with the $pwd_hash. In both cases when the
password encryption function return TRUE value, then password validation is correct, and
the requesting user is authenticated to the application.

For the user side, for the authentication process we have prepared an user friendly au-
thorization panel which is constructed from two input fields and an action button pointing
at the authentication service in the corresponding controller (Fig. 4.7). User in order to
authenticate, has to provide username and password which is then compared to the one
stored in the J-PET User Database, according to the procedure described above. When

Figure 4.7: The view of login window to the Electronic Logbook application.

30 4. Implementation of main functionalities of developed Logbook system

the credentials given by the user in the input fields are correct, the authentication module
redirects the user to the main view of the application.

4.3 Main Views of the Logbook

Home page of Logbook is the most important view of the designed application. In the
main application window users see all the logbook entries displayed in the chronological order
from the newest one to the oldest. In this way users can easily browse and follow the latest
research activities. The default view is the grid tile mode (Fig. 4.8) which is organized in
such a way that on the PC three tiles are shown in one row. Every single tile is composed
of:

• Author name,

• Title of the logbook entry,

• Date and time of creation,

• Color of the shift on which entry was crated,

• Warning and Error alerts (optional - when the information is available).

To read the detail information from single lab log entry one needs to click on the single tile.

Figure 4.8: View of the Logbook home page in the tiles mode on a standard PC.

The second view of the main window of the application is a list of logs ordered chrono-
logically (Fig. 4.9), where in a single row we have access to information like:

4.3. Main Views of the Logbook 31

• Id of the logbook entry,

• Title of the logbook entry,

• Author name,

• Warning and Error alerts (optional - when the information is available)

• Date and time of creation,

• Color of the shift on which entry was crated,

• Edit and delete buttons (only for administrator).

Similarly as before, to access detail information from the single logbook entry one needs to
click on the desired row.

In case of both views the colored date and time correspond to the shift time intervals.
(shift manager is described in chapter 4.6).

Figure 4.9: View of the Logbook home page in the list mode on the standard PC.

Switching between two views is simple and intuitive, possible without refreshing the web
page. In order to switch to different view one needs to use the two button icons in the
right corner of the main window, just above the tails or the list of post. After changing to
preferred view, setting are immediately saved to the user session and database. Both views
have been enriched by ngInfiniteScroll directive available from Angular.js library. In this
way, it becomes possible to dynamically download additional content without pagination of
the web page

By utilizing the Bootstrap schemes the all the views in the application are responsive
and can be displayed on most portable devices. Application, automatically based on the

32 4. Implementation of main functionalities of developed Logbook system

Figure 4.10: View of the Logbook home page in the tiles mode on: (left) tablet device,
(right) on smartphone.

information about the size of the screen, adjusts the layout to the device requirements. On
the tablet (Fig. 4.10 (left)) tiles are reduced to two column grid. Also, in the main navigation
bar the search input field is replaced with the button "Search". On the smartphone (Fig. 4.10
(right)) tiles are reduced to one column, with collapsed menu to the single icon.

4.4 Logbook functionality

The main functionality of the developed application is the possibility to register informa-
tion about the laboratory and research related work within a single post in the chronologically
sorted form. This will enable researchers to collect research results in a one place.

4.4.1 Adding logbook entry

The most crucial function of the developed application is an ability of adding single post
which presents the results of the researcher work or status of the conducted measurements.
To place a new logbook entry one needs to use "Add new log" button which is always visible
for authenticated users in the navigation bar on the top of the main application window
(Fig. 4.11). Every log: consists of title, content and extra data imported from the J-PET
Experimental Database. Content text area was build based on the CKEditor, which offers
a very rich text formatting options. The editor offers the possibility of attaching images to
each post, which are stored on the server.

As it was mentioned before each single post can be supplemented with the experimen-
tal data imported from external experimental parameter database. This is realized in the
asynchronously mode without refreshing the view using the Angular.js library. To download
experimental parameters, Logbook application connects to the PostgreSQL J-PET Exper-
imental Experimental database [68], which contains all current and historical information

4.4. Logbook functionality 33

Figure 4.11: View presenting the feature of adding new entry to the logbook.

about parameters and conditions of measurement conducted with the J-PET apparatus. To
connect with the database system we have used the PHP pdo_pgsql driver [69]. As the
Logbook is an independent application, the experimental parameters are downloaded and
stored into local database entity "EXPERIMENTAL_DATA". The data items which is
downloaded and stored locally are:

1. current measurement id,
2. name of the file with the experimental data,
3. measurement description,
4. detector setup configuration used in the measurement,
5. calibration for the photomultipliers,
6. calibration for the scintillating modules,
7. the identifier of the hardware frame used during the measurement with the description.

The schematic view of the interesting fragment of the J-PET parameter database and the
local Logbook entity EXTERNAL_DATA is shown in Fig. 4.12.

Controller action responsible for downloading data from J-PET Experimental Parameter
Database was named: getExternalDataAction. The code of this action is shown in Fig. 4.13.
This method, after execution connects via Doctrine to the PostgreSQL database. Next by
using the Criteria() method it filters retrieved data by id property, and only the latest
experimental data are fetched. Finally, retrieved data is serialized to JSON format and
returned from the function to be displayed by the Angular.js, in the asynchronously mode.

34 4. Implementation of main functionalities of developed Logbook system

Figure 4.12: Part of the Entity Relational Diagram of the J-PET Experimental Parameter
(PostgreSQL), and local Logbook database (MySQL) showing EXTERNAL_DATA entity.

Figure 4.13: Function getExternalDataAction responsible for downloading external data
from J-PET Experimental Parameter Database.

4.4.2 Single logbook view

After creating a logbook entry (exactly like it was shown in section 4.4.1) user will
be redirect to the single logbook view. Every single logbook post is a collection of text
provided by the user during the post creation and optionally the experimental parameters
downloaded form the external database (Fig. 4.14). It includes the title, detailed description,
experimental parameters and author section. Additionally, text in each post can be enriched
with LaTeX [70] expression (emulated by MathJax), photos, plots and variety of multimedia
content. On the right side of the single post view the user data box is displayed. This

4.4. Logbook functionality 35

Figure 4.14: View of the single logbook entry. Upper part shows the information from the
Error and Warning Handling System, middle part is the logbook entry content, right sidebar
shows the information about the: user, date and time of post creation, and the experimental
parameters downloaded from the J-PET database, lower part contains the users comments.

36 4. Implementation of main functionalities of developed Logbook system

right sidebar contains the basic information about the user who created the entry and the
information about the date and time of the post creation. If the user posses the avatar in his
account, it will be also displayed. This functionality is based on the Gravatar service [71],
which allows connecting user email with an avatar picture. Every lab log entry is fixed and
can not be modified. However, to have a possibility of adding or discussing the content of the
post the functionality of commenting was introduced. Each user can add unrestricted number
of comment. However, for special cases the user with the administrative right can edit and
remove post from the lob log. Additionally, each single lab log entry can be supplemented
with the "Warning" or "Error" message handled by the separate module of the application
described in chapter 4.5.

The view of the single post was build using the TWIG engine. The template responsible
for displaying this view has many lines of code, therefore as an example we will show and
discuss the section responsible for displaying the users comments. Figure 4.15. shows a
comments part of log view TWIG template. Presented template is a compilation of the

Figure 4.15: Part of log view TWIG template, responsible for displaying comments, in the
single logbook entry.

Bootstrap and TWIG code. First and last line of the code is a TWIG loop command: {%
for logComment in logComments %} {% endfor %}, responsible for displaying each single
comment in a separate <div> box object. The <div> elements are attributed with Bootstrap
tags, for building the responsive grid schema. Finally, middle part of the code shows the
 element associated with the Gravatar directive to generate image avatar based on
the user email, followed by the TWIG variables: {{ logComment.author.realName }}, {{
logComment.content}} and {{ logComment.date }} containing the author, content and date
of the comment, respectively. Additionally, the date variable is supplemented with the option
data(H: i /d/n/Y) to print the date in a desirable format.

4.4. Logbook functionality 37

4.4.3 Logbook search module

As the Logbook will store many data one needs efficient way of searching for a particular
information. Therefore, the Logbook was equipped with a dedicated search engine. It was
build based on the Angular.js library, which enabled to prepare efficient and user friendly
search functionality working in the asynchronous mode without need to refresh the view.
The search engine enables to search logbook entries restricting results to five parameters:

• title of logbook singe entry,

• content included in the logbook entry,

• author name of the logbook entry,

• date of creation of the logbook entry,

• identifier of logbook entry.

In principle, it is possible to search only by one parameter or add them in a conjunction.
Search results can be sorted by desired parameter also without need to refresh the page.

Figure 4.16: View presenting the search engine functionality. The search parameters can
be entered in the upper part of the window, and the results are presented in the table below
in the form of list.

On the server side the search functionality was build based on the Symfony2 MySQL
query builder. It is a part of a getLogs function (shown in Fig. 4.17) in the LogRepository
module. Function accepts four parameters: $pageStart, $pageItems, $search, and $sort.

38 4. Implementation of main functionalities of developed Logbook system

Figure 4.17: Function getLogs responsible for displaying the logbook list of entries, and
search functionality.

When the value of the $search variable is not NULL, then function returns search results.
This variable is given in a form of associative array containing search parameters and their
values (e.g. title => ’Night J-PET measurement’). Next function iterates over all given
parameters and builds the database query with Doctrine QueryBuilder. In the body part
of the function, also we have implemented code responsible for data sorting and pagination,
which is necessary for infinity scroll view. This function is also used for display logbook
entries in the main logbook view in the form of list or tiles.

4.5 Experimental error and warning handling system

Logbook functionality has been supplemented with Error and Warning Handling System.
This allows each user to report warnings or errors during the experiment and laboratory work.
After reporting warning or an error with a short description it is in "open" status, which
means that is needs to be handled. In this way each user of the Logbook is aware of problem
event. Also, from this moment everyone, who resolves the problem, can close the report.

All warnings and error posts are displayed in one place on a special Error/Warning
view page (see Fig. 4.18). The display page was prepared by introducing the infinity scroll
functionality. This solution allows to avoid the pagination, and enables to load additional
content without refreshing the web page. Warnings are marked with yellow color while
the errors, in contrast, are marked with red color. Resolved error and warning reports
independent on the type are marked with the blue color. Also, each error and warning
report is supplemented with the start and end date/time signature. Furthermore, from the

4.5. Experimental error and warning handling system 39

Figure 4.18: View of the experimental Error and Warning Handling System.

list of errors and warnings one can access to the single lab log entry in which the event was
reported. In this way one can easily find out the more detail context of the occurred event.
The administrator user in contrast to the normal user can delete and modify the reported
errors and warnings.

To crate and implement the Error and Warning Handling System we have used features
offered by the Angular.js library. The whole functionality is build based on two application
controllers: Resource (shown in Fig. 4.19,) and errorCtrl (shown in Fig. 4.20).

The factory module Resource is responsible for downloading data each time when it is
called by the user action. It contains function getPage which accepts three parameters:

1. start - position of the first element to downloaded,
2. number - number of elements to be downloaded,
3. params - parameters to sort content.

The $http.post() method sends post request to the server in JSON format, and waits for the
data to be returned also in JSON form. This process is supported by $q service which helps
in run the asynchronously mode.

In case of the controller module getPage, it uses the Resource factory controller when
executing the callServer function “on load”. This function is defined in SmartTable [57]
directive in TWIG template. That module contains $scope.loadMore function which is a
part of ngInifiniteScroll module [54] of Angular.js. With the help of this function new data
are downloaded every time when user scrolls down the web page. Moreover the controller
function contains the $scope.isLoading, and $scope.noMore directives to animate a loading
icon during the process of data downloading.

40 4. Implementation of main functionalities of developed Logbook system

Figure 4.19: Developed factory “Resource” function of an error/warning handling module
responsible for the infinity scroll written in the Angular.js.

Figure 4.20: Developed controller “ErrorCtrl” function of an error/warning handling mod-
ule responsible for the infinity scroll written in the Angular.js.

4.6. Shifts managements system 41

4.6 Shifts managements system

One of the important things in the laboratory work is a good organization of the tasks.
Therefore, together with the Logbook functionality we have developed the shift management
system which can help in better organization of research. Developed feature is based on An-
gular.js library and JSON format, supported by Moment.js. The shift management module
is divided in two parts: (i.) user, and (ii.) administrator sections. We will describe them in
following subsections.

4.6.1 Shift planner

Shift planner (Fig. 4.21) is administration section, allowing authorized users to plan the
shift intervals for each week in the current year. In order to configure the week for shifts one
needs to:

1. Select a week to configure.
2. Select coordinator (person responsible for the laboratory work).
3. Assign shift intervals, and the number of people needed for one shift.

Administrator can choose the length of a single shift interval from 1 up to 24 hours. Also,
for each shift slot one has to define the maximal number of people to work on one shift.
The upper limit for the number of people assigned to one shift was set to five. Each new
shift interval has its individual color visible in the calendar and also reflected in the lab
log entries as the color dates. After planing the whole week administrator has to save the
settings by pressing the “Save Shift Plan” button. This operation is done asynchronously
using Angular.js, without refreshing the web page.

Figure 4.21: View presenting the administration part of the shift plan module where one
can plan shift intervals.

42 4. Implementation of main functionalities of developed Logbook system

4.6.2 Shift calendar

The shift calendar is the module available for each active user of the application eligible
to take shifts (Fig. 4.22). If the shift intervals were assigned by the administrator this is
visible by colored hours on the left sidebar time scale of the calendar. Each color denotes
one single shift interval. Users can assign for available shifts in current and upcoming weeks
if the plan is available. To sign for the particular shift, user uses the input field available in
the upper part of the web page where he picks up the date and the time of desired shift. If
the shift time slot is available it will be allocated for the user and his name together with
the avatar will appear in the calendar view. Color of the tile in the calendar is generated
for each user individual based on his email. In case when the slot is not available or the

Figure 4.22: View of the Shift Calendar available for the users eligible to take shifts.
Module visible in the upper part of the window can be used to sign for the shifts, and the
lower part is the week calendar view in which user can see the filling of the shift plan.

4.7. Administration panel 43

maximal number of people for the shift is exceeded the system will inform the user in a form
of a modal window with short information.

4.7 Administration panel

One of the requirements for the application was to implement the different access level
for the users, depending on their role. Therefore, we have prepared the administration
panel enabling to manage user right to different part of the application. However imple-
mented administration panel has a special properties, because it uses the external J-PET
User Database. In this approach administrator of the system has an ability to synchronize
the application local user list with the central user database. This is realized by the button
"Synchronize Users" shown in Fig. 4.23. The method in the User controller responsible for

Figure 4.23: Administration panel with users list.

this operation is named: synchronizeDatabaseAction. Implementation code for this func-
tionality is shown in Fig. 4.24. In the first step Doctrine manager download user data by
Petuser entity, from J-PET User Database. Next function iterates over the J-PET users
data, and for each user object data is compared with the existing in the local database. In
case when the data does not exists in the local database then automatically information is
copied to the Logbook database. However in the case when the user already exists in the
Logbook database only data which has been changed is updated. The synchronization takes
place only in one way from the external database to the local. Any changes made on the
local database will not affect the external J-PET user database.

44 4. Implementation of main functionalities of developed Logbook system

Figure 4.24: Function synchronizeDatabaseAction to synchronize users from external J-
PER User Database to local database.

The view which is displayed based on the local Logbook database shows the table in-
cluding the typical information about each user like: user id, nickname, real name, email
and user role. The user table was prepared using the Angular.js and SmartTable module
which allows sorting the table by any column. Furthermore, it allows to asynchronous data
loading which prevents each time to refresh the page. Additionally, the table was equipped
with the search fields, enabling to find user by any of the displayed parameters.

Supplementary, the local Logbook database was equipped with the functionality of as-
signing roles to each user independently of the central database. The user roles are organized
in three local access levels:

1. Administrator - can administrate users, logs and shifts.
2. User - can log in and use application.
3. Inactive - can not log in and use application.

In such an approach one can control access to the application on the local level making much
easier to comprehend users administration.

5. Summary
This thesis aimed at the designing, developing and implementing the fully functional

Electronic Logbook for Jagiellonian Positron Emission Tomography group. Created Elec-
tronic Logbook helps in the information flow and logging every laboratory activities in the
experiment. System allows to add, view, delete and search logbook posts. Every single post
is supplemented with text, media and the experimental data. Moreover we prepared the
Error and Warning Handling system which allows to report all unexpected events occurred
during the laboratory work. Design system has been also enhanced with the Shift Manage-
ment functionality to help in better planing of laboratory work. Application was equipped
with the administration panel enabling user management.

The Logbook application was created using the modern and innovative solutions available
for developers in the domain of implementation of web applications. The application was
prepared in the Client-Server approach, where as a core back-end technology we have uti-
lized the Symfony2 framework and Model-View-Controller (MVC) design pattern, together
with the Doctrine and TWIG template engine. Additionally to enrich the presentation layer
of the application we have used the Twitter Bootstrap web framework, jQuery and Angu-
lar.js technology. We also used additional Open Source libraries like CKEditor, MathJax,
Moment.js and some Angular.js and Symfony2 modules. The store data we have utilized
features offered by the MySQL and PostgreSQL database management systems.

According to the methodology of creation of modern web applications, Logbook system
was made in Responsive Web Design pattern (RWD). This results, in proper appearance of
the application in regardless, of used device like PC, tablet or smarthphone. The designed
front-end layer of the application is minimalistic and intuitive which is a very important
feature for the users. In some aspects of data presentation we have used the asynchronously
data loading to overcome the necessity of reloading the view.

A. Installation of the application
In order to install the Electronic Logbook application on a web server one need to

configure it in a proper way. Bellow we present a short instruction how to install developed
application on a server side:

1. Execute query from file database.sql in MySQL database
2. Install Symfony2 [10] version 2.6.3
3. Install ornicar/gravatar-bundle [59], friendsofsymfony/rest-bundle [60] and jms/serializer-

bundle [61]

(a) Add these bundles to your project composer.json

" r e qu i r e " : {
" o rn i c a r / gravatar−bundle " : "dev−master " ,
" f r i endso f symfony / re s t−bundle " : "~1.5" ,
" jms/ s e r i a l i z e r −bundle " : "0 . 13 .∗"

}

(b) Run composer update to install the bundles and regenerate the autoloader

$ composer . phar update

(c) Add these bundles to your application’s kernel:

// app l i c a t i o n /Appl i cat ionKerne l . php
pub l i c func t i on r e g i s t e rBund l e s ()
{

re turn array (
// . . .
new Ornicar \GravatarBundle\OrnicarGravatarBundle () ,
new FOS\RestBundle\FOSRestBundle () ,
new JMS\ Se r i a l i z e rBund l e \ JMSSer ia l i zerBundle () ,
// . . .

) ;
}

4. Copy src/AppBundle to src/AppBundle
5. Replace app/config in app/config
6. Copy web/ to web/ (ckeditor, js, css, images, fonts)
7. Create web/uploads/images/ path
8. Setup app/config/parameters.yml or app/config/parameters_dev.yml file with database

parameters

48 Appendix A. Installation of the application

9. Login on yourdomain.com by login: Administrator and password: Administrator
10. Go to yourdomain.com/user/admin and click "Synchronize Users" to synchronize user

database with J-PET User Database
11. From this time, administrator password is changed

Podziękowania

Składam serdeczne podziękowania niezastąpionemu
promotorowi - doktorowi Marcinowi Zielińskiemu za
pomoc w wyborze tematu pracy magisterskiej oraz za
mobilizacje do napisania jej w języku angielskim. Za

miłą atmosferę współpracy. Za każdą godzinę
spędzoną na dyskusji. Za każdego wymienionego

maila. Za każdą sugestie dotyczącą pracy. A przede
wszystkim, za wsparcie oraz nieocenioną pomoc

podczas jej redakcji.

Dziękuję grupie J-PET i Zakładowi Fizyki Jądrowej za
umożliwienie wykonania tej pracy w ramach

prowadzonych przez nich badań.

Dziękuję również kierownikowi studiów - doktorowi
habilitowanemu Pawłowi Górze za wszelką pomoc oraz

dobrą radę podczas całego toku nauki.

Pragnę również podziękować wspaniałemu
sekretariatowi Informatyki Stosowanej - magister
Annie Czeluśniak oraz Ewie Łanoszce za wszelką
pomoc, szczery uśmiech oraz zawsze miłe słowo
podczas pokonywania każdego kolejnego etapu

studiów.

Szczególnie dziękuję rodzinie i przyjaciołom za wiarę
oraz nieustanne wsparcie w dążeniu do celu.

Bibliography

[1] P. Moskal, P. Salabura, M. Silarski, J. Smyrski, J. Zdebik, M. Zieliński, Bio-Algorithms
and Med-Systems, Vol. 7, No. 2, 2011, pp. 73-78.

[2] P. Moskal, et al., Nucl. Instr. and Meth. A 775 54-62 (2015).

[3] P. Moskal, et al., Nucl. Instr. and Meth. A 764 317-321 (2014).

[4] P. Moskal, et al., Nuclear Medicine Review 15 C68 (2012).

[5] MediaWiki: https://www.mediawiki.org

[6] Andreas Mauthe, Peter Thomas, "Professional Content Management Systems: Han-
dling Digital Media Assets", John Wiley & Sons (2004).

[7] Wordpress: https://wordpress.org

[8] Drupal: https://www.drupal.org

[9] Joomla!: http://www.joomla.org

[10] Włodzimierz Gajda, "Symfony 2 od podstaw", Helion (2012).
Symfony2: http://symfony.com

[11] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides, "Design Patterns: Ele-
ments of Reusable Object-Oriented Software", Addison-Wesley (1994).

[12] Hasin Hayder, "Programowanie obiektowe w PHP 5", Helion (2009).
PHP5: http://www.php.net

[13] MIT license: http://opensource.org/licenses/MIT

[14] SensioLabs: https://sensiolabs.com

[15] Lausen Georg, Vossen Gottfried, "Obiektowe bazy danych", Helion (2000).

[16] OpenSorce: http://opensource.org

[17] Propel: http://propelorm.org

[18] Doctrine: http://www.doctrine-project.org

https://www.mediawiki.org
https://wordpress.org
https://www.drupal.org
http://www.joomla.org
http://symfony.com
http://www.php.net
http://opensource.org/licenses/MIT
https://sensiolabs.com
http://opensource.org
http://propelorm.org
http://www.doctrine-project.org

52 Bibliography

[19] Twig: http://twig.sensiolabs.org

[20] PHPUnit: https://phpunit.de

[21] XML: http://www.w3.org/XML

[22] YAML: http://yaml.org

[23] Martin Fowler, "Domain Specific Languages", Addison-Wesley (2010).

[24] Jason Beaird, James George, "Niezawodne zasady web designu. Projektowanie spek-
takularnych witryn internetowych. Wydanie III", Helion (2015).
Graphical user interface (GUI): http://www.linfo.org/gui.html

[25] Chuck Hudson, Tom Leadbetter, "HTML5. Podręcznik programisty", Helion (2013).
HTML5: http://www.w3.org/html

[26] Witold Wrotek, "CSS3. Zaawansowane projekty", Helion (2015).
CSS3: http://www.w3.org/Style/CSS

[27] Shelley Powers, "JavaScript. Wprowadzenie", Helion (2012).
JavaScript: https://developer.mozilla.org/en-US/docs/Web/JavaScript

[28] Syed Fazle Rahman, "Bootstrap. Tworzenie interfejsów stron WWW. Technologia na
start!", Helion (2015).
Bootstrap: http://getbootstrap.com

[29] FontAwesome: http://fortawesome.github.io/Font-Awesome

[30] Paweł Mikołajewski, "jQuery. Kod doskonały", Helion (2012).
jQuery: https://jquery.com

[31] Dariusz Kalbarczyk, Arkadiusz Kalbarczyk, "AngularJS. Pierwsze kroki", Helion
(2015).
Angular.js: https://angularjs.org

[32] Twitter Community: https://engineering.twitter.com/opensource

[33] Thoriq Firdaus, "Responsive Web Design. Nowoczesne strony WWW na przykładach",
Helion (2014).
Responsive Web Design (RWD): http://alistapart.com/article/
responsive-web-design

[34] Bootstrap customization: http://getbootstrap.com/customize/

[35] jQuery Foundation Members: https://jquery.org/members

[36] Ling Liu, Tamer M. Ozsu (Eds.), "Encyclopedia of Database Systems", Springer (2009).

http://twig.sensiolabs.org
https://phpunit.de
http://www.w3.org/XML
http://yaml.org
http://www.linfo.org/gui.html
http://www.w3.org/html
http://www.w3.org/Style/CSS
https://developer.mozilla.org/en-US/docs/Web/JavaScript
http://getbootstrap.com
http://fortawesome.github.io/Font-Awesome
https://jquery.com
https://angularjs.org
https://engineering.twitter.com/opensource
http://alistapart.com/article/responsive-web-design
http://alistapart.com/article/responsive-web-design
http://getbootstrap.com/customize/
https://jquery.org/members

Bibliography 53

[37] Michele Davis, Jon Phillips, "PHP i MySQL. Wprowadzenie. Wydanie II", Helion
(2012).
MySQL: https://www.mysql.com

[38] Richard Stones, Neil Matthew, "Bazy danych i PostgreSQL. Od podstaw", Helion
(2002).
PostgreSQL: http://www.postgresql.org.pl

[39] Microsoft SQL Server: http://www.microsoft.com/pl-pl/server-cloud/
products/sql-server

[40] Oracle Database: http://www.oracle.com/pl/database/overview/index.html

[41] Sybase Database: http://www.sybase.com.pl/

[42] IBM DB2: http://www-01.ibm.com/software/data/db2/

[43] C. J. Date with Hugh Darwen, "A Guide to the SQL standard : a users guide to the
standard database language SQL", Addison Wesley (1997).

[44] S. Sumathi, S. Esakkirajan, "Fundamentals of Relational Database Management Sys-
tems", Springer (2008).

[45] ISO/IEC 9075-1:2003: http://www.iso.org/iso/iso_catalogue/catalogue_tc/
catalogue_detail.htm?csnumber=34132

[46] Stonebraker, Michael with Moore Dorothy, "Object-Relational DBMSs: The Next
Great Wave". Morgan Kaufmann Publishers (1996).

[47] ISO/IEC 9075-1:2011: http://www.iso.org/iso/iso_catalogue/catalogue_tc/
catalogue_detail.htm?csnumber=53681

[48] GIT: https://git-scm.com/

[49] CVS: http://www.nongnu.org/cvs/

[50] GitHub: https://github.com/

[51] CKEditor: http://ckeditor.com

[52] MathJax: https://www.mathjax.org

[53] Moment.js: http://momentjs.com

[54] ngInfiniteScroll module for AngularJS: https://github.com/sroze/
ngInfiniteScroll

[55] ngAnimate module for AngularJS: https://docs.angularjs.org/api/ngAnimate

[56] Gravatar module for AngularJS: https://github.com/wallin/angular-gravatar

https://www.mysql.com
http://www.postgresql.org.pl
http://www.microsoft.com/pl-pl/server-cloud/products/sql-server
http://www.microsoft.com/pl-pl/server-cloud/products/sql-server
http://www.oracle.com/pl/database/overview/index.html
http://www.sybase.com.pl/
http://www-01.ibm.com/software/data/db2/
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=34132
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=34132
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=53681
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=53681
https://git-scm.com/
http://www.nongnu.org/cvs/
https://github.com/
http://ckeditor.com
https://www.mathjax.org
http://momentjs.com
https://github.com/sroze/ngInfiniteScroll
https://github.com/sroze/ngInfiniteScroll
https://docs.angularjs.org/api/ngAnimate
https://github.com/wallin/angular-gravatar

54 Bibliography

[57] Smart Table module for AngularJS: https://github.com/lorenzofox3/
Smart-Table

[58] Responsive Calendar module for AngularJS: https://github.com/twinssbc/
AngularJS-ResponsiveCalendar

[59] ornicar/GravatarBundle: https://github.com/ornicar/GravatarBundle

[60] friendsofsymfony/rest-bundle: https://github.com/FriendsOfSymfony/
FOSRestBundle

[61] jms/serializer-bundle: https://github.com/schmittjoh/JMSSerializerBundle

[62] Bootstrap DateTimePicker: https://github.com/Eonasdan/
bootstrap-datetimepicker

[63] Bootstrap Dialog: https://github.com/nakupanda/bootstrap3-dialog

[64] Workbench: https://www.mysql.com/products/workbench

[65] TinyBlob: https://dev.mysql.com/doc/refman/5.0/en/blob.html

[66] R. Rivest, "The MD5 Message-Digest Algorithm", RFC: 1321 (1992).

[67] PHP Streams function: stream_get_contents http://php.net/manual/en/
function.stream-get-contents.php

[68] E. Czerwiński, M. Zieliński, et. al., Bio-Algorithms and Med-Systems Vol. 10, Issue 2,
79 (2014).

[69] PHP PostgreSQL Functions (PDO_PGSQL): http://php.net/manual/en/ref.
pdo-pgsql.php

[70] LaTeX: http://www.latex-project.org

[71] Gravatar: https://gravatar.com

https://github.com/lorenzofox3/Smart-Table
https://github.com/lorenzofox3/Smart-Table
https://github.com/twinssbc/AngularJS-ResponsiveCalendar
https://github.com/twinssbc/AngularJS-ResponsiveCalendar
https://github.com/ornicar/GravatarBundle
https://github.com/FriendsOfSymfony/FOSRestBundle
https://github.com/FriendsOfSymfony/FOSRestBundle
https://github.com/schmittjoh/JMSSerializerBundle
https://github.com/Eonasdan/bootstrap-datetimepicker
https://github.com/Eonasdan/bootstrap-datetimepicker
https://github.com/nakupanda/bootstrap3-dialog
https://www.mysql.com/products/workbench
https://dev.mysql.com/doc/refman/5.0/en/blob.html
http://php.net/manual/en/function.stream-get-contents.php
http://php.net/manual/en/function.stream-get-contents.php
http://php.net/manual/en/ref.pdo-pgsql.php
http://php.net/manual/en/ref.pdo-pgsql.php
http://www.latex-project.org
https://gravatar.com

	Introduction
	Motivation and main functionality of the application
	Architecture of the application
	MVC and Symfony2 framework
	Front-end technologies
	Database management systems
	 MySQL
	 PostgreSQL

	GIT version control system
	Other Open Source libraries

	Implementation of main functionalities of developed Logbook system
	Logbook database
	User authentication
	Main Views of the Logbook
	Logbook functionality
	 Adding logbook entry
	 Single logbook view
	 Logbook search module

	Experimental error and warning handling system
	Shifts managements system
	 Shift planner
	 Shift calendar

	 Administration panel

	Summary
	Installation of the application

