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Abstract

This work presents the feasibility studies of mustard gas recognition using neural network
algorithms and data samples measured by a novel, non-invasive device, which is being developed
at the Jagiellonian University within the framework of the SABAT (Stoichiometry Analysis By
Activation Techniques) project. The data samples used to train and validate the performance of
the used algorithms were based on realistic Monte Carlo simulations which formed histograms of
energy depositions for three intervals of detection gamma quanta time. Multiple neural network
models have been trained and tested using 7-folds cross-validation in order to analyse how does
detector’s sensitivity impact model’s precision. The best results have been achieved for the
LaBr3:Ce detector. Nonetheless, based on simulated data from inexpensive, less sensitive NaI:Tl
detector obtained model’s accuracy has been only slightly lower. It is expected, that training a
model on a larger dataset, without a burden of correlation caused by a limitation in the size of
the simulations, may improve the results for NaI:Tl detector.
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1 Introduction

In the Baltic Sea, mostly in the Gotland Deep and in the Bornholm Deep, during warfare, over
250 kilotons of munition were sunken. Most of this arsenal consists of explosives and chemical agents.
Besides official dumping sites, there is a lot of sunken munition in unknown locations [1][2].

The current approach to the detection of underwater threats is based mostly on sonars. This
technique, which uses sound propagation, provides shapes of investigated objects but does not have
the capability to identify substances, which the objects consist of [3]. Thus, in many cases, in order to
make a decision if an inspected object is hazardous or not, one needs to perform an additional check,
which is done by specially trained divers, which put their health and lives at risk. A novel, non-
invasive device designed to remotely detect hazardous substances in the aquatic environment using
neutron activation analysis is being developed at the Jagiellonian University within the framework
of the SABAT (Stoichiometry Analysis By Activation Techniques) project.

Neutron Activation Analysis (NAA) is an analytical, non-destructive method that uses neutron
beams to determine the concentrations of elements in the unknown substance. During neutron irra-
diation elements in the investigated sample capture neutrons and become radioactive isotopes. As
a result, a range of particles may be emitted from the exited nuclei, including neutrons, protons,
and different kinds of radiations, such as alpha, beta, or gamma [4]. The emitted gamma quanta
are characteristic for a certain isotope. Knowing that hazardous materials mainly consist of carbon,
oxygen, hydrogen, and nitrogen, the detection of gamma quanta allows to determine if a given sub-
stance is dangerous [1][2]. A schematic representation of principles of the NAA method is presented
in Figure 1, where a nucleus is excited by inelastic scattering of a neutron and emits a gamma ray
which then may be detected.

Figure 1: A schematic representation of principles of the NAA method. A neutron scatters in-
elastically with an atomic nucleus leading to its excitation. Transition to the ground state of the
nucleus leads to gamma ray emission which is registered by a detector [2].

The SABAT system aims to detect hazardous materials in the underwater environment based
on Neutron Activation Analysis. Simulations of the SABAT device have been already performed.
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These have been carried out using Monte Carlo methods and primarily have focused only on the
detection of mustard gas. The simulated system geometry is shown in Figure 2. A white rectangle
represents a submarine. It is made of 3 mm stainless steel and has dimensions of 300 x 300 x 40
cm3. It contains a neutron generator with the 14 MeV neutron source, shown as a red dot, and
target represented as a black circle around it. Under the neutron generator, outside the submarine,
there is a cuboid neutron guide (white rectangle) of size 20 x 20 x 10 cm3. In the submarine, there
is also a detector, represented as a light-grey square, which has a cylindrical shape with both height
and diagonal length of 2 inches. It is placed 50 cm from the neutron generator. Under the detector,
there is a gamma quanta guide. It has a shape of a polyhedron with 20 x 20 cm2 top base, 20x7.7
cm2 bottom base, and height of 35 cm. Both neutron and gamma quanta guides are made from 3
mm thick stainless steel. On the seabed (yellow rectangle) of simulated size 400 x 400 x 100 cm3

there is a 3 mm thick steel container (194 x 50 x 50 cm 3), represented as a green rectangle, with
mustard gas. There have been performed two series of simulations. In the first series, the mustard
gas container is covered with 1 cm of wood, and the second series is without it. In the submarine and
in both of the guide tubes there is air under normal pressure. Surrounding seawater, with a salinity
of 7.8h, contains trace elements described in [5] on page 12 in the last column of Table 1. The
values, which were expressed in mg/kg, were normalized to the salinity of the water. The seabed is
sandy sediment, which consists in 25% of water and contains trace elements specified in [3] on page
4 in Table 1. Simulated environment corresponds to the areas of the most interest, which is the
bottom of the Baltic Sea near to the shores. Additionally, there have been carried out corresponding
two series of simulations without mustard gas.

Figure 2: Scheme of the simulated SABAT system investigating mustard gas in aquatic environment
[3].
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The goal of the research presented in this thesis was to check feasibility of fast identification of
a hazardous substance using neural networks. These studies were done based on the Monte Carlo
simulations of the SABAT detector investigating a mustard gas container. Moreover, influence of
a gamma quanta detector resolution on the precision of this new recognition method was checked.
The main technologies used for this project were Python 3.7, Keras library, and Jupyter notebook.

This thesis is structured into 5 Chapters. In the second Chapter, an introduction to machine
learning and a detailed explanation of neural networks are given. Chapter 3 contains information
about simulated data from the SABAT detector. The essential part of this chapter is the description
of data pre-processing, and generation of datasets to train, validate, and test models. These models
to recognize mustard gas are presented together with corresponding datasets in Chapter 4. Chapter
5 contains conclusions and the outlook for the future. Lastly, in Chapter 6 there is a summary of
the thesis.
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2 Neural Networks

Machine learning is a "field of study that gives computers the ability to learn without being
explicitly programmed" [6]. It is a set of algorithms that gives the capability to learn from data. They
can be classified into four groups: supervised, unsupervised, semi-supervised, and reinforcement
learning. Supervised learning algorithms are the ones that gain knowledge on how to analyse objects
based on labeled training data. The most obvious examples of supervised models are classifiers.
On the other hand, unsupervised learning algorithms acquire knowledge from neither labeled nor
categorized data. They find and describe the hidden structure of the given data. The typical
unsupervised learning algorithm is clustering. Semi-supervised learning is somewhere in between
two previously described categories since it uses both labeled and unlabeled data sets [7]. The
reinforcement learning models are based on interactions with the environment. The model called
agent performs actions and receives rewards or punishment based on which it is able to learn.
One of the machine learning approaches is neural networks. The concept and the name of these
mathematical structures refer to biological neural networks that can be found in brains. It was
introduced for the first time in 1943 by mathematician Walter Pitts and neurophysiologist Warren
McCulloch. They described the nervous system as a net of neurons. Each one of neurons has a
threshold which excitation exceeding leads to the initialization of an impulse [8].

Research presented in this thesis is focused on neural networks for supervised learning.

2.1 Biological neuron

In the end of 19th century, spanish neuroscientist and pathologist Santiago Ramón y Cajal
discovered that the brain and spinal cord consist of nerve cells called neurons. A neuron is formed
of a cell body, dendrites, and an axon [9]. A basic structure of a nerve cell is shown in figure 3.

Figure 3: A schematic representation of a basic nerve cell. Adapted from [10].

The core part of a neuron is the cell body. It controls the cell’s functions. Dendrites attached
to the cell body allow its communication with the environment and with other neurons. The long
tail-like structure, which is called an axon, extends the cell body and is responsible for carrying
the signal away from a neuron. Neuron communicates through synapses in which dendrites of one
neuron and axons of other neurons do not touch each other [10]. The space between them is called
the synaptic gap. John Carew-Eccles’ research showed that there are excitatory and inhibitory
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synapses [11], which means that the signal may be increased or decreased between neurons with
endogenous chemicals.

2.2 Mathematical model of neuron

An artificial neuron is a simplified model of a biological one. Input vector x = (x0, x1, x2, ..., xn)

fulfills the role of neural signals registered by dendrites. It is assumed that x0 = 1 to reduce bias
(defined in Section 2.5). Each input has a corresponding weight as in biological neuron synapses are
able to influence the signal. Weights vector is represented by w = (w0, w1, w2, ..., wn). Inside neuron
there is a net input function given as a weighed sum of inputs v = g(x,w) = w0 · x0 +w1 · x1 +w2 ·
x2 + ..+ wn · xn = wT · x and an activation function y = f(v). Since in the case of a real nerve cell
there is only one axon, the artificial neuron model contains only one output y [9]. A scheme of the
described artificial neuron is presented in Figure 4.

Figure 4: Scheme of a mathematical model of a neuron. It consists of input vector x =

(x0, x1, x2, ..., xn), weights w = (w0, w1, w2, ..., wn), a net input function denoted as
∑
, and an

activation function f(v) [12].

2.2.1 Activation functions

An activation function defines the outcome signal of a neuron. There are many functions, which
can be used in neural networks for that purpose. In Table 1 the most popular ones are presented.
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Name Formula Plot

Binary Step f(x) =

{
1 if x ≥ 0

−1 if x < 0
(1)

Linear
f(x) = x ·m, where m ∈ R (2)

ReLU f(x) =

{
x if x ≥ 0

0 if x < 0
(3)

Leaky ReLU f(x) =

{
x if x ≥ 0

0, 01 · x if x < 0
(4)

Sigmoid f(x) =
1

1 + e−x
(5)

Hyperbolic Tangent f(x) = tanh(x) =
2

1 + e−2x
−1 (6)

Table 1: Selected activation functions used with supervised neural networks.
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2.3 Perceptron

The perceptron, which was "invented in 1957 by Frank Rosenblatt", is one of the simplest
artificial neural network architecture [13]. It contains one dense layer of neurons described in section
2.2 with binary step activation function, called linear threshold units (LTU) [13]. Each neuron is
connected to all inputs. These connections are represented by input neurons, which pass thorough
all information that was sent to them. There is also one additional input neuron that always outputs
a value of 1. It is called a bias neuron. An example of a perceptron with 2 input and 3 output
neurons is shown in Figure 5.

Figure 5: Schema of a perceptron consisting of 2 input and 3 output neurons. Adapted from [13].

2.4 Feedforward Neural Network

There are many architectures of neural networks. They may differ in the degree of complexity
and learning potential. One of them is the Feedforward Neural Network (FNN). Its name comes from
the information flow, which is directed only forward within the network. In other types of networks,
information may go backward or within one layer [14]. As in the case of perceptron, all layers are fully
connected and each layer except the output layer contains bias neuron. Feedforward Neural Networks
may contain additional layers of neurons, called hidden layers, between the input and output ones.
Networks with more than one such a layer are known as deep neural networks [13]. Moreover, one
defines layer width as the number of neurons contained in the layer (excluding bias neurons), and
network depth which is the number of layers (without the input one) [15]. Furthermore, modern
FNNs may contain additional techniques applied between or in dense layers. They are described in
Section 2.5.

2.5 Neural network learning process

This section is devoted to the training of an FNN in the context of supervised learning. It is
a process, in which a model is provided with input data, known as features and correct results -
called labels. The aim of the training is to process the features - both known, from which the model
learns, and previously not seen by the model, in a way to get the closest possible results to the
real ones [14]. It can be achieved by manipulating trainable parameters - weights. Each neuron
has a set of weights as described in section 2.2. While training the network, weights of all neurons
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are being updated. The total number of weights in a network equals the number of links between
neurons (including bias neurons). The number of trainable parameters has an impact on model
capacity. Insufficient capacity may lead to underfitting. It occurs when a model cannot recognize
the underlying pattern of the data. It performs poorly for both training and testing data sets. On
the other hand, too great complexity may cause overfitting. It happens when a model recognizes
not only the underlying pattern but includes also noise and outliers. An overfitted model performs
very well for known data and poorly for unseen data points. Performance of a neural network in all
the listed cases is pictorially presented in Figure 6.

Figure 6: Pictorial representation of the underfitted (left plot), overfitted (right plot) and properly
trained neural networks. In the plots, the crosses and the circles represent data points of two different
classes, and the dashed line illustrates a pattern of a model. Adapted from [16].

The complexity of a model is connected with variance and bias of its predictions. Variance is the
variability of predictions for a given data points. High variance models focus on too many details
on the training set and therefore they are overfitted. Bias is defined as a difference between correct
values and an average prediction of the model. High bias models oversimplify the pattern by not
paying enough attention to the training data set [17]. It is not possible to create a model with low
variance and low bias at the same time. While the variance is decreasing, the bias is increasing.
Finding an optimal model complexity is known as a variance-bias tradeoff (see Figure 7).
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Figure 7: Qualitative dependence of the neural network performance as a function of the complexity.
The optimum performance is achieved by minimization of the total error defined as the sum of
variance, the bias squared and so called irreducible error, which is a measure of noise in the data
[18].

An important role in the learning process is played by a loss function, also called a cost function,
which describe the distance between the calculated results and the correct ones. The most commonly
used loss functions for binary classification are described below. In all of these functions, the best
possible result is a value of 0, and the greater it is, the worst the model behaves.

2.5.1 Binary cross-entropy

Binary cross-entropy, also known as negative log-likelihood, is a loss function intended for binary
classification problems with labels values x ∈ {0, 1}. To obtain model results in the range [0,1] the
last layer of the network should have sigmoid as an activation function (see Section 2.2.1).

According to Shannon’s theory of information, entropy is an average information. Information
is given as a number of bits which is necessary to encode a random event from a given probability
distribution. Entropy can be understood as "the average or expected uncertainty associated with
this set of events" [19]. It is described by the equation:

H(X) = −
n∑
i=1

p(xi) · logb(p(xi)) (7)

Where:

• X: is an array of events,

• n: is a length of X,

• p(xi): is a probability of event xi,

• b: is a base of the logarithm, commonly used b ∈ {2, e, 10}.

The binary cross-entropy, as the name indicates, is based on entropy. An event for each xi in a
dataset is defined as belonging or not to a given class A:
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yi =

{
1 if x ∈ A
0 if x /∈ A

(8)

The probability of an event is simply the prediction of a model. That is, if an output of a network
for a given element xj is model(xj) = ŷj then predicted probability of belonging to class A equals
p(xj ∈ A) = ŷj and predicted probability of element not being in class A is p(xj /∈ A) = 1 − ŷj .
Binary cross-entropy is a function of two parameters - arrays of the same lengths. It is given by the
equation:

BCE(Y, Ŷ ) = − 1

n

n∑
i=1

yi · log(ŷi) + (1− yi) · log(1− ŷi) (9)

Where:

• Y : is an array of correct values,

• Ŷ : is an array of predicted values,

• n: is a length of labels arrays, n = |Y | = |Ŷ |,

• yi: is a real probability of element xi being in class A, yi ∈ {0, 1},

• ŷi: is a predicted probability of belonging to class A.

2.5.2 Hinge Loss

The hinge loss function was mainly developed to use with support vector machines. It works
well for classification problems with labels values x ∈ {−1, 1} [21]. The model obtains results in
that range, for example with a hyperbolic tangent function as activation of the output layer. The
hinge loss function is defined as:

HL(Y, Ŷ ) =
1

n

n∑
i=1

max(0, 1− yi · ŷi) (10)

Where:

• Y : is an array of correct values,

• Ŷ : is an array of predicted values,

• n: is a length of labels arrays, n = |Y | = |Ŷ |,

• yi: is an i-th real value,

• ŷi: is a predicted i-th value.
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2.5.3 Hinge squared Loss

There are many extensions of the hinge loss function. The most known one is the hinge squared
loss. It is simply a squared score for each tuple of real label and prediction before calculation of
mean [22]:

HSL(Y, Ŷ ) =
1

n

n∑
i=1

max(0, 1− yi · ŷi)2 (11)

Where:

• Y : is an array of correct values,

• Ŷ : is an array of predicted values,

• n: is a length of labels arrays, n = |Y | = |Ŷ |,

• yi: is an i-th real value,

• ŷi: is a predicted i-th value.

To prevent overfitting of the neural network one applies so called regularization methods. In
most of the cases one adds an extra term to the loss function which is penalizing it, as in the two
most known regularization methods described below.

2.5.4 R1 regularization

In this regularization method parameters of a neural network are being shrunk towards zero.
The term added to the loss function is given as:

L1 = λ
n∑
i=1

|wi| (12)

Where:

• λ: is a coefficient, the higher it is, the more the loss function is penalized and the more the
weights of the model are shrunk toward zero,

• n: is a number of weights in the model,

• wi: is an i-th weight.

A model with the penalized absolute value of the weights often computes a subset of input
features, because features with weights equal to zero are omitted. Consequently, it is simpler and
easier to interpret. However, it does not have the ability to learn complex data patterns. L1
regularization has multiple, sparse solutions. In addition it is robust to outliers [23].
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2.5.5 R2 regularization

R2 regularization penalty term is a sum of squared weights of the model:

L2 = λ
n∑
i=1

w2
i (13)

Where:

• λ: is a coefficient, the higher it is, the more the loss function is penalized and the smaller are
the weights,

• n: is a number of weights in the model,

• wi: is an i-th weight.

Weights of the model with L2 regularization are small and not necessarily equal zero. The model is
able to learn complex problems but it is not robust to outliers [23].

Dropout is another technique to obviate overfitting. At each training step, some neurons are
being entirely ignored. Every neuron from the input layer and all hidden layers has a probability
p of being "dropped out" at a given training step [13]. In Figure 8 an example of neural network
without (a) and with dropout applied at the training stage is shown.

Figure 8: A standard neural network without dropout (a) and the neural network with two omitted
neurons at the training stage with applied dropout (b) [24].

2.5.6 Optimization algorithms

There are many optimization problems in deep learning. The most important and at the same
time most difficult one is training a model. This means tuning model parameters to significantly
reduce the cost function. Optimization for training a machine learning task is different from pure
optimization. The aim of the training is to minimize a generalization error, which is intractable. It
could be simplified to minimizing an error with respect to the test set. Hence, the model parameters
can only be optimized indirectly by reducing cost function with respect to the training set. Hopefully,
while doing that, the test error and unknown generalization error will decrease as well. On the
contrary, in pure optimization problem minimizing the training error would be the goal itself [25].
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All of the commonly used optimization algorithms are gradient-based. Let’s assume there is a
one-dimensional loss function f : R −→ R. The slope of f(x) at the point x equals the derivative
f ′(x). It indicates how the output of the function will change corresponding to a small input
modification: f(x+ ε) ≈ f(x) + ε · f ′(x) [25]. Therefore, it can be used in minimizing loss function
to obtain a slightly better result in each iteration of an algorithm. Real-live loss functions are more
complex, thus previously mentioned impact of input modification can be generalized to multivariate
loss function g : Rn −→ R, where the input is a vector x = [x1, x2, .., xn]. Partial derivative ∂g(x)

∂xk

for k ∈ [1, n] describes the change of output when only one parameter xk is modified. The gradient
∇g(x) = [∂g(x)∂x1

, ∂g(x)∂x2
, .., ∂g(x)∂xn

]T is a vector containing all partial derivatives [26].
Points where the derivative or all partial derivatives of loss function equal zero, contain no

information about which direction to move in the next step. These critical points are local minima,
local maxima, and saddle points. Once the algorithm steps into a point where the gradient is
vanished it may not be able to overcome the mentioned critical point and find an optimal minimum.
An example of a loss function with saddle point and local minimum is presented in Figure 9.

Figure 9: Example of a loss function with saddle point, local minimum, and global minimum [26].

Below the most common gradient-based optimization algorithms are presented. These optimizers
focus only on training data, therefore they can find the best possible minima with respect to known
data. Because of that, an optimization algorithm must be stopped at an optimal moment to avoid
overfitting. All operations on vectors in sections 2.5.6.1 - 2.5.6.6 are element-wise.

2.5.6.1 Gradient Descent
Gradient Descent (GD) is a basic iterative optimization algorithm used to find a local minimum

of a differentiable function f : Rn −→ R, where n ≥ 1. Let x0 be an initial point and let µ be the
learning rate. In each step a new point is defined as xi+1 = xi − µ · ∇f(xi). In this algorithm the
gradient ∇f(x) is calculated using the entire dataset, thus the cost of computing each iteration is
O(n). In figure 10 there are shown usages of the algorithm with different learning rates on one-
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dimensional function. Choosing the correct learning rate can be difficult. Too small µ may lead
to too small steps and consequently not reaching a minimum. On the other hand, too big value of
µ could cause jumping out of the area. One of the approaches for this problem is to modify the
learning rate during a model learning process.

Figure 10: Gradient descent with different learning rates: too small learning rate (left plot) require
a lot of learning epochs before reaching a minimum, accurate learning rate (middle plot) enables to
step into a minimum in optimal number of iterations, and too big learning rate (right plot) causes
moving too far away in each of a step [26].

2.5.6.2 Stochastic Gradient Descent
Stochastic Gradient Descent (SGD) is a modification of the Gradient Descent algorithm where

the gradient of a loss function is estimated based on a random fraction of a dataset. Because of
this improvement, the computation cost of each iteration reduces from O(n) to O(1) in trade for
insignificantly lower convergence rate. A comparison of GD and SGD steps for a two-dimensional
function is shown in figure 11.

Figure 11: Comparison of Gradient Descent and Stochastic Gradient Descent convergence. The
GD algorithm (left plot) in each iteration converges slightly better than the SGD algorithm (right
plot). However, computation cost of each iteration of the SGD is much lower than the GD [26].

2.5.6.3 Momentum
The momentum method is a technique to accelerate GD or SGD by accumulating gradient

vector in directions where reduction is persistent [27]. Let x0 be the initial point and v0 = 0 be the
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variable to store gradients. In each step new point is defined by the following equations [28]:

vi+1 = β · vi +∇f(xi) (14)

xi+1 = xi − µ · vi+1 (15)

Where:

• β: is the momentum coefficient, β ∈ [0, 1],

• µ: is a learning rate.

2.5.6.4 AdaGrad
AdaGrad is a gradient-based algorithm with an adaptive learning rate. In each step, the gradient

vector is being scaled down along the steepest dimensions. This means each training step is corrected
towards the global optimum. Let x0 be the initial point and s0 = 0 be the parameter to accumulate
gradients. New points are given by [13]:

si+1 = si + (∇f(xi))2 (16)

xi+1 = xi −
µ√

si+1 + ε
∇f(xi) (17)

Where:

• ε: is a constant greater than zero for numerical stability, typically set to 10−10,

• µ: is a learning rate.

AdaGrad achieves good results for simple quadratic problems. However, the learning rate is often
decreased too strongly and the algorithm cannot reach the global minimum when it is used for more
complex patterns of the data [13].

2.5.6.5 Root Mean Square Prop
Root Mean Square Prop (RMSProp) is a modification of AdaGrad algorithm which accumulates

only the most recent gradients. It prevents from decreasing the learning rate too rapidly. At each
training step a new point xi and a parameter si (s0 = 0) are defined as [26]:

si+1 = γ · si + (1− γ)(∇f(xi))2 (18)

xi+1 = xi −
µ√

si+1 + ε
∇f(xi) (19)

Where:

• γ: is the momentum coefficient, γ ∈ [0, 1],

• ε: is a constant grater than zero for numerical stability, typically set to 10−6,

• µ: is a learning rate.
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2.5.6.6 Adam
Adam, which stands for adaptive moment estimation, is an algorithm, which combines the

advantages of both AdaGrad and RMSProp. Let x0 be an initial point, m0 = 0 the first moment
vector and v0 = 0 the second moment vector. In each iteration a new point xi+1 is defined using
the following equations [29]:

mi+1 = β1 ·mi + (1− β1)∇f(xi) (20)

vi+1 = β2 · vi + (1− β2)(∇f(xi))2 (21)

m̂i+1 =
mi+1

1− βi+1
1

(22)

v̂i+1 =
vi+1

1− βi+1
2

(23)

xi+1 = xi −
µ · m̂i+1√
v̂i+1 + ε

(24)

Where:

• β1, β2 : are hyperparameters, typically initialized to β1 = 0.9 and β2 = 0.999, βk to the power
i+ 1 is denoted as βi+1

k ,

• ε: is a constant grater than zero for numerical stability, typically set to 10−8,

• µ: is a learning rate, originally proposed value is µ = 0.001.

2.5.7 Glorot and He weights initialization

The problem of vanishing or exploding gradients may be significantly alleviated by a proper
weights initialization before training a network. There have been proposed Glorot initialization
technique [30], known also as Xavier initialization, and its modification for ReLU (including its
variants) activation functions called He initialization [31]. Each of these techniques was named after
one of the authors. The weights are initialized by a random variable from a normal distribution
with a mean of 0, and a standard deviation σ, or from a uniform distribution in the range (−r, r)
as described in Table 2. The variables fan_in, fan_out are respectively the number of incoming
and outcoming connections for a neural network layer, which weights are being initialized.

Normal distribution Uniform distribution

Glorot initialization σ =
√

2
fan_in+fan_out r =

√
6

fan_in+fan_out

He initialization σ =
√
2
√

2
fan_in+fan_out r =

√
2
√

6
fan_in+fan_out

Table 2: Glorot and He initializations parameters for normal and uniform distribution, where the
number of incoming and outcoming connections of a layer, which weights are being initialized are
denoted as fan_in and fan_out, respectively [13].
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2.5.8 Batch Normalization

Batch Normalization is a technique addressed to an Internal Covariate Shift problem. It refers
to changing distribution of each layer’s inputs, as the parameters of the previous layers are being
changed during training [32]. Stabilizing the distributions of layers’ inputs in a model may lead to
reducing the problem of exploding/vanishing gradients and consequently allow to train the model
in a more efficient way. In a model with batch normalization, there are extra operations added for
each layer just before the activation functions. For each activation independently mean and variance
of the inputs are calculated in the mini-batch B = {x1, x2, .., xm} in order to normalize it and then
scale and shift the results [13]. The algorithm is given by the equations:

µB =
1

m

m∑
i=1

xi (25)

σ2B =
1

m

m∑
i=1

(xi − µB)2 (26)

x̂i =
xi − µB√
σ2B + ε

(27)

yi = γx̂i + β ≡ BNγ,β(xi) (28)

Where:

• m: is a number of training examples in the mini-batch B,

• µB, σB: are the empirical mean and standard deviation calculated for the mini-batch B,

• ε: is a constant greater than zero for numerical stability, typically set to 10−3,

• x̂i: is a normalized input,

• γ, β: stand for the scaling and shifting parameters for the activation, respectively,

• yi: is the output.

Once the model has been trained the normalization is performed using population statistics with
mean and variance averaged over mini-batches of size m. Consequently the transformation y =

BNγ,β(x) is replaced with the following definition of y [32]:

E[x] = EB[µB] (29)

V ar[x] =
m

m− 1
EB[σ

2
B] (30)

x̂ =
x− E[x]√
V ar[x] + ε

(31)

y =
γ√

V ar[x] + ε
x+ (β − γE[x]√

V ar[x] + ε
) (32)
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3 Data preparation

The SABAT Monte Carlo simulations contain information about each particle, which had in-
teracted within the defined virtual world. It includes energy deposition, global time (counted since
a neutron was emitted from a source), local time (counted since the particle was produced), coor-
dinates of the reaction, particle name, kinetic energy, volume in which it had reacted, and other
quantities. In order to prepare data sets relevant for the research presented in this thesis, only
particles interacting in the detector were selected. For such subset of the simulated data only the
energy deposited in the detector and the global time of interaction were taken into account, since
only these quantities are provided in a real measurement. Thus, each reaction in the detector is
represented by two values:

energy depo s i t i on ; g l oba l time

The data have been divided into two datasets. The first dataset contains information from
simulations with mustard gas, surrounding water and sand, and is referred to as mustard gas or
signal sample. In the second dataset, there are data from simulations without mustard gas which
is referred to as background. Both mustard gas and background datasets contain around 6 · 105

reactions. In Figure 12 spectra of energy deposition for both of the datasets are shown.

Figure 12: Energy deposition and global time in mustard gas and background datasets.

Interaction of a neutron with a nucleus which leads to emission of gamma quanta is an inelastic
neutron scattering or neutron capture. Inelastic neutron scattering occurs when the speed of a
neutron is high. During the reaction, the neutron is absorbed by a nucleus and then a neutron
is re-emitted. Some energy of the neutron emitted from the source is absorbed by the recoiling
nucleus and it remains excited. The excitation energy is released by emitting at least one gamma-
ray [36]. This process is illustrated in Figure 13(a). On the other hand, if a neutron is slow, which
means it had already lost most of its energy in other reactions, it may be captured by a nucleus it
has collided with. As in inelastic neutron scattering after absorption of a neutron, the nucleus is
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excited and emits one or more gamma rays, as presented in Figure 13(b). It has been estimated
that in the case of underwater detection with the SABAT sensor, reactions which have occurred up
to 2 µs after a neutron was emitted are mainly inelastic neutron scattering. On the other hand,
energy deposition detected in the detector after 10 µs most likely originate from neutron capture [3].
Simulated distributions of energies deposited in the gamma quanta detector of the SABAT system
are presented in Figure 14. The data were divided into three categories according to the time of
registration of the gamma rays: less or equal to 2 µs, greater than 2 µs and less or equal to 10 µs,
and greater than 10 µs.

Figure 13: Schema of inelastic scattering and neutron capture processes.

Figure 14: Simulated distributions of energies measured by the detector for three bins of gamma
quanta registration time.

These spectra are done assuming a perfect detector time and energy resolutions which is not the
case in the real measurement. Different detectors may differ in precision of determination of the
energy of gamma rays. Energy resolution is defined as a full-width-at-half-maximum (FWHM) of a
measured line divided by the true value of the gamma ray energy. FWHM is an absolute value of a
difference between two extreme values, which fulfill the criterion f(x) = 1

2fmax. It is illustrated in
Figure 15.

Gamma quanta of energy e0 are registered by a detector with a finite resolution given by the
σ parameter. The energy reconstructed by the detector may have different values according to the
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Gaussian curve representing a probability density function. The sharper is the distribution peak the
lower is its FWHM parameter, which means that subsequent measurements of the same energy line
are concentrated more around the e0 value [33]. The relationship between FWHM and standard
deviation σ, for a Gaussian-shaped curve, is defined as FWHM = 2σ

√
2 ln 2 ≈ 2.35σ [34].

Figure 15: Full-width-at-half-maximum illustrated at a Gaussian-shaped peak [34].

Energy resolution R is energy dependent and can be parametrized using the following equation:
R(e) =

√
a2

e + b2, where e is the gamma quanta energy in MeV, and a, b are constant parameters
[35]. Therefore, FWHM for a registered gamma quantum of energy e can be parametrized as:

FWHM(e) =
R · e
100

=

√
a2

e + b2 · e
100

(33)

Parametrizations of the Full Width at Half Maximum dependence on gamma rays energy, ac-
cording to Equation (33), are presented in Table 3 for most commonly used scintillation materials.
The dependence of the resolutions of these materials as a function of energy are shown in Figure 16.
As one can see detector offering the best measurement of the gamma rays energy is the LaBr3:Ce
but at the same time it is the most expensive scintillator. On the other hand, the cheapest material
(NaI:Tl) provides much worst performance of the detector. Thus, studies described in this work
were done assuming usage of all the listed scintillating detectors in order to check if the proposed
method of data analysis allows to use lower quality and cheap materials like NaI:Tl.
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Figure 16: Energy resolution [%] and FWHM [MeV] for detectors.

Detector a b
Lanthanum Bromide (LaBr3: Ce) 0.893 0.582

Sodium Iodide (NaI:Tl) 2.131 2.759

Bismuth Germanate Oxide (BGO) 8.378 0

Lutetium Oxyorthosilicate (LSO) 6.319 0

Table 3: Energy resolution coefficients for most commonly used scintillating detectors. The details
of measurements leading to these values can be find in [35].

In order to train and validate models k-fold cross validation was used. The preferred quantity
in both testing and validation sets is 15% of all data. The integer, which gives the closes size
to 15% after division into folds is 7. In order to perform 7-fold cross-validation, both signal and
background datasets have been randomly divided into 7 sets. Then, for each of the energy resolution
parametrizations described in Equation (33) and Table 3 the simulated energy depositions were
smeared with a Gaussian function. There have been created separate datasets containing tuples of
energy and time, where each energy value e have been replaced by a random number from Gaussian
distribution with mean µ = e and standard deviation σ = FWHM(e)

2
√
2 ln 2

. Such a smeared simulation
data were used as an input to the training of the neural network models described in this work. Data
samples were composed from randomly chosen events represented as histograms of energy deposition
done for the three time intervals defined earlier in this section. Example data samples are shown in
Figure 17 and 18. All the input data sets used to train the neural network and test its performance
are explained in detail in Table 4 in the next chapter. Based on events in each of the 7 folds 5 · 103

data samples were created. Thus, the total number of data samples for signal and background is
7 ∗ 104. In the first iteration of 7-fold cross-validation the first fold of both signal and background
is used as a test set. One randomly chosen fold of the remaining 6 sets is used as validation data
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and the rest served as a training set. Consequently, in the following 6 iterations the algorithm was
trained with datasets constructed in the same way, having as the test set i-th fold, where i ∈ [2, 7]

is the number of iteration. Additionally, in each of the iterations, the data were standardized, using
the following equation:

x̂ij =
xij − µi
σi

(34)

Where:

• x̂ij : is a standardized i-th input value of j-th data point,

• xij : is an i-th input value of j-th data point,

• µi: is a mean value of i-th input value, calculated over training data set,

• σi: is a standard deviation of i-th input value, calculated over training data set.

a) b)

c) d)

Figure 17: Exemplary simulated data samples based on randomly chosen events and represented as
histograms of energy deposition: a) without taking into account gamma quanta detector resolution,
sample of 2 · 104 events, b) with energy resolution corresponding to the LaBr3:Ce detector (2 · 104

events), c) applying Gaussian smearing using parametrization for the NaI:Tl detector (2·104 events),
d) without taking into account gamma quanta detector resolution (5 · 103 events).
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a)

b)

c)

d)

e)

Figure 18: Example data samples based on 5 · 103 randomly chosen simulated events represented
as histograms of the energy deposition for three slots of the gamma quanta registration time. His-
tograms were done without energy smearing ( a) ) and applying energy resolution parametrization
for b) LaBr3:Ce, c) NaI:Tl, d) BGO and e) LSO materials.
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4 Trained models and their performance

In order to train models on different data sets a base model architecture was created. Its schema
is shown in Figure 19. This model can be configured using the variable n, which is a width of the
input data, depending on the dataset n ∈ {100, 200, 300}. It consists of 2 hidden layers, which
contain respectively 16 and 8 units. For each of the hidden layers, we have used L2 regularization,
with coefficient λ = 0.0001 and λ = 0.1, respectively. After each of the described layers there is
a batch normalization layer. Then we have used a leaky ReLU activation function with α = 0.1

and α = 0.2, respectively. The last part of hidden layers blocks were dropout layers with rate equal
respectively to 0.1 and 0.7. After the last hidden layer block, there was an output layer, which
contained one unit followed by a sigmoid activation function. Hidden layers weights were initialized
using He uniform initializer while the output layer was initialized with Glorot uniform initializer.

Models were trained on six types of datasets described in Table 4. A model type is associated
with an input width n. The types are labeled using letters A - F for simplification purposes.

Dataset type n Sample representation
A 100 A histogram of all energy depositions with 100 bins.

B 300

Three histograms of energy depositions. The first 100 numbers
represent the first histogram (reactions, which occurred within 2
µs), the following 100 numbers represent the histogram of energies
detected after 2 µs and before or exact at 10 µs. The last 100
numbers represent the third histogram, which contains reactions
detected after 10 µs. The time of reaction is counted since the
neutron was released.

C 200

Two histograms of energy depositions. The first histogram (reac-
tions within 2 µs) is represented on the first 100 numbers, and the
next 100 numbers represent histogram made of reactions, which
occurred after 2 µs since the neutron was released.

D 100
A histogram of energy depositions, which occurred within 2 µs

since the neutron was released.

E 100
A histogram of energy depositions, which occurred after 2 µs and
before or exact at 10 µs since the neutron was released.

F 100
A histogram of energy depositions, which occurred after 10 µs since
the neutron was released.

Table 4: Datasets types and model input description.
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Figure 19: Architecture of the neural network chosen to be used as classifier for the SABAT data
analysis.
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We have trained four models based on histograms of all energies, not taking into account the
time of the reactions (dataset type A). First of all, there have been trained models on histograms,
with sample size equal to 2 · 104 smeared according to the energy resolution of detector LaBr3:Ce,
which is expected to be the most accurate, and for less precise, inexpensive NaI:Tl detector. It has
also been performed on not smeared SABAT simulations for comparison purposes. As it could be
expected, better results were achieved for model based on data from the LaBr3:Ce detector, with a
mean error rate from all 7 iterations of cross-validation equal to 0.00219. It is 0.00086 higher than
the mean error rate obtained on the data without taking into account the energy resolution, and
0.00535 lower than NaI : T l models. It turned out that the sensitivity of a detector has a great
impact on a model’s precision when the input of a model is a histogram of energies disregarding
the time of the reactions. Furthermore, we have checked the influence of the data sample size on
the performance of the trained neural network. All the used algorithms were trained with 5 ∗ 103

random samples of simulations without taking into account the detector resolution. The obtained
mean accuracy was found to be equal to 0.93326 which shows that the size of the training samples
is significant for this kind of methods.

Moreover, we have trained models, which predict based on three histograms, regarding the
time of the reactions (dataset type B, 5 ∗ 103 samples) for all the simulated detectors and the not
smeared data. Ideal accuracy equal to 1.0 in all of the 7 iterations of cross-validation for LaBr3:Ce
model, with a mean loss of 0.00632. The model working on not smeared data obtained slightly
better mean loss, which amounts to 0.00603. In a model based on BGO energy parametrization
data samples mean accuracy insignificantly deteriorates into 0.99999. Models for detectors LSO
and NaI:Tl performed equivalently with mean accuracy of 0.99993, and mean loss equal to 0.00383

and 0.00538, respectively. Additionally, in order to determine, which of the analyzed histograms,
and hence, which of the reactions, inelastic neutron scattering or neutron capture, contain more
information, we have prepared models with data samples from original data with datasets types
D, E and F (see Table 4). The experiment has shown, that neutron capture reactions carry more
information about investigated material, then inelastic scattering. Secondly, reactions, which occur
between 2 µs and 10 µs contain a significant part of the information, due to differences in the number
of detections in this time slot for the mustard gas and the background.

All of the described models used Adam optimizer and binary cross-entropy loss function. In
table 5 training parameters such as batch size, learning rate, and a number of epochs are presented
for each of the models. There one can find also means and standard deviations of accuracy and loss
for all the models in 7-fold cross-validation iterations.
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5 Conclusions

This research has shown a great potential of mustard gas recognition based on spectra of energy
deposition. Although the models had been trained on simulated data with limited size, effectiveness
of signal recognition has been unexpectedly high. Taking into consideration that samples may be
correlated in folds, training a chosen model should be repeated on real data measured with a chosen
detector.

When a model is trained based on energy deposition, without taking into account the time
of gamma quantum registration the sensitivity of a detector is crucial. In this case, Lanthanum
Bromide (LaBr3:Ce) detector should be chosen. Moreover, the results indicate, that samples size
is significant. It could be assumed, that increasing sample size largely, having unlimited data from
a real detector, may improve the accuracy which have been obtained with LaBr3:Ce detector and
with samples size equal to 2 · 104 events.

On the other hand, when a model is trained with the simulated data divided into three regis-
tration time slots, the sensitivity of a detector is insignificant. Ideal accuracy had been achieved
on data from simulated LaBr3:Ce detector with samples size equal to 5 · 103 events. However, the
accuracy of a model based on data from simulated Sodium Iodide (NaI:Tl) detector, differs only by
0.00007. There is a high probability, that increasing dataset size and reducing correlation between
samples by training a model on real data, may improve the results. Furthermore, it has been ob-
served, that detected neutron capture reactions contain more information about the material, which
is under investigation, than reactions of inelastic scattering. Moreover, differences in the number of
detections in the time frame from 2 µs to 10 µs have been identified to carry an enormous amount
of information.
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6 Summary

During warfare in the Baltic Sea, there was sunken plenty of munition, including explosives
and chemical agents. Unfortunately, the location of some sunken munition is still unknown. There
have been proposed a novel device for non-invasive threats detection based on neutron activation
analysis within the framework of the SABAT project at the Jagiellonian University. Simulations of
the SABAT device which have focused primarily on the detection of mustard gas, have been carried
out using Monte Carlo methods. Firstly, in a simulated environment, there has been mustard gas
in a thick steel container on the sea bottom. Secondly, there have been performed corresponding
simulations without the gas for background estimation.

The simulated SABAT device energy deposition histograms have been smeared with Gauss func-
tion with FWHM according to paramatrization of the energy resolution for the most common scin-
tillating detectors. Based on randomly chosen data samples we have created histograms of energy
deposition for three slots of the time elapsed from the neutron generation to the registration of
gamma quantum. The first histogram contained reactions, which have occurred within 2 µs. En-
ergy detected in this time interval mainly originated from inelastic neutron scattering. The second
histogram consisted of energies detected after 2 µs and before or exactly at 10 µs. And the last
histogram included reaction after 10 µs which should come from neutron capture.

The datasets have been divided into 7 folds, in order to train and test neural network models
using 7-folds cross-validation.

The research revealed that models based on energy depositions divided into interaction time slots
are more accurate and require smaller data sample, than model, in which input data do not contain
information about the time. The best results have been achieved with a model trained on data
from simulated LaBr3:Ce detector, with ideal accuracy of 1.0 and binary cross-entropy loss equal
0.00632. A model trained on data from simulated inexpensive NaI:Tl detector obtained slightly lower
accuracy, which equals to 0.99993, with a loss of 0.00936. It was concluded that increasing dataset
size and reducing correlation between samples by providing the data from a not-simulated detector
may improve the results for NaI:Tl detector. Additionally, the results reveal that it is possible
to create a model based on energy depositions, without the knowledge of the time of reactions,
nevertheless, samples size has to be significantly greater, and high sensitivity of a detector is crucial.
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A Python code

A.1 Data preparation

A.1.1 Gaussian smearing

1 import random

2 import math

3 import abc

4

5

6 class BaseFWHM(abc.ABC):

7 def __init__(self):

8 self.a = NotImplemented

9 self.b = NotImplemented

10

11 def get_FWHM(self, e: float):

12 """
13 Returns ful l−width−at−half−maximum value for an energy value
14 """
15 return self.get_R(e) ∗ e / 100
16

17 def get_R(self, e):

18 """
19 Returns energy resolution value for en energy value
20 """
21 if self.a is NotImplemented or self.b is NotImplemented:

22 raise NotImplementedError

23 return math.sqrt((math.pow(self.a, 2) / e) + math.pow(self.b, 2))

24

25 def blur_data_with_gauss(self, data: [(float, float)]):

26 """
27 Blurs energy from data with gauss calculating sigma from FWHM parameter.
28 """
29 blurred = []

30 for energy, time in data:

31 sigma = self.get_FWHM(energy) / 2.35

32 blur = random.gauss(0, sigma)

33 blurred.append((energy + blur, time))

34

35 return blurred
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Listing 1: Base full-width-at-half-maximum

1 from src.gaussian_blur.base_FWHM import BaseFWHM

2

3

4 class LaBr3Ce_FWHM(BaseFWHM):

5

6 def __init__(self):

7 BaseFWHM.__init__(self)

8 self.a = 0.893

9 self.b = 0.582

Listing 2: Full-width-at-half-maximum of LaBr3:Ce detector

1 from src.gaussian_blur.base_FWHM import BaseFWHM

2

3

4 class NaITl_FWHM(BaseFWHM):

5

6 def __init__(self):

7 BaseFWHM.__init__(self)

8 self.a = 2.131

9 self.b = 2.759

Listing 3: Full-width-at-half-maximum of NaI:Tl detector

1 from src.gaussian_blur.base_FWHM import BaseFWHM

2

3

4 class BGO_FWHM(BaseFWHM):

5

6 def __init__(self):

7 BaseFWHM.__init__(self)

8 self.a = 8.378

9 self.b = 0

Listing 4: Full-width-at-half-maximum of BGO detector

1 from src.gaussian_blur.base_FWHM import BaseFWHM

2

3
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4 class LSO_FWHM(BaseFWHM):

5

6 def __init__(self):

7 BaseFWHM.__init__(self)

8 self.a = 6.319

9 self.b = 0

Listing 5: Full-width-at-half-maximum of LSO detector

A.1.2 Histograms generation

1 class DataSampling:

2

3 @staticmethod

4 def get_random_samples_without_replacement(data: list, n_samples: int, size: int):

5 """
6 Returns l i s t of samples of a given size from the data . Elements in each sample
7 are unique , but they may be included in other samples.
8 """
9 samples = [random.sample(data, size) for _ in range(n_samples)]

10 return samples

11

12 @staticmethod

13 def get_random_samples_with_replacement(data, n_samples , size):

14 """
15 Returns l i s t of samples from the data . Elements in samples may be not unique.
16

17 """
18 samples = [random.choices(data, k=size) for _ in range(n_samples)]

19 return samples

Listing 6: Data sampling

1 import sys

2 import numpy as np

3

4

5 class Edges:

6

7 @staticmethod

8 def get_time_edges(values):
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9 """
10 Returns a l i s t with edges , where f i rs t edge always equals zero
11 and last a maximum number.
12

13 """
14 return [0] + values + [sys.maxsize]

15

16 @staticmethod

17 def get_energy_edges(n, ranges, n_time_edges):

18 """
19 Returns the same bin edges for each time bins .
20 """
21 return [np.histogram_bin_edges([], n, ranges) for _ in range(n_time_edges + 1)]

Listing 7: Histogram edges

1 import numpy as np

2

3

4 class HistogramMaker:

5 """
6 2D Histogram with particles divided f i r s t l y by time and then by energy
7 """
8

9 @staticmethod

10 def make_histogram(data: [(float, float)], energy_edges: [list], time_edges: list):

11 """
12 Creates histogram of reactions with given time and energy edges .
13 The data should contain tuples with two values , where f i rs t value
14 is an energy and the second is time. Energy edges may be different
15 for each time bin .
16 """
17 divided = HistogramMaker._divide_energies_into_bins(data, time_edges)

18 hist = np.array([])

19 for times, edges in zip(divided, energy_edges):

20 hist = np.append(hist, np.histogram(times, bins=edges)[0])

21 return hist

22

23 @staticmethod

24 def _divide_energies_into_bins(data: [(float, float)], time_bins_edges: list):

25 """
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26 Divide energies from data into n−1 l i s t s based on i t ’s time,
27 where n is a number of time edges .
28 """
29 divided = [[] for _ in range(len(time_bins_edges) − 1)]
30 for e, t in data:

31 for i, edge in enumerate(time_bins_edges):

32 if t <= edge:

33 if i == 0:

34 continue

35 divided[i − 1].append(e)
36 break

37

38 return divided

Listing 8: Histogram maker

1 import numpy as np

2

3 from src.histograms_generation.data_sampling import DataSampling

4 from src.histograms_generation.histogram_maker import HistogramMaker

5

6

7 def generate_histograms(histogram_maker: HistogramMaker , data: [(float, float)],

8 n_samples: int, n_elements: int, energy_edges: [list],

9 time_edges: [float], with_replacement=False):

10 """
11 Samples given number of samples with given number of elements and creates histogram
12 with given time and energy edges
13 """
14 if with_replacement:

15 samples = DataSampling.\

16 get_random_samples_with_replacement(data, n_samples , n_elements)

17 else:

18 if n_samples == 1 and n_elements == len(data):

19 samples = [data]

20 else:

21 samples = DataSampling.\

22 get_random_samples_without_replacement(data, n_samples , n_elements)

23 histograms = []

24 for sample in samples:

25 histograms.append(histogram_maker.
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26 make_histogram(sample, energy_edges , time_edges))

27

28 return np.array(histograms)

Listing 9: Generator

A.1.3 Utils

1 class Loader:

2

3 @staticmethod

4 def load(path: str):

5 """
6 Loads data about particles from format: energy; time
7 """
8 file = open(path)

9 lines = file.readlines()

10 lines = [(lambda x: (float(x[0]), float(x[1].split(’\n’)[0])))(i.split(";"))

11 for i in lines]

12 return lines

Listing 10: Loader

1 import csv

2

3

4 class CsvSaver:

5

6 @staticmethod

7 def save_histograms(histograms: list, path: str):

8 """
9 Saves multiple histograms into csv f i le ,
10 where each line represent one histogram.
11 Converts values to integers .
12 """
13 with open(path, ’w’) as myfile:

14 wr = csv.writer(myfile, delimiter=’;’, quoting=csv.QUOTE_NONE)

15 for row in histograms:

16 row = [int(x) for x in row]

17 wr.writerow(row)

18
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19

20 @staticmethod

21 def save_data(data: list, path: str):

22 """
23 Saves data into csv f i l e
24 """
25 with open(path, ’w’) as myfile:

26 wr = csv.writer(myfile, delimiter=’;’, quoting=csv.QUOTE_NONE)

27 for x in data:

28 wr.writerow(x)

Listing 11: Saver

1 import math

2 import random

3

4 from src.loaders.basic_loader import Loader

5 from src.savers.csv_saver import CsvSaver

6

7

8 def _divide_into_k_folds(k: int, data_path: str, save_path: str, name: str):

9 # load data
10 loader = Loader()

11 data = loader.load(data_path)

12

13 # shuffle data
14 random.shuffle(data)

15

16 # divide into k folds
17 fold_length = math.ceil(len(data) / k)

18 folds = [data[offs:offs + fold_length] for offs in range(0, len(data), fold_length)]

19

20 for i, fold in enumerate(folds):

21 print(len(fold))

22 CsvSaver.save_data(fold, "{}/{}_{}.csv".format(save_path , name, i))

Listing 12: Dividing data into folds

A.2 Training models

1 from keras import Sequential
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2 from keras import regularizers

3 from keras.initializers import glorot_uniform , he_uniform

4 from keras.layers import Dense, LeakyReLU , BatchNormalization , Dropout

5

6

7 def get_model(input_shape):

8 model = Sequential()

9 model.add(Dense(16, input_shape=(input_shape ,),

10 kernel_regularizer=regularizers.l2(l=0.0001),

11 kernel_initializer=he_uniform()))

12 model.add(BatchNormalization())

13 model.add(LeakyReLU(alpha=0.1))

14 model.add(Dropout(0.1))

15

16 model.add(Dense(8, kernel_regularizer=regularizers.l2(l=0.1),

17 kernel_initializer=he_uniform()))

18 model.add(BatchNormalization())

19 model.add(LeakyReLU(alpha=0.2))

20 model.add(Dropout(0.7))

21

22 model.add(Dense(1, activation=’sigmoid’,

23 kernel_initializer=glorot_uniform(), name=’output’))

24 return model

Listing 13: Model

A.2.1 Dataset preparation

1 import csv

2

3 import numpy as np

4

5

6 # Load data
7 def read_csv(filename):

8 """
9 Reads csv f i l e with histograms.
10 The f i l e should contain each histogram in separate line ,
11 where counts in the bins are seperated by semi−colons .
12 """
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13 with open(filename, newline=’’) as f:

14 reader = csv.reader(f, delimiter=’;’, quoting=csv.QUOTE_NONE)

15 histograms = [np.asarray([int(float(x)) for x in row])

16 for row in list(reader) if ’’ not in row]

17

18 return histograms

19

20

21 def load_folds(dir_path, k):

22 """
23 Loads k folds for each of signal and background from f i l e s
24 named: signal_i , bcg_i where i is in 0..k
25

26 """
27 signal, bcg = [], []

28 for i in range(k):

29 signal.append(read_csv("{}/signal_{}.csv".format(dir_path, i)))

30 bcg.append(read_csv("{}/bcg_{}.csv".format(dir_path , i)))

31

32 return signal, bcg

Listing 14: Load folds

1 import numpy as np

2

3

4 def get_partial_data(folds, parts, part_lenght=100):

5 return [[_get_parts_of_list(x, parts, part_lenght) for x in fold]

6 for fold in folds]

7

8

9 def _get_parts_of_list(line, parts, part_lenght):

10 n_line = np.asarray([])

11 indices = [i ∗ part_lenght for i in range(1, int(len(line) / part_lenght))]
12

13 slices = np.split(line, indices)

14 for part in parts:

15 n_line = np.concatenate((n_line, slices[part]))

16 return n_line

17

18
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19 def get_data_with_summed_parts(folds, parts_to_sum , part_lenght=100):

20 return [[_sum_parts_of_list(x, parts_to_sum , part_lenght)

21 for x in fold] for fold in folds]

22

23

24 def _sum_parts_of_list(line, parts_to_sum , part_lenght):

25 n_parts = int(len(line) / part_lenght)

26 indices = [i ∗ part_lenght for i in range(1, n_parts)]
27

28 slices = np.split(line, indices)

29 sum = np.zeros((part_lenght ,))

30 for part in parts_to_sum:

31 sum = sum + slices[part]

32

33 n_line = np.asarray([])

34 new_parts = [x for x in list(range(n_parts)) if x not in parts_to_sum[1:]]

35 for x in new_parts:

36 if x != parts_to_sum[0]:

37 n_line = np.concatenate((n_line, slices[x]))

38 else:

39 n_line = np.concatenate((n_line, sum))

40

41 return n_line

Listing 15: Manipulation of input data

1 class Standardizer:

2 """ Standardizes data according to the data passed in init ia l izer """
3

4 def __init__(self, X):

5 self.mean = np.mean(X, axis=0)

6 self.standard_deviation = np.std(X, axis=0)

7

8 def standardize(self, X):

9 standarized_X = np.array(

10 [[(x − self.mean[i]) / (self.standard_deviation[i] + epsilon)
11 for i, x in enumerate(row)] for row in X])

12 return standarized_X

Listing 16: Standardizer
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1 import numpy as np

2 import random

3

4

5 class CrossValidationDataProvider:

6

7 @staticmethod

8 def prepare_sets(folds_signal , folds_bcg):

9 sets = []

10

11 for i in range(k):

12 train_s, valid_s, test_s = CrossValidationDataProvider. \

13 _divide_folds(i, folds_signal)

14 train_b, valid_b, test_b = CrossValidationDataProvider. \

15 _divide_folds(i, folds_bcg)

16

17 x_train = train_s + train_b

18 y_train = [1] ∗ len(train_s) + [0] ∗ len(train_b)
19

20 x_valid = valid_s + valid_b

21 y_valid = [1] ∗ len(valid_s) + [0] ∗ len(valid_b)
22

23 x_test = test_s + test_b

24 y_test = [1] ∗ len(test_s) + [0] ∗ len(test_b)
25

26 s = Standardizer(x_train)

27 x_train = s.standardize(x_train)

28 x_valid = s.standardize(x_valid)

29 x_test = s.standardize(x_test)

30

31 sets.append({"train": (x_train, y_train), "valid": (x_valid, y_valid),

32 "test": (x_test, y_test)})

33

34 return sets

35

36 @staticmethod

37 def _divide_folds(test_idx , folds):

38 ids = list(range(len(folds)))

39
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40 test = folds[test_idx]

41 ids.remove(test_idx)

42

43 v = random.choice(ids)

44 valid = folds[v]

45 ids.remove(v)

46

47 train = []

48 for j in ids:

49 train = train + folds[j]

50

51 return train, valid, test

Listing 17: Cross validation data provider

A.2.2 Visualization

1 import matplotlib.pyplot as plt

2

3 from sklearn.metrics import confusion_matrix , ConfusionMatrixDisplay

4

5

6 def show_loss(model_hist , log=False):

7 n_epochs = len(model_hist.history[’loss’])

8 epochs = range(0, n_epochs)

9 train_loss = model_hist.history[’loss’]

10 val_loss = model_hist.history[’val_loss’]

11

12 plt.plot(epochs, val_loss, ’−.’, label=’Validation’, color=’tab:red’)
13 plt.plot(epochs, train_loss , ’−.’, label=’Training’, color=’tab:blue’)
14 plt.xlabel(’Epochs’)

15 plt.ylabel(’Loss’)

16 plt.legend()

17 if log:

18 plt.yscale(’log’)

19 plt.show()

20

21

22 def show_accuracy(model_hist):

23 n_epochs = len(model_hist.history[’accuracy’])
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24 epochs = range(0, n_epochs)

25 train_loss = model_hist.history[’accuracy’]

26 val_loss = model_hist.history[’val_accuracy’]

27

28 plt.plot(epochs, val_loss, ’−.’, label=’Validation’, color=’tab:red’)
29 plt.plot(epochs, train_loss , ’−.’, label=’Training’, color=’tab:blue’)
30 plt.xlabel(’Epochs’)

31 plt.ylabel(’Accuracy’)

32 plt.legend()

33

34 plt.show()

35

36

37 def plot_confusion_matrix(predicted , y_test):

38 confusion_matrix = confusion_matrix(y_test, predicted.round(),

39 normalize=’all’)

40 _, ax = plt.subplots()

41 disp = ConfusionMatrixDisplay(confusion_matrix=confusion_matrix ,

42 display_labels=["Background", "Mustard gas"])

43 disp.plot(include_values=True,

44 cmap=’Blues’, ax=ax, xticks_rotation=’horizontal’)

45 ax = disp.ax_

46 plt.grid(False)

47 ax.tick_params(labelsize=10)

48 plt.show()

Listing 18: Visualization of loss, accuracy and confusion matrix

A.2.3 Trainig and testing models

1 import numpy as np

2 from keras.optimizers import Adam

3

4

5 def train_on_sets(sets, args):

6 histories = []

7 models = []

8 optim = Adam(lr=args[’lr’])

9

10 for i, d_set in enumerate(sets):
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11 print("Iteration: {}".format(i))

12 x_train, y_train = d_set[’train’]

13 model = get_model(input_length)

14 model.compile(optimizer=optim, loss=’binary_crossentropy’,

15 metrics=[’accuracy’])

16 history = model.fit(x_train, y_train, epochs=args[’epochs’],

17 batch_size=args[’batch_size’],

18 validation_data=d_set[’valid’], shuffle=True)

19

20 models.append(model)

21 histories.append(history)

22

23 return models, histories

24

25

26 def show_histories(histories):

27 for i, history in enumerate(histories):

28 print("Iteration: {}".format(i))

29 show_loss(history, log=True)

30 show_accuracy(history)

31

32

33 def test_models(models, sets):

34 accuracies = []

35 losses = []

36

37 for i, model, d_set in zip(range(len(models)), models, sets):

38 print("Iteration: {}".format(i))

39 x_test, y_test = d_set[’test’]

40 accuracy, loss, predicted = get_test_metrics(model, x_test, y_test)

41 plot_confusion_matrix(predicted , y_test)

42

43 accuracies.append(accuracy)

44 losses.append(loss)

45

46 # calculate mean and std dev
47 mean_accuracy = np.mean(accuracies)

48 std_dev_accuracy = np.std(accuracies)

49 mean_loss = np.mean(losses)

50 std_dev_loss = np.std(losses)
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51

52 return mean_accuracy , std_dev_accuracy , mean_loss , std_dev_loss

Listing 19: Train and test models for cross validation
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