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Introduction 
Radiation therapy with accelerated protons offers a favorable, compared 

to photons,  depth dose distribution with the maximum dose deposition at 

the end of their range. However, one of the major limitations of protons in 

the clinic is the uncertainty of their range, leading to the target volume 

underexposure or overexposure of the healthy tissue [1]. We present for 

the first time measurements performed with the J-PET detector [2,3,4] 

and therapeutic proton beams to demonstrate the feasibility of the J-PET 

to monitor the proton beam range. 

Materials and Methods 
The modular J-PET detector was arranged in a 3 layers dual-head setup 

with 24 modules as shown in Fig. 1A, 1B. The uniform, water equivalent 

gel phantom was irradiated with four, homogeneous 16 Gy SOBP fields 

of 100 mm,  104 mm,  110 mm, and 119 mm range corresponding to 

117.77 MeV, 120.53 MeV, 124.23 MeV, 129.85 MeV distal proton beam 

energy, respectively  (see Fig.1C). The continuous data acquisition 

during the beam on and between the subsequent field irradiations was 

performed. Processed data were formed in a coincidences list. PET 

images were reconstructed with the CASToR software [5] (MLEM, 10 

iterations) including attenuation and sensitivity corrections. 

Reconstructed activity profiles for each field were compared to assess 

the feasibility of the modular J-PET for range monitoring. 

Fig.1. Panel A: The experimental setup with the J-PET detector, proton 

nozzle, and gel phantom. Each layer in the head has 4 modules. Each 

module consists of 13 50-cm-long scintillator strips. The annihilation 

gamma deposits its energy via Compton scattering producing the 

scintillation which is propagated to the ends of the strips, converted to 

the electronic signal by SiPM, and processed with FPGA. Panel B: 

scheme of the experiments indicating the position of the irradiation fields. 

Panel C: Irradiation plans of SOBP fields of different ranges. 

Results 
In Fig. 2A the exemplary reconstructed images of the activity gathered 

during the PET acquisition are presented for the SOBP field with the 

range of 100 mm. The reconstructed activity profiles along the beam 

direction for each of the fields are depicted in Fig. 2B. The differences 

in the proton beam ranges are clearly visible between Fields 1,2 and 3, 

demonstrating the feasibility of the J-PET system to detect beam range 

variations. The acquisition for field 4 was interrupted as ¼ of the 

scanner was not working properly due to the DAQ glitch and could be 

potentially biased. The PET image quality could be improved by 

applying normalization, random, and scatter corrections. A 

characteristic elongated activity distribution visible along the x-direction 

is due to non-cylindrical detector geometry; LORs were collected only 

by two opposing detector heads.  

Panel A: The reconstructed PET activity distribution for the SOBP with 

the range of 100 mm. Positioning of the J-PET detector heads (yellow 

rectangular) and proton beam direction is indicated. Panel B: The 

normalized reconstructed activity profiles for SOBP fields of different 

ranges. Substantial differences in activity range between fields are 

noticeable. 

Conclusions 
The results show for the first time that the J-PET detector is feasible to 

acquire β+ signal produced during the proton beam irradiation and 

detect a few millimeter range variations of homogeneous dose fields in 

a uniform phantom. Further investigations include improvements in data 

processing, image reconstruction, and a more detailed assessment of 

the J-PET system precision for proton beam range detection in the 

clinical setting. 
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