Testing CPT symmetry in ortho-positronium decays with the J-PET facility

Szymon Niedźwiecki on behalf of the **J-PET** collaboration

Total-body J-PET and Theranstic Center group photo, 2021-04-26 In front of Faculty of Physics, Astronomy and Computer Science of Jagiellonian University

Motivation: discrete symmetry tests with o-Ps decays

Testing discrete symmetries with angular correlations in o-Ps ${\rightarrow}3\gamma$ decays

Measurement the expectation value of the symmetry odd-operators

$$\begin{pmatrix} \hat{O} \\ \stackrel{?}{=} 0 & \text{for an odd operator} \\ \Leftrightarrow \mathcal{CPT}(\hat{O}) = -1 \\ \Leftrightarrow \mathcal{T}(\hat{O}) = -1 \end{cases}$$

 $|\vec{k}_1| > |\vec{k}_2| > |\vec{k}_3|$

4

Previous measurements

 $C_{CPT} = (2.6 \pm 3.1) \times 10^{-3}$

Limiting positron emission direction 1 Mbq β^+ emitter activity 4π detector but low angular resolution

Yamazaki et al. PRL 104 (2010) 083401 $(\vec{S} \cdot \vec{k_1})(\vec{S} \cdot (\vec{k_1} \times \vec{k_2}))$

 $C_{CP} = (1.3 \pm 2.1 \pm 0.6) \times 10^{-3}$

Polarized o-Ps using external B field Inclusive measurement Only certain angular configurations

Motivation: discrete symmetry tests with o-Ps decays

- Discrete symmetries are scarcely tested with leptonic systems:
 - Neutrino oscillations: Dirac phase, δCP ~3σ level [T2K, Nature 580 (2020) 339]
 - Electron EDM < 1.1x10⁻²⁹ [ACME, Nature 562 (2018) 355]

symmetries tests can be made with a very high precision limited, only by the effects due to the weak interaction: 10⁻¹⁴ and photon-photon interaction: 10⁻⁹. (Standard Model Calculations)
 [Phys. Rev. A 37, 3189 (1988), Z. Phys. C 41, 143 (1988), M. S Sozzi "Discreet Symmetries and CP violation"]

o-Ps production in J-PET with an annihilation chamber

[D. Kaminska, et a.l., Eur. Phys. J. C (2016) 76:445]

o-Ps production in J-PET with an annihilation chamber

J-PET detector at Jagiellonian University in Kraków, Poland

[P. Moskal et al., Acta Phys. Polon. B47 (2016) 509; G. Korcyl, et al., IEEE Trans. Med. Imag. 37, 2526 (2018)]

o-Ps spin estimation:

* e⁺ spin estimated event-by-event recording multiple geometrical configurations
* effective polarization depends

on o-Ps \rightarrow 3 γ vertex resolution * vacuum in the chamber assures that e⁺ is not going to decay before reaching inner wall

$$P_{\text{o-Ps}} = \frac{2}{3}P_{e+}$$

$$\beta^+$$

$$\beta^+$$

$$S$$

$$S$$

$$F_{e+} \approx \frac{v}{c} \cdot \frac{1}{2}(\cos \alpha + 1)$$

$$\mathbf{P}_{\rm e^+} = (N_{\rm +1/2}^{\rm e^+} - N_{\rm -1/2}^{\rm e^+}) / (N_{\rm +1/2}^{\rm e^+} + N_{\rm -1/2}^{\rm e^+})$$

o-Ps spin determination and o-Ps \rightarrow 3 γ decays reconstruction in J-PET

The decay point $(\mathbf{x',y'})$ in the decay plane and time **t** is an intersection of 3 circles, each corresponding to a possible origin points of the incident γ

<u>o-Ps→3y decays reconstruction:</u>

* Trilateration-based reconstruction to determine the o-Ps annihilation point

 $(T_i - t)^2 c^2 = (X'_i - x')^2 + (Y'_i - y')^2, \quad i = 1, 2, 3$

J-PET vs previous measurements

 $C_{CPT} = (2.6 \pm 3.1) \times 10^{-3}$

 $\begin{array}{l} \mbox{Limiting positron emission direction} \\ 1 \mbox{ Mbq } \beta^{+} \mbox{ emitter activity} \\ 4 \pi \mbox{ detector but low angular resolution} \end{array}$

Recording multiple geometrical configurations

I-PET

e+ spin estimated event-by-event $P_{e+} \approx \frac{v}{c} \cdot 0.91$ Yamazaki et al. PRL 104 (2010) 083401 $(\vec{S} \cdot \vec{k_1})(\vec{S} \cdot (\vec{k_1} \times \vec{k_2}))$

 $C_{CP} = (1.3 \pm 2.1 \pm 0.6) \times 10^{-3}$

Polarized o-Ps using external B field Inclusive measurement Only certain angular configurations

- Plastic scintillators = fast timing

 → using high β⁺ emitter activity
 (tested up to 10 Mbq)
- Recording all 3 annihilation photons
- Angular resolution at 1° level

Courtesy of A. Gajos

Identification of o-Ps \rightarrow 3 γ annihilation events in J-PET

[S. Sharma, eta al., EJNMMI Phys. 7, 39 (2020)]

Using total Time Over Threshold (TOT) of PMT signals from a scintillator strip which corresponds to y deposited energy

 \leftarrow o-Ps presence in positron lifetime distribution

Background subtraction

Secondary Compton scatterings:

$$*\,\delta_{ij} = |d_{ij} - c\Delta t_{ij}|$$

computed for each pair of annihilation photon candidates i and j (i,j=1,2,3)

* distance between the β + source location and the closest hypothetical 2γ annihilation point on a LOR between two recorded photon interactions

 * the sum of the two smallest angles between azimuthal coordinates of the recorded γ interaction points

Determination of the CPT - asymmetric observable

$$O_{CPT} = \hat{S} \cdot \left(\vec{k}_1 \times \vec{k}_2\right) / \left|\vec{k}_1 \times \vec{k}_2\right| = \cos \phi$$

the angle between the direction of initial spin of the o-Ps atom and the normal to the decay plane

J-PET is sensitive to the full range of this operator

$$O_{CPT} = \hat{S} \cdot \left(\vec{k}_1 \times \vec{k}_2\right) / \left|\vec{k}_1 \times \vec{k}_2\right| = \cos \phi$$

the angle between the direction of initial spin of the o-Ps atom and the normal to the decay plane

ARTICLE

https://doi.org/10.1038/s41467-021-25905-9

OPEN

Testing CPT symmetry in ortho-positronium decays with positronium annihilation tomography

P. Moskal ^{1,2}, A. Gajos ^{1,2}, M. Mohammed¹, J. Chhokar^{1,2}, N. Chug^{1,2}, C. Curceanu ³, E. Czerwiński ^{1,2}, M. Dadgar^{1,2}, K. Dulski ^{1,2}, M. Gorgol ⁴, J. Goworek ⁵, B. C. Hiesmayr ⁶, B. Jasińska⁴, K. Kacprzak¹, Ł. Kapłon ^{1,2}, H. Karimi^{1,2}, D. Kisielewska¹, K. Klimaszewski⁷, G. Korcyl^{1,2}, P. Kowalski⁷, N. Krawczyk^{1,2}, W. Krzemień⁸, T. Kozik¹, E. Kubicz^{1,2}, S. Niedźwiecki^{1,2}, S. Parzych^{1,2}, M. Pawlik-Niedźwiecka^{1,2}, L. Raczyński⁷, J. Raj^{1,2}, S. Sharma ^{1,2}, S. Choudhary^{1,2}, R. Y. Shopa⁷, A. Sienkiewicz ⁵, M. Silarski^{1,2}, M. Skurzok^{1,3}, E. Ł. Stępień ^{1,2}, F. Tayefi^{1,2} & W. Wiślicki⁷

P. Moskal, et al., Nature Commun. 12, 5658 (2021)

Check for updates

Summary

Summary and Perspectives

- With J-PET scanner, we are able to perform exclusive measurement of ortho-positronium (o-Ps) annihilation into 3 photons
 - o-Ps spin event-by-event estimation
 - o-Ps→3γ decays reconstruction including determination of the annihilation point in an extensive-size medium

Sub-permil precision of the CPT test reached with the first J-PET measurement (26 days): over factor of 3 better than the previous results

J-PET aims at the sensitivity of the CP and CPT symmetry tests at the level of 10⁻⁵ with the pending improvements to the setup

 $C_{\rm CPT} = \langle O_{\rm CPT} \rangle / P = 0.00067 \pm 0.00095$

Summary and Perspectives

new design of the annihilation chamber with spherical geometry, increasing the o-Ps formation probability by a factor of \sim 1.5

Summary and Perspectives

additional densely packed layer of plastic scintillators with a fully digital readout -> increase of detection efficiency by factor of 64

The first positronium imaging of a phantom built from cardiac myxoma and adipose tissue P. Moskal, et al., Science Advances 2021; 7 : eabh4394

Thank you for your attention

BACKUP SLIDES

192 module prototype

85 cm diameter,50 cm FOV4 constant thresholddiscrimination todetermine time andenergy of interaction

24 module prototype

time and angular resolutions of 100 ps and 0.4

- 74 cm diameter
- 50 cm FOV
- 4 SiPM per scintillator side
- 2 constant threshold per SiPM
- modular design 312 strips, 24 modules
- digital data at the module output
- very light ~60 kg

Discrete symmetry tests in positronium decays

Measurement the expectation value of the symmetry odd-operators

example

Charge conjugation (C)

The best limit in systems of quarks

STREET, STREET

$$\pi^0 \to 3\gamma$$
 is forbidden $\frac{\pi^0 \to 3\gamma}{\pi^0 \to 2\gamma} < 3.1 \times 10^{-8}$ 90% cl

CPT symmetry implies the equality of the masses, widths, etc. of a particle and its antiparticle

$$2\frac{|m_{K^0} - m_{\overline{K}^0}|}{(m_{K^0} + m_{\overline{K}^0})} < 6 \times 10^{-19}, \qquad 2\frac{|\Gamma_{K^0} - \Gamma_{\overline{K}^0}|}{(\Gamma_{K^0} + \Gamma_{\overline{K}^0})}$$

 $= (8 \pm 8) \times 10^{-18}$

- CP violation is equivalent to T violation
- CP violation asymmetry between matter and antimatter in our universe
- CP violation mechanism is introduced by the quark mixing described by the complex Cabibbo - Kobayashi - Maskawa matrix with none nonzero phase
- CP violation observed first for neutral kaons

CP violation J. H. Christenson et al., Phys. Rev. Lett. 13, 138 (1964).

$$|K_{\rm s}\rangle = \frac{1}{\sqrt{2}} \left[|K^0\rangle + |\overline{K}^0\rangle \right] \text{ with } \mathcal{CP} = 1$$
$$|K_{\rm L}\rangle = \frac{1}{\sqrt{2}} \left[|K^0\rangle - |\overline{K}^0\rangle \right] \text{ with } \mathcal{CP} = -1$$
$$\mathsf{BR} (\mathsf{K}_{\rm L} - \mathsf{R}^+ \pi^- / \mathsf{K}_{\rm L} - \mathsf{all}) \approx 2 \cdot 10^{-3}$$
$$|K_L\rangle = \frac{1}{\sqrt{1 + |\epsilon|^2}} \left(|K_2\rangle + \epsilon |K_1\rangle \right)$$
$$|K_S\rangle = \frac{1}{\sqrt{1 + |\epsilon|^2}} \left(|K_1\rangle - \epsilon |K_2\rangle \right)$$

