Performance of NEMA characteristics of Modular J-PET

F. Tayefi Ardebili^{1,2}, S. Niedźwiecki^{1,3}, J. Baran^{1,3}, E. Beyene^{1,3}, D. Borys¹⁰, K. Brzezinski⁹, N. Chug^{1,3}, A. Coussat^{1,3}, C. Curceanu⁴, E. Czerwinski^{1,3}, <u>M. Dadgar</u>⁵, K. Dulski^{1,3}, K. Eliyan^{1,3}, J. Gajewski⁹, A. Gajos^{1,3}, B. Hiesmayr⁷, A. Jedruszczak^{1,3}, K. Kacprzak^{1,3}, M. Kajetanowicz^{1,3}, T. Kaplanoglu^{1,3}, L. Kapłon^{1,3}, K. Klimaszewski⁸, G. Korcyl^{1,3}, T. Kozik¹, W. Krzemien^{1,3}, D. Kumar^{1,3}, G. Lapkiewicz^{1,3}, W. Migdal¹, S. Moyo¹, W. Mryka^{1,3}, S. Parzych^{1,3}, E. Pérez del Río¹, L. Raczyński⁸, S. Sharma^{1,3}, S. Shivani^{1,3}, R. Shopa⁸, M. Skurzok^{1,3}, P. Tanty¹, K. Tayefi Ardebili^{1,3}, W. Wislicki⁸, E. Stępień^{1,2}, P. Moskal^{1,3}

¹ Jagiellonian University, Faculty of Physics, Astronomy, and Applied Computer Science, Krakow, Poland ² Jagiellonian University, Center for Theranostics,, Krakow, Poland

- ³ Jagiellonian University, Total-Body Jagiellonian-PET Laboratory, Krakow, Poland
- ⁴ INFN, Laboratori Nazionali di Frascati, Frascati, Italy
- ⁵ Ghent university, department of electronics and information systems, Ghent, Belgium
- ⁶ University of Vienna, faculty of Physics, Vienna, Austria
- ⁷ National Centre for Nuclear Research, Department of Complex Systems, Otwock-Swierk, Poland
- ⁸ IFJPAN, Institute of Nuclear Physics PAN, Krakow, Poland
- ⁹ Silesian University of Technology, Department of Systems Biology and Engineering, Gliwice, Poland

Abstract

The Modular J-PET scanner, developed by the J-PET collaboration, is a new prototype PET scanner developed based on axially arranged plastic scintillators as a large axial field of view (50cm) affordable tomograph. In this study, the performance characteristics of the scanner were evaluated according to NEMA NU2-2018 standards using Monte Carlo simulation. In order to ensure the selection of true coincidence events, certain criteria were established. Specifically, each photon emitting from a single annihilation must deposit at least 200 keV within 4 ns of a coincidence time window. The preliminary results showed that the sensitivity profile peak was 4 cps/kBq at the center of the detector, While the scatter fraction was estimated to be 39% using the single slice rebinning algorithm. Spatial resolution was estimated around 4.5 mm in the radial and tangential direction and 18 mm in the axial direction.

Acknowledgment

National Science Centre of Poland through grants no. 2021/42/A/ST2/00423 and 2021/43/B/ST2/02150, and SciMat and qLife Priority Research Area budget under the program Excellence Initiative - Research University at Jagiellonian University.

References

- [1] [1] P. Moskal, et al, Phys. Med. Biol, vol. 66, pp. 175015, 2021.
- [2] National Institute of Standards and Technology 2020 (https://nist.gov/pml)

[3] M. Dadgar, S. Parzych, F. Tayefi Ardebili, Medical Image Understanding and Analysis, vol. 12, pp. 189-200, 2021.

- [4] S. Jan, et al, Phys. Med. Biol, Vol.56, PP. 881-901, 2011.
- [5] NEMA 2018 Nema standards publication nu 2-2018.