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The AMADEUS Collaboration conducts research aimed to experimentally
investigate the low-energy K− hadronic interactions with light nuclei like
hydrogen, helium, and carbon, in order to provide new constraints to the
antikaon-nucleon strong interaction studies in the non-perturbative quantum
chromodynamics regime. K− nuclear absorption, both at-rest and in-flight, are
explored using the unique low-momentum andmonochromatic kaon beam from
the DAΦNE collider interacting with the KLOE detector components, a detector
characterized by high acceptance and excellent position and momentum
resolutions. This paper presents an overview of the AMADEUS results.
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1 Introduction

The AMADEUS (Anti-kaonic Matter At DAΦNE: An Experiment with Unraveling
Spectroscopy) Collaboration performed research of the low-energy K−-nucleon/nuclei
interactions in light nuclear targets for over a decade [1–3]. The primary objective of
these studies is an investigation of the poorly known Λ(1405) resonance and a deeper
understanding of the K− single- and multi-nucleon absorption processes, both at-rest and
in-flight, including the possible formation of kaonic bound states.
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The investigation of the in-medium modification of the �KN
interaction is of fundamental importance for the low-energy
Quantum Chromodynamic (QCD) in the strangeness sector.
Chiral Perturbation Theory (ChPT), an Effective Field Theory
(EFT) that successfully describes interactions involving πN, ππ

and NN in the low-energy regime [4, 5] is not applicable to the
sector with s quarks due to the broad Λ(1405) and Σ(1385)
resonances emerging just below the �KN threshold. The
resonances appearance causes an attractive �KN interaction in the
far subthreshold region, whereas it looks repulsive at threshold, as
demonstrated by the SIDDHARTHA measurements of the K−p
scattering length [6].

Twomain theoretical approaches have been developed to overcome
these difficulties, namely, phenomenological potential models based on
the �KNandNN interactions [7–13] and chiral unitarymodels involving
the non-perturbative Chiral SU(3) dynamics [14–20]. The two models,
constrained by the existing scattering data, describe the �K dynamics
above the threshold very well, however, a large difference appears in the
subthreshold extrapolations. In particular, significantly weaker
attraction is predicted by the chiral SU(3) models than by the
phenomenological potential approach which leads to contrasting
predictions for the Λ(1405) (I = 0) resonance and related kaonic
nuclear bound states. Although the Particle Data Group (PDG) [21]
lists the Λ(1405) as a four-star resonance (spin 1/2, isospin I = 0,
strangeness S = −1), decaying into (Σπ)0 through the strong interaction,
its nature remains still an open issue. According to the
phenomenological potential models, the Λ(1405) is a pure strongly
attractive �KN bound state with a mass of about 1,405MeV/c2, binding
energy of about 30MeV and a width of 40 MeV/c2 [7, 13]. Conversely,
the chiral models [14–20] predict that Λ(1405) occurs as a
superposition of two states, a high-mass state predominantly
coupled to the �KN production channel and a low-mass state mainly
coupled to the Σπ channel which are located around 1,420 MeV/c2 and
at 1,380 MeV/c2, respectively. The two different theoretical scenarios for
Λ(1405) reflect the strength of the �KN interaction and thus influence
the possibility of K− multi-nucleon bound states formation. Deeply
bound nuclear states with narrowwidths and large binding energies (up
to 100MeV/c2) are predicted by phenomenological models as a
consequence of the strongly attractive �KN interaction, while SU(3)
models result inmuch less attractive K−N interaction, which leads to the
prediction of slightly bound kaonic nuclear states. Till now, the bound
kaonic nuclear states have been searched for in several experiments,
using two main approaches: proton-proton and heavy ion collisions
(DISTO [22]) as well as in-flight and at-rest K− interactions in light
nuclei (FINUDA [23] and KEK-PS E549 [24, 25] experiments). The
first K−pp bound kaonic nuclear system signal has been currently
observed and investigated at J-PARC in the 3 He(K−,Λp)n reaction [25].

Recently the ALICE Collaboration confirmed the couple-channel
character of the �KN interaction [26] indicating that the (Σπ)0 invariant
mass spectral shape depends on the decay channel (since the isospin
interference term contributes to Σ±π∓ cross section with opposite sign
and vanishes forΣ0π0) as well as on the production channel. In this case,
�KN absorption represents the golden channel for examining the
predicted high mass pole of the Λ(1405). Moreover, experimental
studies of spectral shape and yield of non-resonant contribution in
hyperon–pion final states, allow to constraint the chiral predictions
which are strongly model dependent. This has been performed by
investigating the single-nucleon absorption K−n → Λπ− channel [27].

Investigation of K− multi-nucleon absorption contributions plays a
very important role in the determination of the K−-nucleus optical
potential. Existing K− single-nucleon optical potentials, combined with
phenomenologically determined K− multi-nucleon absorption term
(based on global absorption bubble chamber data) do not reproduce
the kaonic atoms data along the periodic table of the elements [28, 29].
Therefore, it is crucial to improve the theoretical model by providing
complete characteristics of the absorption processes, by extracting the
two-, three-, and four-nucleon absorptions (2NA, 3NA, and 4NA). The
first comprehensive measurement of K− multi-nucleon absorptions,
including a contribution of the possible K−pp bound state, has been
completed [30].

The purpose of the article is to provide an overview of the current
status of the research performed by AMADEUS collaboration. It begins
with an introduction of the experimental facility, namely, the DAΦNE
accelerator and the KLOE detector. Thereupon, K− single- and multi-
nucleon absorption studies and their impact on the field are discussed,
which is followed by Conclusions.

2 Experimental facility

The AMADEUS studies are based on an experimental data
sample, corresponding to 1.74 fb−1 integrated luminosity,
collected with the KLOE detection system [31, 32], installed at
the double electron-positron ring of the DAΦNE collider [33]
located at the National Laboratory in Frascati of INFN (Italy).

The DAΦNE facility (so-called ϕmeson factory) was designed to
work at the center of mass energy of the ϕ meson. The acceleration
complex deliver low-momentum (~127 MeV/c) monochromatic
charged kaon beam, characterized by a very small hadronic
background, originating from the ϕ-meson decays (BR(K+K−) =
(48.9 ± 0.5)%) which, in turn, is produced in e+e− collisions (beam
energies of 0.51 GeV). The back-to-back topology of the kaons pair
production allows to extrapolate non-identified charged kaon tracks.

The KLOE detector system has a 4π geometry and surrounds the
DAΦNE interaction region (geometrical acceptance of 98%). The
detection setup consists of two basic components: a large cylindrical
Drift Chamber (DC) [31, 34] and an electromagnetic calorimeter
(EMC) consisting of groved lead with scintillating fibers [31, 35].
The detection system was immersed in a 0.52 T magnetic field along
the beam axis, provided by a superconducting solenoid.

The DC, designed for tracking and identification of charged
particles, containing a total of about 52,000 wire, was filled with a
mixture of helium (90%) and isobutane (10%) C4H10. Its inner radius,
outer radius, and length were equal to 0.25, 2, and 3.3 m, respectively.
The DC entrance wall was built of 750 μm layer of low-density carbon
fiber and 150 μm layer of aluminum. Themomenta of charged particles
were determined with excellent relative accuracy of σ(p)

p � 0.4%. The
spatial resolution of the particle tracks reconstruction was of σρϕ ~
200 μm in the transverse and of σz ~ 2 mm along the z-axis, while the
accuracy of decay vertices reconstruction was about 1 mm.

The EMC composed of a cylindrical barrel with an inner radius
of 2 m and two end-caps was dedicated to neutral particles detection.
It also provided Time-of-Flight (TOF) information for the charged
particles. The volume ratio of lead-scintillating fibers (lead/fibers/
glue = 42:48:10) was optimized to achieve high light yield and high
efficiency for photons in the 20–300 MeV/c energy range. The
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cluster position resolution along the fibers was σ‖ � 1.4cm
������

(E/1GeV)
√ , while

in the orthogonal direction it was σ⊥ = 1.4 cm. The energy and time
resolutions for photon clusters are given by σE

Eγ
= 0.057

�������(Eγ/1GeV)
√ and σt =

57ps
�������(Eγ/1GeV)

√ ⊕ 100 ps, respectively.

3 Single- and multi-nucleon K−

absorption studies

Since the Λ(1405)’s resonance line shape is expected to depend
on both, the production mechanism and the observed decay channel
[26], experimental investigation of its properties is challenging.
Additionally, extraction of the shape of the Λ(1405) invariant
mass in reactions induced by negatively charged kaons (K−) is
complicated by two biases. The first bias arises from the
threshold of the Σπ invariant mass, which is limited by the last
nucleon binding energy. This threshold is approximately
1,412 MeV/c2 for K− capture at rest on 4He and around
1,416 MeV/c2 on 12C. Therefore, to verify the existence of the
predicted high mass pole of the Λ(1405), which is expected to be
located at approximately 1,420 MeV/c2, it is necessary to explore the
K− absorption in flight. As shown in [36], the experimental Σ0π0

invariant mass threshold for K− captures in 12C in flight (pK ~
100 MeV/c) is shifted upwards by about 10 MeV with respect to the
capture at-rest, thus opening the access to the energy range of
interests. The Σ0π0 is the so-called “golden decay channel” since it
provides a clear Λ(1405) signature in the I = 0 isospin.

Another crucial bias impacting the (Σπ)0 invariantmass spectrum is
associated with the non-resonant contribution, which needs to be
subtracted in order to extract the shape and investigate the
characteristics of the Λ(1405) resonance. Chiral SU(3) meson-baryon
coupled channels interactionmodels (Barcelona (BCN) [37], Prague (P)
[38], Kyoto-Munich (KM) [39], Murcia (M1,M2) [40], Bonn (B2,B4)
[41]) provide the K−n→ Λπ/Σπ scattering amplitudes, which, however,
strongly differ in the �KN subthreshold region. To determine the
appropriate model for explaining the observed spectra of Σ0π0, the
K−n → Λπ− process was investigated by AMADEUS for the single-
nucleon K− absorption in 4He [27]. The non-resonant transition
amplitude, below the �KN threshold, was extracted for the first time
for the K−n → Λπ− channel, based on the well known resonant part
corresponding to the formation of Σ−(1385) (I = 1). The
multidimensional fit of experimental distributions (Λπ− invariant
mass, momentum, and angular spectrum) with dedicated Monte
Carlo simulations for the contributing processes (non-resonant and
resonant reactions, the primary production of aΣ followed by theΣN→
ΛN’ conversion process, the contamination of K−12C) was performed.
The Monte Carlo simulations are based on the phenomenological K−-
nucleus absorption model developed in Ref. [42]. The non-resonant
transition amplitude modulus was found to be |AK−n→Λπ− | �
(0.334 ± 0.018 stat. +0.034−0.058 syst.) fm at (33 ± 6) MeV/c2 below the
�KN threshold. Ameasurement at

�

s
√

~ 33MeV/c2 below threshold was
possible due to the binding energy of the absorbing nucleon as well as to
the recoil energy of the K−n pair with respect to the residual 3He nucleus.
The AMADEUS experimental result together with the theoretical
predictions rescaled for the K−n → Σπ transition probabilities, is
shown in Figure 1.

The obtained result enables to test the chiral predictions in the
subthreshold region which allow constraining the corresponding

non-resonant background for I = 0 channel (Σπ)0 and hence to
determine the Λ(1405) properties.

Apart from single-nucleon capture studies, AMADEUS conducted
research specifically focused on K− absorptions on two ormore nucleons.
The investigation is highly significant for the determination of K−-
nucleus/nucleon optical potential which has a strong impact on
various sectors of physics, like nuclear and particle physics as well as
astrophysics [44–46]. A detailed characterization of the K− two-, three-
and four-nucleon absorption processes (2NA, 3NA, and 4NA) in K−

capture on 12C nuclei was obtained by investigating Λ(Σ0)p decay
channels [30, 47]. A comprehensive study was performed [30] based
on the phenomenological model for the K− captures at-rest and in-flight
on light nuclei [42, 48]. The simultaneous fit of the experimental Λp
invariantmass,Λp angular correlation,Λ and protonmomentum spectra
with the corresponding simulated distributions of the contributing
processes (including the Σ0 productions followed by Σ0 → Λγ decay
and for the 2NA: 1) the Quasi-Free (QF) processes, 2) elastic Final State
Interaction (FSI) processes and 3) inelastic FSI processes due to
conversion (ΣN →ΛN′)), allowed to extract the K− 2NA, 3NA and
4NA branching ratios (BRs) and cross sections for low-momentum
kaons inΛp and Σ0p final states. The obtained BRs and cross sections are
summarized in Table 1.

The determined global BR (sum of 2NA, 3NA, and 4NABRs) (21 ±
3(stat.)+5−6(syst.)) % aligns with the K− multi-nucleon absorption BRs
measured in bubble chamber experiments [49, 50]. Combining the
experimental BRs for processes leading to Λp pair production (16.1 ±
2.9(stat.)+1.0−0.9(syst.))% [30] with a component corresponding to
processes without Λp in the final state (5.5 ± 0.1(stat.)+1.0−0.9(syst.))%
[51] (determined based on theoretical and experimental information
[49, 52]), the total BR for K− 2NA in 12C was found to be (21.6 ±
2.9(stat.)+4.4−5.6(syst.))% [51].

The performed studies show that the experimental BR of the Λp
QF production in K− 2NA interaction is lower than that of Σ0p QF
production: R � BR(K−(pp) → Λp)

BR(K−(pp) → Σ0p) � 0.7 ± 0.2(stat.)+0.2−0.3(syst.)
indicating a dominance of Σ0p final state, which in contradiction

FIGURE 1
Modulus of the measured non resonant K−n → Λπ− transition
amplitude (with combined statistical and systematic errors) compared
with theoretical calculations, see details in the text. Figure is adapted
from [43].
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to the ratio of corresponding phase spaces R′ = 1.22. This result was
found to be consistent with theoretical calculations of Barcelona and
Prague groups when considering the in-medium effect caused by the
Pauli blocking [52].

The potential contribution of the K−pp bound system to the Λp
spectra was explored revealing the entire overlap of the signal associated
with the formation of the K−pp cluster in K−-induced reactions on
carbon with the K− 2NA-QF process [30]. Repeating the analysis in the
FINUDA-like measurement [23] conditions (selection of back-to-back
Λp events (cosθΛp < −0.8)) yielded the same results (BRs are in
agreement with those obtained from entire data sample), indicating
that if the bound system exists, it cannot be distinguished from the two-
nucleon capture process within this type of analysis.

4 Conclusion

In this paper, the results obtained by the AMADEUS
collaboration in studying the low-energy K− interactions with
light nuclei inducing single- and multi-nucleon absorptions, were
reviewed. The investigation of K−-nucleons/nuclei interactions is
fundamental for a better understanding of the non-perturbative
quantum chromodynamics QCD in the strangeness sector.

By conducting studies on the K−n single nucleon absorption in
4He, it was possible to provide the first characterization of the non-
resonant K−N → Yπ production below the �KN threshold which is
crucial for investigating the properties of the puzzling Λ(1405)
resonance. Additionally, investigations of low-energy K− capture
on a solid carbon target led to a comprehensive understanding of the
two-, three-, and four-nucleon absorptions in the Λp and Σ0p final
states, including their branching ratios (BRs) and cross sections.
Furthermore, it was discovered that the potential contribution from
a K−pp bound state completely overlaps with the K− two-nucleon
quasi-free process. The presented results demonstrate that the
DAΦNE collider is a unique research facility with outstanding
capabilities for studying kaon physics at low energies.

The AMADEUS Collaboration is currently completing studies
of K− 4NA in theΛt golden channel and analyses related to K−p→ Σ0

π0(Λ π0) cross section determination for kaon momentum below

100 MeV/c [53] which will provide additional new experimental
constraints to the �KN strong interaction.
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TABLE 1 Branching ratios (for the K− captured at-rest) and cross sections (for the K− captured in-flight) of the K− multi-nucleon absorption processes. The K−

momentum is evaluated in the centre of mass reference frame of the absorbing nucleons, thus it differs for the 2NA and 3NA processes. The statistical and
systematic errors are also given. The Table is adapted from [30].

Process Branching ratio (%) σ (mb) @ pK (MeV/c)

2NA-QF Λp 0.25 ± 0.02 (stat.)+0.01−0.02(syst.) 2.8 ± 0.3 (stat.)+0.1−0.2 (syst.) @ 128 ± 29

2NA-FSI Λp 6.2 ± 1.4 (stat.)+0.5−0.6(syst.) 69 ± 15 (stat.) ± 6 (syst.) @ 128 ± 29

2NA-QF Σ0p 0.35 ± 0.09 (stat.)+0.13−0.06(syst.) 3.9 ± 1.0 (stat.)+1.4−0.7 (syst.) @ 128 ± 29

2NA-FSI Σ0p 7.2 ± 2.2 (stat.)+4.2−5.4(syst.) 80 ± 25 (stat.)+46−60 (syst.) @ 128 ± 29

2NA-CONV Σ/Λ 2.1 ± 1.2 (stat.)+0.9−0.5(syst.) —

3NA Λpn 1.4 ± 0.2 (stat.)+0.1−0.2(syst.) 15 ± 2 (stat.) ± 2 (syst.) @ 117 ± 23

3NA Σ0pn 3.7 ± 0.4 (stat.)+0.2−0.4(syst.) 41 ± 4 (stat.)+2−5 (syst.) @ 117 ± 23

4NA Λpnn 0.13 ± 0.09 (stat.)+0.08−0.07(syst.) —

Global Λ(Σ0)p 21 ± 3 (stat.)+5−6(syst.) —
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