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OBJECTIVE IFJ PAN KRAKOW

Plastic-scintillator based PET detector Krakow proton beam therapy centre

 Head and neck cancer patients treatment from Oct 2016
« ~200 patients treated in two Gantry rooms
* Eye treatment from 2010

Proton beam therapy (PBT) range monitoring is required to fully
exploit the advantages of proton beam in the clinic. In PBT the
distribution of f+ emitters induced by a proton beam in patient can be

detected by PET scanners, the emission distribution can be Proteus C-235 cyclotron
reconstructed and used for monitoring of the beam range. Pencil beam scanning

The aim of this work is to study a feasibility of the J-PET Eclipse TPS
technology for range verification in PBT. Dedicated QA protocols

MATERIALS AND METHODS

Plastic-scintillator based PET detector

A prototype of a diagnostic strip-based whole body PET scanner (J-PET) has
been developed and tested at the Jagiellonian University in Krakow. [1] The
advantages of the system over commercial PET scanners is that it increases
the geometrical acceptance and facilitates integration in the treatment room,
off-line or in the treatment position. A single detection module of the modular,
2hd generation strip-PET scanner (see Fig. 1) is constructed out of thirteen
50-cm long organic scintillator strips. The light pulses produced in a strip by
gamma quanta are propagated to its edges and converted into electrical
signals by silicon photomultipliers (see Fig. 2). They are read-out by fast on-
board front-end electronics allowing excellent overall coincidence resolving
time (CRT) of about 400 ps, which shows a significant improvement
compared to the standard LSO-based PET scanners.

2nd generation modular J-PET

Monte Carlo simulations

GATE Monte Carlo (MC) toolkit has been used to investigate the modular JPET system efficiency for detection of £+ annihilation back to back
photons induced in PMMA target by a proton beam (see Fig. 3). Three barrel and three dual-head configurations (see Fig. 4; re-printed from [2])
of the modular system were investigated:
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RESULTS and CONCLUSION

The activity profile as a function of depth along the beam axis built from the transversally integrated signal along the phantom (blue) compared
with the dose deposition profile (red; see Fig. 5; re-printed from [2]). The detection efficiency of the strips is about 10%. The efficiency of the
system in the proton beam simulation increases quadratically with the number of detector layers. It ranges from 0.14% for single layer setup to
0.95% for three layers setup. Performed simulations suggest the signal obtained with the J-PET detector technology during proton beam
therapy is sufficient for range monitoring. The results revealed that inter-spill beam range monitoring is achievable with both, dual-
head and multi-layer JPET configurations. Experimental verification of the performed simulations is planned.
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