Studies of ortho-positronium decays into three photons using the J-PET detector

15th International Workshop on Slow Positron Beam Techniques & Applications Prague, 2.09.2019

Aleksander Gajos on behalf of the J-PET Collaboration Jagiellonian University

Foundation for Polish Science European Union European Regional Development Fund

Motivation: discrete symetry tests with o-Ps \rightarrow 3 γ decays

Discrete symmetries are scarcely tested in the leptonic sector!

 Positronium – the only system consisting of charged leptons used for tests of CP and CPT to date

- The only alternative in the leptonic sector to date: **neutrinos**
- CP-violation results (Dirac phase, $\delta_{\text{CP}})$ at the 2σ level (NovA, T2K II)
- Can we probe CP violation in leptonic systems in smaller-scale experiments?

Testing discrete symmetries with angular correlations in o-Ps \rightarrow 3 γ decays

$$\hat{O}
ightarrow \stackrel{?}{=} 0$$
 for an odd operator
 $\Leftrightarrow C \mathcal{P} \mathcal{T}(\hat{O}) = -1$
 $\Leftrightarrow \mathcal{T}(\hat{O}) = -1$

 $|\vec{k}_1| > |\vec{k}_2| > |\vec{k}_3|$

Using ortho-positronium spin	operator	С	Р	Т	CP	CPT
Requires either:	$ec{S}\cdotec{k_1}$	+	—	+	_	_
• polarization	$ec{S} \cdot (ec{k_1} imes ec{k_2})$	+	+	—	+	_
 spin control spin estimation	$(ec{S}\cdotec{k_1})(ec{S}\cdot(ec{k_1} imesec{k_2}))$	+	—	_	_	+
	$ec{k_2}\cdotec{\epsilon_1}$	+	_	_	_	+
	$ec{S}\cdotec{\epsilon_1}$	+	+	_	+	_
Ising photon polarization	$ec{S} \cdot (ec{k}_2 imes ec{\epsilon}_1)$	+	_	+	_	_

Using photon polarization Covered in a talk of J. Raj In the same session.

[W. Bernreuther *et al.*, *Z. Phys. C41 (1988) 143*] [P. Moskal *et al.*, *Acta Phys. Polon. B47 (2016) 509*]

o-Ps \rightarrow 3 γ operators involving spin

Presently studied with J-PET:

 $ec{S} \cdot (ec{k_1} imes ec{k_2})$ T & CPT-violation sensitive $ec{S} \cdot ec{k_1}$ CP-violation sensitive

$$(\vec{S} \cdot \vec{k_1})(\vec{S} \cdot (\vec{k_1} \times \vec{k_2}))$$

T & CP-violation sensitive but requires o-Ps tensor polarization \rightarrow not available with the current J-PET approach

Event-by-event spin estimation

Using an extensive-size o-Ps production and annihilation medium

Effective polarization depends on o-Ps \rightarrow 3 γ vertex resolution

Reconstruction of o-Ps ${\rightarrow} 3\gamma$ decays in J-PET

J-PET vs previous measurements

Gammasphere PRL. 91 (2003) 263401 $\vec{S} \cdot (\vec{k_1} \times \vec{k_2})$

Limiting positron emission direction 1 Mbq β^+ emitter activity 4π detector but low angular resolution

Recording multiple geometrical configurations

e+ spin estimated event-by-event $P_{e+} pprox rac{v}{c} \cdot 0.98$ [NIM A 819 (2016), 54]

Yamazaki et al. PRL 104 (2010) 083401 $(\vec{S} \cdot \vec{k_1})(\vec{S} \cdot (\vec{k_1} \times \vec{k_2}))$ $C_{CP} = (1.3 \pm 2.1 \pm 0.6) \times 10^{-3}$

Polarized o-Ps using external B field Inclusive measurement Only certain angular configurations

Plastic scintillators = fast timing \rightarrow using high β^+ emitter activity (tested up to 10 Mbq)

Recording all 3 annihilation photons

o-Ps production in J-PET with an extensive size annihilation chamber

- Extensive-size chamber, R=12 cm
- Walls coated with XAD-4 porous material enhancing o-Ps formation
- β+ emitter (²²Na) placed in the center of the chamber
- 2 different ²²Na activities used:
 - 10 MBq 180 days meas.
 - 0.8 Mbq 14 days meas.

Tomographic images of the chamber obtained using $\gamma\gamma$ annihilations:

Identification of prompt and annihilation $\boldsymbol{\gamma}$

$o-Ps \rightarrow 3\gamma$ in J-PET

Selecting events with:

- 3 annihilation photon • candidates within 2.5 ns
- A single prompt photon ٠ candidate within 250 ns from the 3 ahhinilation photons

10³

10²

10

Rejection of subsequent scatterings in the detector

- See talks by J. Raj and N. Krawczyk for the cases when we **do not** want to reject these scatterings
- For each pair of annihilation photon candidates *i* and *j* (*i*,*j*=1,2,3) the following figure is computed:

$$\delta t_{ij} = |d_{ij} - c\Delta t_{ij}| = \left|\frac{1}{c}|\vec{r_i} - \vec{r_j}| - (t_i - t_j)\right|$$

Distribution of the minimum δt_{ij} over all photon pair choices in a events:

3γ image of the o-Ps production chamber

Side view of the detector

Tranverse view of the detector excluding the source setup region (|z| > 2 cm)

The first "image" of an extensive-size object obtained with o-Ps \rightarrow 3 γ annihilations

CPT-violation sensitive operator

- Uncertainty: 4.5 × 10⁻⁴ (statistical only)
- Using ~ 1/4 of available data (~300 TB in total)
- Not corrected for detector acceptance (currently under study using MC simulations)

Summary and perspectives

- The J-PET detector is capable of exclusive registration of o-Ps \rightarrow 3 γ annihilations
 - Full event recontruction including determination of the annihilaiton point in an extensive-size medium
 - Estimation of o-Ps spin on an event-by-event basis
- J-PET aims at improving sensitivity of the CP and CPT symmetry tests by at least an order of magnitude
 - Target sensitivity: 10-4 available with the already collected data
- Prospects for further improvement:

Thank you for your attention!

This work is supported in the framework of the TEAM/2017-4/39 programme of the Foundation for Polish Science

Backup Slides

Testing discrete symmetries with ortho-positronium

For details of the study of this operator at J-PET see the talk of J. Raj in the same session

operator	С	Р	Т	CP	СРТ
$ec{S}\cdotec{k_1}$	+	—	+	—	—
$ec{S} \cdot (ec{k_1} imes ec{k_2})$	+	+	_	+	_
$(ec{S}\cdotec{k_1})(ec{S}\cdot(ec{k_1} imesec{k_2}))$	+	_	_	_	+
$ec{k_2}\cdotec{\epsilon_1}$	+	_	_	_	+
$ec{S}\cdotec{\epsilon}_1$	+	+	_	+	_
$ec{S} \cdot (ec{k}_2 imes ec{\epsilon}_1)$	+	_	+		_

[W. Bernreuther et al., Z. Phys. C41 (1988) 143] [P. Moskal et al., Acta Phys. Polon. B47 (2016) 509]

J-PET can determine the scattering plane in events with secondary Compton scatterings!

Angle between ϵ and the scattering plane

The J-PET Detector

- Constructed at the Jagiellonian University
- Fist PET device using strips of plastic scintillators
- At the same time: a robust photon detector for fundamental research!

O-Ps creation and decay

Distinguishing o-Ps \rightarrow 3 γ and e⁺e⁻ \rightarrow 2 γ

Figure 9. (Left) Simulated distributions of differences between detectors ID (Δ ID) and differences of hittimes (Δ t) for events with three hits registered from the annihilation e+e- $\rightarrow 2\gamma$ (gold colours) and o-Ps $\rightarrow 3\gamma$ (green colours). (**Middle**) Disribution of relative angles between reconstructed directions of gamma quanta. The numbering of quanta was assinged such that $\theta_{12} < \theta_{23} < \theta_{31}$. Shown distributions were obtained requiring three hits each with energy deposition larger than Eth = 50 keV. Gold colour scale shows results for simulations of e+e- $\rightarrow 2\gamma$ and green scale corresponds to o-Ps $\rightarrow 3\gamma$. Typical topology of o-Ps $\rightarrow 3\gamma$ and two kinds of background events is indicated. (**Right**) Detection efficiency of the J-PET detector for registration of one, two and three gamma quanta from o-Ps $\rightarrow 3\gamma$ decay. The efficiency is shown as a function of threshold energy applied in the analysis to each gamma quantum.

[J-PET: P.Kowalski, P.Moskal, in preparation]

Ortho-positronium decay tomography

Motivation:

- Ortho-positronium (o-Ps) lifetime in tissue strongly depends on inter-cellular spaces' size
- Morphological imaging possible through determination of o-Ps lifetime
- 4-th photon coming from β+ emitter deexcitation is used to estimate o-Ps creation time
- o-Ps \rightarrow 3 γ decay location and time must be reconstructed using 3 recorded photons

Properties of the process:

- Momenta of the <u>3 photons from o-Ps</u> decay lie in one plane (in the o-Ps ref. frame)
- 4-th (deexcitaion) photon momentum is not correlated with the other three
- o-Ps→3γ decay and deexcitation photon emission differ by distance and time related to free e+ path and positronium life

Reconstruction of o-Ps \rightarrow 3 γ decays in J-PET

Origin of the reconstruction method

	GPS	$K_L \rightarrow 3\pi^0 \rightarrow 6\gamma$ at KLOE	o-Ps→3γ at J-PET
Shere centers	Satellite locations	$\boldsymbol{\gamma}$ hits in KLOE calorimeter	γ hits in J-PET barrel
Whose travel time is measured?	Radio signals from satellites	Photons from $\pi^{\scriptscriptstyle 0}$ decays	Photons from o-Ps decay
Reconstructing position of	GPS receiver	$K_L \rightarrow 3\pi^0 \rightarrow 6\gamma$ decay	o-Ps→3γ decay
Reconstructed time	Current GPS time	Time of K_L decay	Time of positronium decay
Using information on	At least 4 satellites	4-6 recorded photons	3 recorded photons and coplanarity

MC simulation of o-Ps decays in J-PET

- Monte Carlo simulations of o-Ps decays recorded by the J-PET detector were prepared
- J-PET detector with 384 scintillator strips was assumed in simulations
 - Single strip size: 7x19x500mm³
 - Barrel dimensions:
 - R = 43cm, L = 50cm
 - Resolution in XY plane: $\Delta \phi \approx 0.5 \text{deg}$
- Simulation includes:
 - β + emitter deexcitation and prompt
 - Positron thermalization before positronium creation (in water)
 - Ortho-positronium lifetime (for water)
 - Momentum of the decaying positronium deviation from 3 photons' coplanarity in LAB frame

Effects included in the simulation

Non-coplanarity of photons' momenta

Positron thermalization and oPs flight before decay

result in a difference between the o-Ps decay point and the deexcitation photon emission point

Both effects are negligible within reconstruction resolution (presented on next slides).

Resolution dependence on γ hit time resolution

The resolution of o-Ps decay obtained with the presented reconstruction method depends predominantly on the timing resolution of γ hits in scintillator strips.

Ortho-positronium life time resolution

For each event of o-Ps decay, the positronium decay time can be estimated as:

where t_0 is the o-Ps d $\frac{\tau_{o-Ps}^{rec} = t_0 - \left(t_{\gamma deexc.} - \frac{L_{\gamma deexc.}}{c}\right)}{L_{\gamma deexc.}}$ is calculated using reconstructed o-Ps decay point.

Time Over Threshold (TOT) distributions

A. Gajos, SLOPOS 15

Angular topology of three-photon events

For details on the 2y event properties, see the talk by M. Mohammed, Session 8, Wed 15:50

Detector efficiency for S*k₁xk₂

