
Vol. 47 (2016) ACTA PHYSICA POLONICA B No 2
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The possibility for the existence of unstable bound states of the S11
nucleon resonance N∗(1535) and nuclei is investigated. These quasibound
states are speculated to be closely related to the existence of the quasibound
states of the eta mesons and nuclei. Within a simple model for the NN∗

interaction involving a pion and eta meson exchange, N∗–nucleus potentials
forN∗–3He andN∗–24Mg are evaluated and found to be of a Woods–Saxon-
like form which supports two to three bound states. In the case of N∗–
3He, one state bound by only a few keV and another by 4 MeV is found.
The results are however quite sensitive to the NN∗π and NN∗η vertex
parameters. A rough estimate of the width of these states, based on the
mean free path of the exchanged mesons in the nuclei, leads to very broad
states with Γ ∼ 80 and 110 MeV for N∗–3He and N∗–24Mg respectively.
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1. Introduction

The S11 nucleon resonance N∗(1535) has always been considered a cru-
cial ingredient in the search for the elusive eta-mesic nuclei [1, 2]. Analyses of
an anticipated eta-mesic nucleus model the eta–nucleon interaction to pro-
ceed via the formation of an N∗(1535) resonance which repeatedly decays,
regenerates and propagates within the nucleus until it eventually decays into
a free meson and nucleon. Such a picture makes one ponder if a quasibound
state of the N∗ and nucleus might also exist. The idea of a “bound” state
of an N∗ and a nucleus is conceptually similar to that of a ∆ and a nucleus
which was indeed investigated in the past. In an experiment performed at
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MAMI [3], the reaction 12C(e,e′∆0)11C→ 12C(e,e′ pπ )11C was investigated
and the authors claimed to have found evidence for two narrow peaks which
they interpreted as 12C∆ states. The authors distinguished the reaction with
two scenarios: (i) a “quasifree” ∆0 is produced from a bound neutron and
it flies off in the forward direction and decays in such a way that the decay
particles are produced in the forward direction in the laboratory frame and
(ii) a bound ∆0 is produced and the whole nucleus takes the momentum
transfer such that the ∆0 moves much slower and the decay products can, in
principle, come out in any direction. The forward direction decay products
were then excluded in order to look for the bound ∆0. Though the authors
did claim to have found a narrow ∆0 bound nucleus, and a theoretical cal-
culation by Walcher [4] tried even to explain its existence, these works were
criticized in [5] due to the importance of the non-mesonic ∆ decay, namely,
∆N → NN (they found the width to be around 100 MeV) and the idea, in
general, remained mostly ignored.

Coming back to the discussion of the N∗–nuclei, in the present work
we shall investigate the possibility for the existence of N∗–3He and N∗–
24Mg unstable bound states within a one-meson exchange model for the
elementary NN∗ interaction. Though not very obvious, these states could
possibly be related to the formation of η–4He and η–25Mg quasibound nuclei.
In the next section, we present the N∗–nucleus potentials and the method
to locate the possible bound states of this potential.

2. N∗–nucleus potential

Since the N∗–N interaction is not well-known and the existence of such
a baryon resonance-nuclear state is as such not really known, in the present
work, we will try to make a simple estimate to see if any further sophisticated
calculation is worth following. With this in mind, we shall use (a) a one-
meson exchange NN∗ → NN∗ interaction which is scalar and does not
involve the spin-dependent parts, and (b) the N∗–nucleus potential which is
obtained by folding the elementary NN∗ interaction with a nuclear density.
Neglecting the spin-dependent parts is not a drastic assumption as we will
see below. Since the N∗(1535) is a negative parity baryon, indeed in the one-
pion and -eta exchange diagrams, the spin-dependent terms are suppressed
as compared to the leading scalar terms.

2.1. Elementary NN∗ → NN∗ potential

The diagrams which we shall consider are shown in Fig. 1. We consider
an N∗ which is neutral. The calculation for a positively charged N∗ can
be repeated in a similar way. We shall not consider diagrams involving the
N∗N∗ π or N∗N∗ η couplings which are hardly known. Apart from this fact,
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for such diagrams, the potential turns out to be spin-dependent (and so also
suppressed as compared to the leading term in the potential of Fig. 1).
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Fig. 1. Elementary NN∗ → NN∗ processes considered in this work.

The πNN∗ and η NN∗ couplings (with N∗(1535, 1/2−)) are given by
the following interaction Hamiltonians [7]:

δHπNN∗ = gπNN∗Ψ̄N∗~τ ΨN · ~Φπ + h.c. ,

δHηNN∗ = gηNN∗Ψ̄N∗ΨN · Φη + h.c. (1)

Starting with, say, the diagram for the N∗n → nN∗ process in Fig. 1 and
using the standard Feynman diagram rules with the non-relativistic approx-
imation for the spinors

ui =
√

2mi

(
wi

~σi·~pi
2mic

wi

)
, (2)

we can write the amplitude as

g2xNN∗ ūN∗(~p ′)un(~p ) ūn(−~p ′)uN∗(−~p )

q2 −m2
x

, (3)

where x = π or η and q2 = ω2−~q 2 is the four momentum squared carried by
the exchanged meson (q = p′− p as shown in the figure). Here, for example,

ūn
(
−~p ′

)
uN∗(−~p ) = N

(
1 − ~σn · ~p ′~σN∗ · ~p

4mNm∗Nc
2

)
(4)

and we drop the second term in the brackets which is spin-dependent as well
as 1/c2 suppressed. The potential in momentum space obtained from the
above amplitude is given as:

vx(q) =
g2xNN∗

q2 −m2
x

(
Λ2
x −m2

x

Λ2
x − q2

)2

, (5)

where the last term in brackets has been introduced to take into account the
off-shellness of the exchanged meson. The momentum transfer q2 = ω2− ~q 2



302 N.G. Kelkar, D. Bedoya Fierro, P. Moskal

in the present calculation is approximated simply as q2 ' −~q 2. The neglect
of the energy transfer in the elastic NN∗ → NN∗ process is not necessarily
justified but introducing a finite energy transfer gives rise to poles in (5)
thus making the calculation of the N∗–nucleus potential a formidable task.
Hence, restricting ourselves to a calculation within this approximation, we
Fourier transform the potential in (5) to obtain the potential in r-space.
The Fourier transform of (5) can be calculated analytically and we get

vx(r) =
g2xNN∗

4π

[
1

r

(
e−Λxr − e−mxr

)
+
Λ2
x −m2

x

2Λx
e−Λxr

]
. (6)

The elementary potentials for two different parameter sets of the coupling
constants for the πNN∗ and ηNN∗ vertices are shown in Fig. 2.
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Fig. 2. Elementary NN∗ → NN∗ potentials with π and η exchange (left) and
N∗–nuclear potentials (right).

2.2. N∗–3He and N∗–24Mg potentials

Once the elementary potential has been defined, we use the folding model

V (R) =

∫
d3r ρ(r) v

(∣∣∣~r − ~R
∣∣∣) , (7)

to construct the N∗–nucleus potential V (R) and write

V (R) = Vp(R) + Vn(R)

= Z

∫
d3r ρp(r) vp

(∣∣∣~r − ~R
∣∣∣) + N

∫
d3r ρn(r) vn

(∣∣∣~r − ~R
∣∣∣) , (8)
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where Z and N are the number of protons and neutrons, vn(r) = vπ0(r) +
vη(r) and due to the isospin factor appearing in the π− exchange diagram
(see Fig. 1 and Eq. (1)), vp(r) = vπ−(r)~τ1·~τ2. We also assume ρ(r) = ρn(r) =
ρp(r) with ρ(r) normalized to 1. After performing the angle integration, the
above integral reduces, for example, to

Vn(R) =
−2πA

R

∫ {
e−mx(|r−R|) − e−mx(r+R)

mx
− e−Λx(|r−R|) − e−Λx(r+R)

Λx

+B

[(
r +R

Λx
+

1

Λ2
x

)
e−Λx(r+R) −

(
|r −R|
Λx

+
1

Λ2
x

)
e−Λx|r−R|

]}
r dr ρ(r) ,

where A = g2xNN∗/4π and B = (Λ2
x −m2

x)/2Λx.
In the case of the 3He nucleus, the nuclear density ρ(r) is a sum of

Gaussians [8] and the above integral can, in principle, be done analytically.
However, such an attempt leads to lengthy expressions with error functions
and exponentials which are not particularly enlightening and hence we rather
perform the integral numerically. The density for 3He is taken from [8] and
that for 24Mg is assumed to have a standard Woods–Saxon form. The N∗–
nuclear potentials (in Fig. 2) can be fitted reasonably well to the Woods–
Saxon forms of potentials. This facilitates the search for bound states of
this potential.

3. Bound states of the N∗–nucleus potential

The Schrödinger equation for the Woods–Saxon potential can be reduced
to one for the hypergeometric functions [9] and a condition for the existence
of bound states can be found. For a Woods–Saxon potential of the type

V (r) = − V0

1 + e
r−R
a

, (9)

the Schrödinger equation

d2u

dr2
+

2

r

du

dr
+

2m

~2
(E − V )u = 0 (10)

may be transformed to the independent variable y = 1/[1+er−R/a] to obtain
a hypergeometric differential equation. After some lengthy algebra [9], one
obtains the following condition for bound states:

λR

a
+ Ψ − 2φ− arctan

λ

β
= (2n− 1)

π

2
, n = 0,±1,±2, . . . (11)
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where
2mE

~2
a2 = −β2 ;

2mV0
~2

a2 = γ2 ; λ =
√
γ2 − β2

and φ = argΓ (β + iλ); Ψ = argΓ (2iλ).

3.1. Binding energies of the N∗–nuclei

The N∗–nucleus potentials shown in Fig. 2 can be very well fitted using
a Woods–Saxon form and the condition in (11) used to determine if a bound
state of the N∗–nucleus potential exists and at what energy. The table below
gives the parameters of the Woods–Saxon fits to the N∗–nucleus potentials
and the energies of the bound states obtained using (11). The results are
tabulated for two-parameter sets of the coupling constants for the πNN∗
and ηNN∗ vertices.

TABLE I

gπNN∗ = 0.67, gηNN∗ = 2.1 gπNN∗ = 1.1, gηNN∗ = 2
Λπ = 1.2, Λη = 1.5 GeV [10] Λπ = 0.88, Λη = 1.28 GeV
E, V0 [MeV], a, R [fm] [11]

N∗–3He E = −0.03 E = −3.9
V0 = 18, a = 0.8, R = 1.3 V0 = 37, a = 0.84, R = 1.4

N∗–24Mg E = −17.1, −1.8 E = −47.6,−20.8,−2.6
V0 = 34, a = 0.9, R = 2.9 V0 = 76, a = 0.98, R = 2.9

3.2. Estimate of the widths

Given that the N∗–nucleus is not expected to be a “bound” state (with
infinite lifetime) but rather an unstable- or quasi-bound state, we also give
a rough estimate of its width using a procedure similar to that of Ref. [4].
Assuming an average mean free path of the π (or η) to be given by 〈l(ω)〉 =
(ρ σ(ω))−1 and also assuming that the N∗ was produced, say, at the centre
of the nucleus, the number of times that the meson rescatters is given by

N(ω) = gcorr

(
R

〈l(ω)〉

)2

= gcorr [Rρσ(ω)]2 , (12)

where we assume, as in [4], that the geometric factor gcorr is to be multiplied
if it is assumed that the N∗ is homogeneously produced over the nucleus.
Starting with the amplitude as a function of the energy ω as

G(ω) = G0
~√
2π

−i
(ω − ω0 − ε) + i(Γ/2)

(13)
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and taking into account that the meson does not propagate as a plane wave
between rescatters in the nucleus (after being produced and absorbed due
to the N∗ decay), |G(ω)|2 is found to be

|G(ω)|2 = G2
0

~2

2π

1

(ω − ω0 − ε)2 + (Γ/2)2
sin2 ((N(ω) + 1)φ(ω)/2)

sin2 (φ(ω)/2)
, (14)

where φ(ω) is the phase advance experienced by the propagating meson and
is given by

φ(ω) = arctan

(
ω0 + ε− ω

Γ/2

)
(15)

and

σ(ω) = σ0
(Γ/2)2

(ω − ω0 − ε)2 + (Γ/2)2
. (16)

Here, ω0 is the difference of the N∗ and N masses (∼ 597 MeV). In Fig. 3,
we see a plot of the function |G(ω)|2 (normalized to its peak value) as a
function of ω for different values of the cross section parameter σ0. The
peak position is shifted from 597 MeV due to the meson phase factor as
well as the binding energy, ε, of the N∗ in the nucleus. As we can see, the
distributions become narrow for increasing values of the cross sections. In
the same figure, to the right, we see the full width at half maximum as a
function of σ0 for the N∗–3He and N∗–24Mg nuclei. The absorption cross
section parameter, σ0, depends on the magnitude of the cross sections in
πN → πN and ηN → ηN scattering in the N∗-resonance region. These
cross sections are of the order of 3 fm2, for example, for π−p→ π−p+ π0n
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Fig. 3. (a) Energy dependence of the normalized resonance curve |G(ω)|2 for differ-
ent values of σ0 and (b) the full width at half maximum (Γ ) of the resonance curves
as a function of σ0. The maximum number of rescatterings (N) of the exchanged
meson are also shown as a function of σ0 (with the scale on the right-hand side).
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in the N∗-resonance region. In Fig. 3, we also see the maximum number of
rescatters that the meson would perform before leaving the nucleus at each
value of σ0. It appears from the figure that for the range of relevant cross
sections, the meson will not even rescatter once and, in this case, the state
would be broad (for example, at σ0 = 3 fm2, Γ ∼ 80 MeV for N∗–3He and
about 110 MeV for N∗–24Mg). It seems only consistent that if the cross
sections are bigger, then there are more rescatters and the state is longer
lived (small Γ ) as seen in the figure. The curves in Fig. 3 are not very
sensitive to the binding energy of the N∗–nucleus.

To summarize, we can say that within the simple model calculation done
here, very broad states of N∗–3He and N∗–24Mg may exist. If an eta-mesic
nucleus is visualized in the form of an eta meson propagating inside the
nucleus via the formation, decay and regeneration of the N∗ resonance, the
above could imply the existence of broad eta-mesic nuclear states [12].
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