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Abstract

The proximity of the η N threshold to the mass of the N∗(1535) allows us to consider the η-nucleus 
interaction below the η threshold as a series of excitations, decays of the N∗ on the constituent nucleons and 
the eventual decay of the N∗ to a nucleon and a pion. Experimental searches for η-mesic nuclei rely on this 
model in their analysis of data where an η-mesic nucleus could have been formed. However, the momentum 
distribution of an N∗ is often approximated to be the same as that of a nucleon inside the nucleus. Our aim 
is to obtain an estimate of the error introduced by this assumption and hence we calculate the momentum 
distribution of the N∗ formed inside 3He. This distribution is found to be narrower than that of a nucleon 
inside 3He. The latter affects the outgoing particles kinematics and reduces the determined acceptance of 
their experimental registration by the detection setup. This reduction is crucial for the determination of cross 
sections in the search for η-mesic helium.
© 2020 Elsevier B.V. All rights reserved.
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1. Introduction

The S11 nucleon resonance N∗(1535) has always been considered an important ingredient in 
the search for η-mesic nuclei. Experimental analyses for the formation of an η-mesic nucleus 
[1–3] often assume the η-nucleon interaction to proceed via the formation of an N∗ resonance 
as an intermediate state. For example, the analysis in [2] for the search of an η-mesic 4He is 
carried out by assuming the reaction to proceed as d d → (4He-η)bound → (N∗-3He) → 3He N 
π . Therefore, for such a reaction below the η meson production threshold, an off-shell η meson 
produced in a d d collision, is regarded to be absorbed on one of the nucleons in the helium 
nucleus and may propagate inside the nucleus by consecutive excitations and decays of the N∗
to a nucleon and η (off-shell) until it finally decays into an on-shell pion and a nucleon. In view 
of this scenario assumed in the experimental analyses, the motion of the N∗ in 4He was analysed 
in [4,5]. In the analysis of the proton-deuteron fusion data in the search for η-mesic 3He [6,7], 
the momentum distribution of the N∗ inside 3He is necessary to establish the detector system 
acceptance for the registration of the pd → (d − N∗) → d N π reaction and to determine the 
data selection criteria. In the absence of any theoretical calculation of the momentum distribution 
of the N∗ in 3He, the experimental analyses are carried out by approximating the latter by the 
momentum distribution of a nucleon in 3He.

The aim of the present work is to calculate the momentum distribution of the N∗ formed 
inside 3He and estimate the uncertainty introduced in the experimental analysis based on ap-
proximating the former by the momentum distribution of a nucleon in 3He. In order to perform 
such a calculation, we construct an N∗-deuteron (N∗-d) potential in coordinate space and solve 
the Schrödinger equation numerically to obtain the N∗-d bound state wave functions and thereby 
the relative momentum distribution of the N∗ and the deuteron. We note that in the past couple 
of years, there has been a particular interest in the search of η-mesic 3He through the analysis of 
proton-deuteron fusion reactions [6,8,9] close to the threshold of η production. In this context, 
the pd→3Heη reaction plays an important role and has been investigated theoretically to obtain 
an understanding of the η-3He final state interaction [10] as well as the reaction mechanisms 
involved [11,12]. Apart from the earlier investigations [13,14] which followed the pioneering 
works of Refs. [15,16], the interest in this reaction [17–19] as well as η-mesic helium states [20]
seems to have revived very recently [21–23].

The ongoing analyses of the WASA collaboration [7] hold the promise to confirm the theo-
retical findings of the past years on the possibility of forming an η-mesic 3He nucleus [24,25]. 
These analyses involve the investigation of several possible channels such as pd → pdπ0, pd →
pppπ−, pd → pnnπ+, pd → 3He γ γ etc. The experimental analysis of the dd →3He Nπ re-
action [2] has already shown that approximating the N∗ momentum distribution by that of a 
nucleon can significantly change the upper limits of the cross sections. Hence, it is important to 
investigate the N∗ motion in 3He before finalizing the data analysis for η-3He states. In the next 
section, we present an approach to evaluate the N∗-deuteron potential in coordinate space. Using 
the elementary N∗N interaction with one-pion and one-eta exchange as in our previous work in 
[5], the N∗-d potential is calculated and the N∗-d relative momentum distributions for two sets 
of N∗Nπ and N∗Nη coupling constants are presented in this section. In Section 3, simulations 
using these momentum distributions are preformed in order to determine the acceptance of the 
detectors and estimate the error involved in using nucleon momentum distributions in place of 
those of the N∗. Section 4 presents an approach to evaluate the N∗-d potential with the width of 
the N∗ resonance taken into account. We summarize our findings in Section 6.
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2. Comparison of the N and N∗ momentum distributions

To evaluate the N∗ momentum distribution, we begin by writing an (N∗)+ - deuteron potential 
which is constructed by using a three body approach to the (N∗)+-proton-neutron system with 
the proton and neutron being already bound inside the deuteron. The N∗-n and N∗-p interaction 
is written using the one - pion and -eta exchange potential as in our previous works [4,5]. In [5], 
results were presented for several choices of the ηN∗N and πN∗N coupling constants. Here we 
choose two sets which are able to reproduce the correct branching of the N∗ to the πN and ηN 
channels, namely, gN∗π = 1.09, �π = 1300 MeV, gN∗η = 2.07 and �η = 1500 MeV (which we 
shall refer to as Set 1) [26] and gN∗π = 1.05, �π = 1300 MeV, gN∗η = 1.6 and �η = 1500 MeV 
(referred to as Set 2) [27]. In principle, there could be additional contributions from two pion 
exchange (ρ meson exchange diagram) and other box diagrams. However, considering the need 
for an estimate of the N∗ momentum distribution as an input for the experimental analysis and 
also the fact that there is no data available to fix the N N∗ → N N∗ potentials, we leave such an 
undertaking for the future.

2.1. N∗-deuteron potential

The pn interaction is contained in the deuteron wave function. The N∗-d potential is con-
structed using standard techniques from scattering theory where we first write down the scattering 
amplitude to obtain the potential VN∗d(q) in momentum space and then evaluate its Fourier trans-
form. This procedure of obtaining potentials in coordinate space is also common in quantum field 
theory [28–31].

The Hamiltonian of the quantum system consisting of an N∗ and a nucleus (with A nucleons) 
is given as [32], H = H0 + VN∗A + HA, where H0 is the N∗-nucleus kinetic energy operator 
(free Hamiltonian), VN∗A = ∑A

i=1 Vi , the sum of N∗-nucleon potentials, Vi ≡ VN∗N(|R − r i |), 
where R and r i are the coordinates of the N∗ and the ith nucleon with respect to the centre 
of mass of the nucleus and HA is the total Hamiltonian of the nucleus containing the potential 
term, 

∑
i �=j VNN(|r i − rj |). We proceed with the assumption that the nucleus remains in its 

ground state during the scattering process, i.e., HA |�〉 = ε |�〉 and that the nucleons occupy 
fixed positions inside the nucleus. The N∗ - nucleus elastic scattering amplitude can be expressed 
as [32]

f (k′,k;E) = −(μ/π) 〈k′,� |T (E) |k,� 〉 (1)

in terms of the matrix elements of the operator T obeying the Lippmann-Schwinger (L-S) equa-
tion, T = V +V (E −H0 −HA)−1T . |k, � 〉 and |k′, �〉 are the initial and final asymptotic states 
which differ only in the direction of the relative N∗ nucleus momenta k and k′. Truncating the 
L-S equation at first order and approximating T = V = ∑

i Vi , we get, T (k′, k) = V (k′, k) and 
denoting, T (k′, k) ≡ 〈 k′, � | T (E) |k, � 〉, we have

V (k′,k) = 〈k′,� |
A∑

i=1

Vi |k,� 〉. (2)

If the internal Jacobi coordinates are denoted by xi , then relating them with ri = aix1 + bix2 +
... + gixA−1, we can write,

V (k′,k) =
∫

dx1 dx2 ... dxA−1 |�(x1,x2, ...)|2
A∑

Vi(k
′,k, r i ) , (3)
i=1
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where,

Vi(k
′,k, r i ) = Vi(k

′,k) exp[i(k − k′) · r i] . (4)

The above discussion is valid for any nucleus with A nucleons. In case of the N∗-deuteron sys-
tem, Eq. (3) reduces to

V (k′,k) =
∫

dx1 |�d(x1)|2 [VN∗p(k′,k,
1

2
x1) + VN∗n(k

′,k,−1

2
x1) ] (5)

where we used, x1 = r1 −r2, r1 = (1/2)x1 and r2 = −(1/2)x1. We identify 1 and 2 with proton 
and neutron so that, V1 = VN∗p , V2 = VN∗n and �d is the deuteron wave function. Since the 
N∗-N potentials depend only on q2, we can write, VN∗N(k, k′) ≡ VN∗N(q), where, q = k − k′ is 
the momentum transfer carried by the exchanged pion or η meson. Denoting Q = |q|, we obtain 
the N∗-deuteron potential,

VN∗d(Q) =
∫

|�d(x1)|2
[

VN∗p(Q)eiq·x1/2 + VN∗n(Q)e−iq·x1/2
]

dx1 , (6)

and hence

VN∗d(Q) = VN∗p(Q)

∫
dx |�d(x)|2 e−iq·x/2 + VN∗n(Q)

∫
dx |�d(x)|2 eiq·x/2 , (7)

in momentum space. The integrals in this expression can be shown to reduce to [33]

G0(Q) =
∞∫

0

[u2(r) + w2(r)] j0(Qr/2) dr , (8)

where, u(r) and w(r) are the radial parts of the deuteron S- and D-wave functions. Thus,

VN∗−d(Q) = (VN∗p(Q) + VN∗n(Q))G0(Q) , (9)

and the Fourier transform

VN∗−d(r) =
∫

eiQ·r VN∗−d(Q)d3Q, (10)

gives the potential in coordinate space. The N∗-deuteron potential in coordinate space can also 
be evaluated using the elementary N∗-N potentials in coordinate space as

VN∗−d(r) =
∫

d3x |�d(x)|2 VN∗p(r + x/2) +
∫

d3x |�d(x)|2 VN∗n(r − x/2) . (11)

The explicit form of Eq. (11) will be given later in (23) for a variable N∗ mass, μ.

2.2. N∗-deuteron momentum distribution

Using the parametrization of the Paris deuteron wave function given in [34] (with the approx-
imation of only retaining the s-wave part), we calculate the N∗-d potential in r-space and solve 
the Schrödinger equation numerically to find the bound states of the (N∗)+-deuteron. With the 
coupling constants given by Set 1 mentioned in the previous section, we obtain a binding energy 
of −0.74 MeV and −0.33 MeV with Set 2. Evaluating the Fourier transform of the N∗-d wave 
function obtained in r-space, we can find the relative momentum distribution of N∗-d as,
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Fig. 1. Relative momentum distribution for [a] a bound system of an N∗ and a deuteron for two different choices of the 
coupling constants and [b] comparison of the N∗-d momentum distribution with that of the proton in 3He.

T (k)N∗d = 1

4π
|χ(k)|2 k2 , (12)

where χ(k) is the bound wave function in momentum space. The above T (k) is normalized as, 
4π

∫ ∞
0 T (k)N∗d dk = 1.

In Fig. 1 we show the N∗-deuteron relative momentum distribution obtained within the above 
approach and display it for two different sets of coupling constants in the left panel. In the right 
panel, we compare the N∗-d momentum distribution with that of a proton in 3He and find it 
to be narrower. This happens due to the fact that the N∗ binding energy is much smaller than 
the separation energy of a proton in 3He which is ∼5.5 MeV. The wave function of the loosely 
bound N∗ is much more spread out in coordinate space and hence its Fourier transform displays 
a narrower distribution.

3. Relevance of N∗ dynamics for data analysis

As mentioned in the introduction, the important role of the N∗ momentum distribution in the 
data analysis dedicated to the search of η mesic nuclei became evident from a recent analysis of 
the dd → 3HeNπ reactions [2,35]. Since no clear evidence for the existence of a narrow η-4He 
was found in [2], upper limits of the total cross sections for the bound state production and decay 
in dd → (4He − η)bound → 3He n π0 and dd → (4He − η)bound → 3He p π− were reported. 
The latter were found to change from 3 nb to 5 nb and 6 nb to 10 nb in the nπ0 and pπ− channels 
respectively, if, the nucleon momentum distribution was replaced by that of an N∗ inside 4He. 
In view of these results, the momentum distributions obtained in the present work should prove 
useful in the ongoing analyses of the proton-deuteron collisions to find an η-mesic 3He nucleus.

In order to study the relevance of the N∗ momentum distribution in the search for η-3He, we 
now apply a similar model as in [2], where, in a proton-deuteron collision, the formation of an 
η-3He state proceeds through the repeated excitation and decay of an N∗. Applying the above 
model, we perform Monte Carlo simulations of η-mesic bound state production and decay for 
beam momenta generated with a uniform probability density distribution in the range which cor-
responds to the experimental beam ramping and under the assumption that the bound state has 
a Breit-Wigner resonance structure with a fixed binding energy and width. It is further assumed 
that the N∗ in the center of mass frame displays a Fermi motion and its momentum, �k, is dis-
tributed isotropically with a distribution as in the present work. The deuteron four momentum 
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vector in the center of mass is then calculated within a spectator model assumption. The mo-
mentum vectors of the outgoing pion and nucleon emerging from the N∗ decay are simulated 
isotropically in the N∗ rest frame, while the absolute values of their momenta are determined 
knowing the N∗ resonance mass which is deduced using the beam momentum and the N∗ Fermi 
momentum values as

mN∗ =
(

spd + m2
d − 2

√
spd

√
m2

d + |�k|2
)1/2

,

where spd is the energy available in the centre of mass and md is the mass of the deuteron. We 
must note here that the momentum distribution of the N∗ is not very sensitive to the mass of the 
N∗ itself (see the discussion in Section 3.1 in [5], Ref. [36] and references therein) and the above 
procedure of deducing the N∗ mass seems justified.

The momentum distribution of the N∗ inside the nucleus affects the outgoing particles kine-
matics (their angles and momenta) and as a consequence influences the value of the determined 
acceptance of their registration by the detection setup (the probability of going into the blind de-
tection region depends on the angular distribution of the projectiles). In case of the (3He-η)bound

production in proton-deuteron collision, simulations of pd → (3He-η)bound →N∗-d → dpπ0

performed with the N∗ momentum distribution presented in Fig. 1 (left panel, dashed line) result 
in about 60% lower geometrical acceptance of simultaneous registration of all outgoing particles 
in the WASA detector in comparison to those using the proton momentum distribution inside 
3He (right panel, dashed line). It is caused by the fact that the N∗-d distribution is peaked at 
lower momentum values with respect to the distribution of a proton in 3He. This leads to a lower 
acceptance as more deuterons fly inside the beam pipe and do not get detected in the forward 
part of the detector. The estimation was performed assuming that the angular acceptance of the 
detector ranges from 3◦ to 18◦ and from 20◦ to 169◦ [37]. The determined acceptance influences 
the cross section determination which is crucial in the analysis. The effect is even larger in the 
case of the low acceptance detectors, as it was for example in the case of the search for the mesic 
nuclei with the COSY-11 facility [38].

4. Resonance characteristics of the N∗

The theoretical calculations presented in Section 2 do not take into account the fact that the 
N∗ is a broad resonance with a Breit-Wigner mass of 1535 MeV and a width of about 150 MeV. 
There exist different points of view on the internal structure of the N∗ (see [39] and references 
therein). We shall not enter into this discussion here since the objective of the present work 
is to provide a method to calculate the momentum distribution of the N∗ inside 3He which is 
an essential ingredient to determine the geometrical acceptance in the experimental analysis. In 
order to include the resonance characteristics, we begin first by modifying the elementary N∗ N 
interaction used in this work.

4.1. Modified N∗ N potential

In the derivation of the N∗ N potential used in Section 2, the mass difference of the N∗ and a 
nucleon was neglected and hence the energy transfer in the N∗ N → N N∗ process was approxi-
mated to be zero. In what follows, we introduce a finite energy transfer at the N N∗ π and N N∗ η

vertices (see Fig. 2) with the result that the N N∗ potential depends on the mass of the N∗. The 
N∗-d potential in coordinate space is evaluated using this N∗N interaction in a similar way as in 
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Fig. 2. Elementary N N∗ → N N∗ processes considered in this work.

Section 2. Folding the mass dependent potential with the mass distribution of the N∗ resonance 
which has a central value of 1535 MeV and width of 150 MeV, we shall obtain an effective 
N∗-d potential which becomes mass independent and carries the information of the width of the 
resonance.

The one-meson exchange N N∗ potential was written in Ref. [5] as

vx(q) = g2
xNN∗

q2 − m2
x

(
�2

x − m2
x

�2
x − q2

)2

, (13)

with x = π, η and q2 = ω2 − Q2, the four-momentum carried by the exchanged pion or eta 
meson. Ref. [5] approximated ω = 0 leading to

vx(Q) = − g2
xNN∗

Q2 + m2
x

(
�2

x − m2
x

�2
x + Q2

)2

. (14)

If instead we retain a finite ω and approximate it by the mass difference of the N∗ and the nucleon, 
i.e., ω = μ − mN , (with μ being the N∗ mass) we get,

vx(μ,Q) = − g2
xNN∗

Q2 − α2
x

(
�2

x − m2
x

β2
x + Q2

)2

, (15)

where, α2
x = ω2 − m2

x and β2
x = �2

x − ω2. Since the N∗ can decay to a nucleon and a π or η, the 
minimum mass of the N∗ is mN + mπ and α2

x can be positive or negative depending on the mass 
of the N∗ and the exchanged meson and the potential in (15) may have a pole. For the values of 
�x considered in this work, β2

x is always positive (for N∗ masses below 2.2 GeV) and the term 
in round brackets in (15) does not have a pole. In what follows, we consider the two cases of 
α2

x < 0 and α2
x > 0 separately.

4.1.1. α2
x > 0

Using the partial fraction decomposition, we can write the denominator in (15) as

1

(Q2 + β2
x )2

1

(Q2 − α2
x)

= − 1

(α2
x + β2

x )2

1

(β2
x + Q2)

− (16)

1

(α2
x + β2

x )

1

(β2
x + Q2)2 + 1

(α2
x + β2

x )2

1

(Q2 − α2
x)

and perform the Fourier transform

vx(μ, r) = 1

2π2

∞∫
Q2vx(μ,Q)

sinQr

Qr
dQ (17)
0



8 N.G. Kelkar et al. / Nuclear Physics A 996 (2020) 121698
analytically to get

vx(μ, r) = g2
xNN∗(�2

x − m2
x)

2

4π

[
1

(α2
x + β2

x )2

e−βxr

r
+ e−βxr

2βx(α2
x + β2

x )
− eiαxr

r(α2
x + β2

x )2

]
.

(18)

The last term arises from the following integral:

∞∫
0

Q sin (Qr)

Q2 − α2
x − iε

dQ = P.V .

∞∫
0

Q sin (Qr)

Q2 − α2
x

dQ + i
π

2
sin (αxr) , (19)

= π

2
cos (αxr) + i

π

2
sin (αxr)

Replacing the principal value of the above integral in Eq. (18) (in place of eiαxr ) will lead us 
to the real part of the N∗-deuteron potential. The real N∗-d potential in coordinate space, as 
will be seen later, can be used to look for the N∗-d bound states and calculate the N∗-d relative 
momentum distribution. The mass, μ, of the N∗ is considered to be variable and the μ dependent 
potential will eventually be folded with a mass distribution ρ(μ) in order to account for the fact 
that the N∗ is a resonance with a finite width.

4.1.2. α2
x < 0

Denoting, α2
x = −γ 2

x with γ 2
x > 0, leads to

vx(μ,Q) = − g2
xNN∗

Q2 + γ 2
x

(
�2

x − m2
x

β2
x + Q2

)2

. (20)

Using the partial expansion again to write the denominator and performing the Fourier transform
analytically, we get,

vx(μ, r) = −g2
xNN∗(�2

x − m2
x)

2

4π

(
1

r(γ 2
x − β2

x )2 [e−γxr −e−βxr ] + 1

2βx(γ 2
x − β2

x )
e−βxr

)
.

(21)

4.2. Effective N∗-deuteron potential

In terms of the elementary N∗-N potentials, the folding N∗-d potential in coordinate space can 
be written as

VN∗−d(r) =
∫

d3x |�d(x)|2 VN∗p(r + x/2) +
∫

d3x |�d(x)|2 VN∗n(r − x/2) , (22)

where VN∗n and VN∗p are constructed from the potentials vx (x = π0, π+, η) given above (for 
the processes shown in Fig. 2) and �d(x) is the wave function of the deuteron. Performing the 
angle integration (assuming only s-waves in the deuteron for simplicity) we obtain,

VN∗−d(μ, r) = 1

2

∞∫
0

dy |u(y)|2 ( Iπ0(y, r) + Iη(y, r) + 2Iπ+(y, r)) , (23)

where, for the case, α2
x > 0,
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Ix(y, r) = g2
xNN∗(�2

x − m2
x)

2

4πy rβ3
x (α2

x + β2
x )

[
e−βxR− (βxR− + 1) − e−βxR+ (βxR+ + 1)

+ 2β2
x

(α2
x + β2

x )

(
e−βxR− − e−βxR+ − βx[sin (αxR+) − sin (αxR−)]

αx

)]

(24)

and for α2
x < 0, denoting α2

x = −γ 2
x ,

Ix(y, r) = −g2
xNN∗(�2

x − m2
x)

2

4πy rβ3
x (γ 2

x − β2
x )

[
e−βxR− (βxR− + 1) − e−βxR+ (βxR+ + 1)

− 2β2
x

(γ 2
x − β2

x )

(
e−βxR− − e−βxR+

)
+ 2β3

x

γx(γ 2
x − β2

x )

(
e−γxR− − e−γxR+

)]

(25)

with, x = π0, η or π+. Here, R± = |r ±y/2| and the normalization of the deuteron wave function 
is 

∫ ∞
0 |u(r)|2dr = 1 (u(r) is the radial s-wave part of the deuteron wave function �d). In fact 

Eq. (23) is the explicit form of Eq. (11) given in section 2.1.
The N∗-d potential thus obtained depends on the mass of the N∗ but not the width. In order 

to incorporate the width and get a mass independent potential, in the final step, we introduce an 
effective potential weighted by the Lorentzian mass distribution ρ(μ) of the N∗ and write,

ṼN∗−d(r) =
∫ μmax

μ0
VN∗−d(μ, r)ρ(μ)dμ∫ μmax

μ0
ρ(μ)dμ

, (26)

where μ0 = mN + mπ and ρ(μ) is parameterized as in [40],

ρ(μ) = 0m
∗

π[(μ2 − m∗2)2 + (m∗(μ))2] (27)

with m∗ = 1535 MeV, 0 = 150 MeV, and

(μ) = 0

(
0.5

kη(μ)

kη(m∗)
+ 0.4

kπ (μ)

kπ (m∗)
+ 0.1

)
. (28)

The upper limit μmax in (26) should in principle be ∞, but we shall introduce a finite value 
in order to keep β2

x positive (since as mentioned before, for the parameter sets chosen here, β2
x

remains positive until μ ≈ 2.2 GeV). Such a cut-off seems justified since the mass distribution 
diminishes rapidly and any contribution to the integral above 2.2 GeV is expected to be negligi-
ble. The coefficients 0.5, 0.4 and 0.1 are the branching ratios of the N∗ to the η N, π N and ππ

N channels and kx(μ) are the momenta of the particle x = π or η in nucleon-meson centre of 
mass system.

Taking the Paris parameterization [34] for the deuteron wave function and evaluating the 
N∗-deuteron potential obtained above, we find that it does not admit any bound states for any of 
the N∗Nπ and N∗Nη coupling constants given in literature [5].

4.3. Experimental considerations

The analysis of the WASA data on the pd → 3He π0, pd → pdπ0 and similar channels 
with the objective of locating an η-mesic 3He nucleus is being performed for near threshold 
energies. Given the range of energies for which the data is analysed, the mass of an intermediate 
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on-shell N∗ in the above process can range between 1416 to 1516 MeV. In this case, it could 
make some sense to limit the integration in (26) to 1516 MeV rather than considering the full 
range of the mass distribution. Apart from this, due to the proximity of the η N threshold to the 
mass of the N∗, the η-nucleus interaction (forming an η-mesic nucleus) is considered to be a 
series of excitations and decays of the N∗ on the constituent nucleons until it eventually decays 
to a nucleon and a pion. For the sub-threshold energies at which the data is analysed, the η meson 
cannot be produced on-shell. However, the beam energies are way beyond the pion production 
threshold and therefore, once the N∗ decays to a pion, it is expected to be produced on-shell 
and leave the nucleus. In view of such a picture, we could further investigate the case of an 
N∗-deuteron potential retaining only the η exchange diagram in the elementary N N∗ → N N∗
process.

Imposing the above conditions based on experimental considerations leads to very loosely 
bound states of the N∗ and the deuteron, bound by few tens of keV (depending on the coupling 
constants used). Though such an artificial cut-off in the integral over mass as well as the dropping 
of the pion exchange diagram is not justified in general, given the way in which the existence of 
an η-mesic 3He is analysed, it does provide a clue for the experimental analysis that if the N∗ is 
bound, it will be very loosely bound and lead once again to a narrower momentum distribution 
than that of a nucleon inside 3He.

5. N∗-nucleus and η-nucleus bound states

As mentioned in the previous sections, the search for η-mesic bound states involves the analy-
sis of reactions where an off-shell η meson is formed inside the nucleus. The η meson is assumed 
to be absorbed on a nucleon and may propagate inside the nucleus by consecutive excitations and 
decays of the N∗ to a nucleon and η (off-shell) until it finally decays into an on-shell pion and 
nucleon. Thus, in principle, within this description, as long as the η-mesic state exists, the N∗
also exists inside the nucleus. It is then natural to ask if the existence of an η-mesic bound state 
[41–43] necessarily implies the existence of an unstable N∗-nucleus bound state. The answer to 
such a question is not quite straightforward. Indeed, it depends on how the N∗ was formed inside 
the nucleus. Apart from this, as shown in literature [44–46], the attractive nature of the η-nucleus 
system is due to the existence of N*(1535) and due to the level repulsion effect between ηN 
and N∗ (or η and N∗-N-hole system). Hence, one would have to investigate the existence of 
the η-mesic nucleus and N∗-nucleus at the same time with the inclusion of the ηNN channel. It 
would be of interest to perform such a calculation in future. As for the present work, we are not 
interested in how the N∗ was formed and if its binding with the nucleus has implications for the 
existence of an η-mesic nucleus. Our objective has been to find the momentum distribution of an 
N∗ which already exists inside the nucleus and forms a bound state with the nucleus.

6. Summary

A key ingredient in the experimental search for η-mesic helium near the threshold for η meson 
production is the momentum distribution of the S11 N∗(1535) resonance inside the nucleus. If 
an η-mesic nucleus is formed, the N∗ is expected to be created by the strong η-N interaction, 
propagate, decay and get regenerated repeatedly by the η in the nucleus, until it decays eventually 
into a free pion and a nucleon. In an earlier work [5], the relative momentum distribution of 
N∗-3He was evaluated and used as an input for the analysis of the dd → 3He N π reaction. The 
latter was analysed for the existence of η-mesic 4He. There has been no conclusive evidence 
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for the existence of an η-mesic helium so far (see [47] for a short recent review), however, the 
extensive data analysis being carried out by the WASA collaboration [6] could bring us to a 
culmination point.

The data analysis is usually performed with the assumption that the N∗ momentum distribu-
tion is similar to that of a nucleon inside the nucleus. In order to estimate the error introduced 
due to this assumption, we have studied the N∗-deuteron system within two scenarios. In the first 
one, we construct the N∗-d potential based on the elementary N∗N → N∗N interactions with 
the appropriate N∗Nπ and N∗Nη couplings but with the assumption that the N∗ is stable with a 
mass similar to that of a nucleon. The momentum distribution of an N∗ (inside a bound (N∗)+-d) 
evaluated within this scenario is narrower than that of a proton in 3He. The latter results in a 60% 
reduction in the detector acceptance. The narrow momentum distribution is a result of the very 
low binding energy of the N∗-deuteron system. In the second scenario of an N∗ with resonance 
characteristics, we construct the N∗-d potential taking into account the mass distribution and the 
width of the N∗. However, the N∗-d system is not found to be bound for any of the N∗Nπ and 
N∗Nη couplings considered. Using certain ideas based on experimental conditions we find that 
the system is very loosely bound. Thus, in the realistic scenario of an N∗ resonance, one would 
expect the momentum distribution of the N∗ to be much narrower than that of a nucleon. It is 
important to consider this limitation in the experimental analysis of the proton-deuteron fusion 
reactions searching for the existence of an η-mesic 3He.
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