Szymon Parzych on behalf of the J-PET Collaboration

$\square \square$

The Cluster of Nuclear Physics Departments, tojasiewicza 11, 30-348 Kraków, Poland
2. Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, tojasiewicza 11, 30-348 Kraków, Poland 3. Total Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland

Abstract

The J-PET group is developing a cost-effective total-body PET based on plastic scintillators [1, 2]. While the achieved radial and tangential spatial resolution of the J-PET prototype is comparable with the state of the art PET systems, the axial one is few times worse [3]. Here, we present a method for improvement in axial resolution by the application of an additional array of wavelength shifter (WLS) strips [4].

Detection system

In order to simulate the WLS response, a dedicated simulation software has been developed. It enables partial tracing of scintillation photons and provides detection time information on the plastic scintillator's sides.

Coordinates

Full simulated detection system:

- Plastic scintillator strip of dimensions: $6 \mathrm{~mm} \times 24 \mathrm{~mm} \times 500 \mathrm{~mm}$
- Array of 40 WLS strips of dimensions: $100 \mathrm{~mm} \times 3 \mathrm{~mm} \times 10 \mathrm{~mm}$ and with 0.2 mm gap between

photon's interaction of ~ 3 WLS strips [5]
Reduced simulated detection system:
Plastic scintillator strip of dimensions: $6 \mathrm{~mm} \times 24 \mathrm{~mm} \times 122.2 \mathrm{~mm}$
- Array of 12 WLS strips of dimensions: $100 \mathrm{~mm} \times 3 \mathrm{~mm} \times 10 \mathrm{~mm}$ and with 0.2 mm gap between

Data sets:

Training set: Blue points (see Fig. 3.) from $6 \mathrm{~mm} \times 24 \mathrm{~mm} \times 122.2 \mathrm{~mm}$ scintillator strip Testing set: Blue points (see Fig. 3.) from $6 \mathrm{~mm} \times 24 \mathrm{~mm} \times 122.2 \mathrm{~mm}$ scintillator strip $6 \mathrm{~mm} \times 24 \mathrm{~mm} \times 122.2 \mathrm{~mm}$ scintillator strip
Validation set: Blue + Red points (see Fig. 3.) from $6 \mathrm{~mm} \times 24 \mathrm{~mm} \times 122.2 \mathrm{~mm}$ scintillator strip Flood set: Interactions taken uniformly from whole $6 \mathrm{~mm} \times 24 \mathrm{~mm} \times 500 \mathrm{~mm}$ scintillator strip
 Noural Network: regression MultiLayer Perceptron (MLP) from the
Toolkit for Multivariate Data Analysis (TMVA) with ROOT software [6] Input layer: 12 nodes (12 WLS strips)
Hidden layers: 1 layer; 6, 12, 24 or 48 neurons
Activation function: tanh
Activation function: tanh
Training method: Back-Propagation
Output layer: 1 node (,,z" position along the scintillato
Training set: 1000,2000 or 4000 events per position

Training set: 1000,2000 or 4000 events per position

- Testing set: 1000 events per position

Neurons in hidden layer

 distributions of reconstructed , ,z" positions from true , ,z" positions. In both cases connecting
not resemble any physical dependence.

Acknowledgements

The abovementioned work is presented on behalf of the J-PET Collaboration. This work was supported by the TEAM POIR.04.04.00-00-4204/17 program, the NCN grant no. 2021/42/A/ST2/00423 and the SciMat and qLife Priority Research Areas budget under the program Excellence Initiative - Research University at the Jagiellonian University. The study was funded by Laborateres of prot Kraków.
Fig. 8.: The FWHM values (left) and displa
5* scintillator
I. Investigation of probability of shifting outside of scintillator
II. Modelling of describing function
III. Redistribution according to selected
function
Fig. 9.: Probability for each initial , „"" position to be shifted \qquad
6*
Application of chosen network on flood data set

1. Selection of 12 WLS strips corresponding to interaction position based on the TOF information
II. Application of neural network
III. Bias and shift correction
IV. Repositioning of reconstructed , $z^{\prime \prime}$ positions into full detection system

Summary

If an initial photon's interaction in a scintillator strip occurres near the WLS array, the emitted scintillation photons are largely interacting in the nearest region. In case of further position of interaction, this region correspondingly expands. Additional combination with timing information on plastic strip's ends narrows down the region of possible interaction even greater. Utilization of machine learning in such multivariable problem have already been inspected as a viable option for interaction position reconstruction $[7,8]$.
The performed simulations and analysis indicate that the proposed method enables to achieve the axial spatial resolution of the J-PET system constructed with WLS strips of 10 mm axial length of about 3.9 mm of FWHM (PRELIMINARY). Transition to even finer WLS strips can even further enhance the axial resolution of photon's interaction reconstruction.

[^0]
[^0]: [1] P. Moskal et al., , Simulating NEMA characteristics References
 [1] P. Moskal et al.,,, Simulating NEMA characteristics of the modular total-body J-PET scanner - an economic total-body PET from plastic scintillators", Phys. Med. Biol. 66, 175015, 2021.
 , [4] J. Smyrski et al., "Measurement of gamma quantum interaction point in plastic scintillator with WLS strips", Nuclear Inst. and Methods in Physics Research A 851, 39-42, 2017.
 [5] S. Niedźwiecki, "Double-strip prototype of polymer time-of-flight positron emission tomograph based on multi-level analog electronics", Doctoral dissertation, Jagiellonian University, 2019
 [6] R. Brun, F. Rademakers, , ROOT - An Object Oriented Data Analysis Framework", Proceedings AIHENP'96 Workshop, Lausanne, Sep. 1996, Nucl. Inst. \& Meth. in Phys. Res. A 389, 81-86, 1997. See also https://root.cern/
 [7] Y. Wang et al., ",3D position estimation using an artificial neural network for a continuous scintillator PET detector", Phys. Med. Biol. 58, 1375, 2013.
 [8] M. Decuyper et al.,,,Artificial neural
 Phys. Med. Biol. 66, $75001,2021$.

