

Efficiency determination of J-PET detector

based on photon's scattering

S. Sharma 26.10.2019

Outline

- Methodology
- Experimental set-up
- Monte-Carlo simulations (Geant4)
- Results

Relative efficiency

What we have:

 Hit positions of primary and scattered photon give access to the θ values

What is required:

- Tagging of incident photon
- True scattering angles θ
 (proper association of scattered photon to its parent one)

Simulations-Geant4

Known incident photon's energy and scattering angles

Experiment

<u>Tagging the photon's</u> incident energy and estimating the <u>true scattering</u> angles

Experimental set-up

Small chamber in the center

Selection of photons of diff. energies: Events (3Hits ordered in time) were studied

Angular correlations

Annihilation photons 511 keV

 $179 < (\alpha + \beta) < 181$

All 3 Hits are in different scintillators

Prompt photons 1275 keV

 $(\alpha + \beta) < 165 \&\& (\alpha + \beta) > 185$

All 3 Hits are in different scintillators

Measurement of 511 keV photon: (Scatt. Ang / Edep)

- 1, 2 Hits are Back-to-Back gamma
- **☑** 3RD Hit from the scattering of gamma either after Hit 1 or Hit2

For the assignment of scattered hit to its origin, scatter test(S) was applied:

$$S = (time_{scatter} - time_{origin}) - Distance_{scatter-origin} / c$$

Measurement of 1275 keV photon: Scatt. Ang / Edep

- * Ist Hit is prompt gamma
- * 2nd Hit from the scattering of prompt gamma

3rd hit is assumed as one of the annihillation gamma from oPs decay as the <u>time difference</u> b/w Ist hit and 3rd hit is inbetween 10 – 100 ns

For <u>the assignment of scattered</u> hit to its origin, <u>scatter test(S)</u> was applied:

$$S = (time_{scatter} - time_{origin}) - Distance_{scatter-origin} / c$$

Scattering angles (Experimental)

- ✓ Event-wise estimated scattering angles of 511 keV and 1275 keV photons.
- ✓ Using <u>developed algorithm</u> to identify the Photons (511 or 1275) and <u>measured</u> scattering angles allow to calculated the energy deposition.

J-PET Analysis Framework: Open-source platform

SEANT4

Data Analysis

JPetTimeWindow

MC simulations

Dedicated simulation package

Source:

Photons beam, Ps decays

Interaction of Gamma quanta: (Comp. Scatt) hit – position, hit time, Scattering angle Multiple-scattering

Geant4 –Parsar (empowered to introduce experimental resolution

Bonus

Adjusted to utilize the multiple-threading feature

Kaca.

MC simulation: JPET - MC toolkit

Simulated geometry: 3 hits event

Scattering angles (511 keV and 1275)

Data vs MC (Scattering angles)

Summary and Future plans

- The algorithm is developed to <u>tag the photons</u> of different energies emitting from <u>different origins</u>
- Scattering angles are measured for photons of two different energies:
 511 keV and 1275 keV
- Tagged photons with known incident energies and their scattering information allow to estimate the energy deposition in event-wise manner
- Measured (experimental) and estimated (simulation) energy deposition allow to calculate the <u>relative efficiency</u> (energy deposition)
- More statistics (MC) and thorough investigations are needed..... (Work in Progress)

Thank you for your attention

Thank you for your attention

Join
us !!!!
koza.if.uj.edu.pl