

to perform the tests on discrete symmetries

Sushil K. Sharma on behalf of the J-PET collaboration

European Union European Regional Development Fund

2012

2016

Characterize scintillator properties Energy, time resolution, hit time,..

192 strips

Current version Tests on discrete symmetries 2014

Data acquisition for multi-modules

24 modules, each with 13 scintillators

Modular PET – ready for first data campaign

✓ Good angular resolution and small light attenuation
✓ Superior time properties and lower pile-ups

TOT as a response of energy deposition by incident photon

Signals from each photomultiplier are *probed at four thresholds*.

Recipe to establish relationship between TOT and Energy dep(scat. Ang.)

Sushíl K. Sharma

- In order to study *scattering of a photon*, two hits are sufficient. \geq
- 3rd Hit allows to use additional constraints to conjecture and tag the photon of different \triangleright energy/origin Scatter test = time_{measured} -

Case 1

e⁺ - e⁻ annihilation into two photons (511 keV)

Case 2

high energetic photons 1274.6keV (Prompt)

- From the ²²Na source, one can get 511 keV from the e⁺ e⁻ annihilation and 1274.6 from prompt.
- TOT spectra resemble the <u>Compton like structure</u>, where TOT is the estimation of energy deposition.

6

TOT vs Energy deposition

-PET

ushil K. Sharma

J-PET detector with the target chamber

Selected recent publications -

- P. Kowalski et al., Phys. in Med. & Bio. 63 (2018)
- L. Raczyński et al., Phys. Med. Bio. 62 (2017) 5076
- P. Moskal et al., Phys. in Med. & Bio. 61 (2016) 2025
- A.Gajos et al., Nucl. Inst. & Meth. In Phys. Res. A 819(2016) 54
- G. Korcyl et al., IEEE Trans. on Med. Imag. (2018) A. Wieczorek et al., PLoS ONE 12 (11): E0186728 (2017)
- D. Kaminska et al., Eup. Phys. J. C 76 (2016)

J-PET's plastic revolution, Cern Courier, October 2018

Operators С СР СРТ Ρ Т \vec{s} . $\vec{k_1}$ ♣ ₄⊾ \vec{s} . $(\vec{k_1} \times \vec{k_2})$ ♣ 4 4 $(\vec{s}.\vec{k}_1)(\vec{s}.(\vec{k}_1 \times \vec{k}_2))$ 4

Studies of discrete symmetries using the photon's polarization

<u>Unique feature of the J-PET</u>

Photon's polarization

15

Photon's Polarization

P. Moskal et al., Eur. Phys. J C 78 (2018) 970

P. Moskal et al., Acta. Phys. Polon. B 47 (2016) 509, P. Moskal et al., arXiv : 1809.10397v1,

(Based on only the Compton scattering)

- ☑ The scattering distribution of photons can be described by Klein-Nishina diff. cross section.
- ☑ The visibility to observe the angular correlation between scattering and polarization plane(ϕ) is a function of **Photon's energy** and its scattering angle (θ).

Eventwise observation of scattering angles of back -to- back photons

The positron emitting from the ²²Na source can annihilate into two photons, directly or through the formation of positronium atoms.

The <u>interactions of the anni-</u> <u>hilated photons</u> can be measured event-wise and allow to study the *relative polarization b/w the photons*.

Relative polarization of entangled annihilated photons in decay of p-Ps atom

18

- Polarization vectors of annihilation photons are mutually orthogonal states.
- Photons mostly scatter at right angles to their electric field vector and this impose an <u>Expected angular correlation</u> between the scattering angles.
- With the J-PET detector we can measure scatterings of back-to-back photons and thus can study the angular correlation(φ) between the scattering angles/planes.
- Thus the angle between two scattering planes(φ) can be an estimator of relative polarization of two photons.
- P. Moskal et al., Eur. Phys. J C 78 (2018) 970, P. Moskal et al., Acta. Phys. Polon. B 47 (2016) 509

Experimental evidence for the measurement of photon's polarization with the J-PET detector

Small annihilation chamber was used

4 – hit events were studied

Scatter test = time_{measured} - time_{calculated}

Relative angles between <u>scattered planes</u> **as a measure of** <u>Relative polarization</u> of annihillation photons

Eventwise observation of scattering angles of back -to- back photons

25

Study of angular correlations among the photon originating from the decay of Positronium atom can provide an insight into the rare decays : e.g: p-Ps -> 3γ

In o-Ps decay : angular correlation

Generated : D. Kaminska et al.,

Experimental : Courtesy to J. Chhokar

Based on angular correlations and rate ratio 3 γ / 2 γ

Study of angular correlations among the 3 photon originating from the decay of Positronium atom, distinguish based on the life time of positronium atom at various symmetrical configuration (p-ps-> 3y decay mode is restricted by Bose-statistics)

Positronium life time*

Based on angular correlations and rate ratio 3 γ / 2 γ

Study of angular correlations among the 3 photon originating from the decay of Positronium atom, distinguish based on the life time of positronium atom at various symmetrical configuration (p-ps-> 3y decay mode is restricted by Bose-statistics)

Positronium life time*

Modular J-PET – extention to 3 lyaer prototype

Fourth Layer along with current prototype

29

24 PORTABLE modules

Advantages with Modular J-PET

Geometry configuration made with Geant4 package

Sushil K. Sharma

24 Modules rearranged and add 2 layers

24 Modules placed as

the innermost layer

Advantage

- ✓ Several times better efficiency
- ✓ Standalone PET/detector

Multi-configurational

- A Positron Emission Tomograph based on *plastic scintillators* <u>constructed and commissioned</u>.
- ☑ Discrete symmetries are very crucial in order to understand the <u>inequality</u> <u>between matter and anti-matter</u>.
- ✓ Such inequality should have contribution of symmetry violation not only in baryonic and mesonic sectors <u>but also from leptons</u>.
- ✓ The experimental data on fundamental symmetry tests in <u>leptonic sector is</u> <u>very scarce</u>.
- ✓ The J-PET detector is capable to study the <u>C, T, CP and CPT test in the</u> <u>decays of Ps atoms</u> with better precision.
- Possibility to measure polarization direction will add up new scope to study the additional odd symmetric operators and phenomena like <u>multi-particle</u> <u>entanglement</u>.

J-PET collaboration

P. Moskal¹, M. Bala¹ C. Curceanu², E. Czerwiński¹, J. Chhokar, K. Dulski¹, A. Gajos¹, M. Gorgol³, B. Hiesmayr⁴, D. Kamińska¹, G. Korcyl¹, P. Kowalski⁵, T. Kozik¹, W. Krzemień⁵, E. Kubicz¹, M. Mohammed¹, N. Krawczyk¹, M. Pawlik-Niedźwiecka¹, Sz. Niedźwiecki¹, M. Pałka¹, L. Raczyński⁵, Z. Rudy¹, J. Raj¹, O. Rundel¹, N. Sharma¹, S. Sharma¹, Shivani¹, M. Silarski¹, J. Smyrski¹, A. Strzelecki¹, W. Wiślicki⁵, B. Zgardzińska³

¹Jagiellonian University, Poland; ²LNF INFN, Italy; ³Maria Curie-Skłodowska University, Poland; ⁴University of Vienna, Austria; ⁵National Centre for Nuclear Research, Poland;

Thank you for your attention