

Charge conjugation symmetry test in the decay of para-positronium atoms using the J-PET detector

J. Chhokar, S. Sharma on behalf of the J-PET collaboration

Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Lojasiewicza 11, 30-348 Krakow, Poland

Email: jyotichhokar48@gmail.com, sushil.sharma@uj.edu.pl

European Funds Smart Growth

European Regional

²²Na Decay scheme

EC = 9.618%

V (99.941 %)

22Ne1

90.326 %

β⁺ (1.821 MeV) 0.056 % 1.275 MeV

Introduction

- □ Jagiellonian Positron Emission Tomograph (J-PET) is being optimized to test the discrete symmetries (charge conjugation (C), reflection in space (P), reversal in time (T)).
- □ The charge conjugation symmetry transforms particle into antiparticle and has been observed only in the weak interactions [1]. Positronium (Ps) atom is purely a leptonic system and is a bound state of electron and its antiparticle (positron). Thus Ps can be a potential object to test the discrete symmetries [2-3] violation in the electromagnetic interactions as well as multi-photon entanglement [4-5].
- □ Positronium atom can be formed in two state based on the spin alignment of its constituting particles, Singlet state $({}^{1}S_{0} \text{para-Positronium (p-Ps)} \text{ and Triplet state } ({}^{3}S_{1} \text{ortho-Positronium (o-Ps)})$. Due to the C conservation, p-Ps decays into even number of photons $({}^{1}S_{0} \rightarrow 2^{*}\gamma)$, where $\gamma = 1,2,3,...$ and o-Ps decays into odd number of photons $({}^{3}S_{1} \rightarrow 3^{*}\gamma)$, where $\gamma = 1,2,...$). Conservation of energy and momentum forbids single photon annihilation.
- \Box We propose to study the C-forbidden decays of p-Ps (${}^{1}S_{0} \rightarrow 3\gamma$) by means of the J-PET detector.

J-PET detector

• J-PET is constructed of 192 polymer scintillators, where each scintillator is attached with photomultipliers at each end.

FNP Foundation for Polish Science

- **192** scintillators are arranged co-axially in three layers (48, 48, 96) at 3 different radii 42.5 cm, 46.75 cm, 57.5 cm respectively.
- Positronium atom can be formed in the center of J-PET detector using the beta-emitter source placed inside a chamber. The source is sandwiched between an aerogel material.
- Plastic scintillators offers high time and angular resolution.
- Time Over Threshold is adopted as a measure of energy deposition. The signals are measured by using the trigger-less data acquisition [7-9].
- For the Charge conjugate symmetry test, we will use ²²Na source.

Note on C-symmetry violation tests

- Mills and Berko, perfomed the experiment to search for C-forbidden decays in the decays of p-Ps (${}^{1}S_{0} \rightarrow 3\gamma$) [6]. *Mills and Berko experimental setup*
- Experiment was designed to separate the C-forbidden 3γ decay of ¹S₀ from the allowed 3γ decay of the ³S₁ state by studying the "Angular distribution of the 3 photons".
- According to Bose Statistics, the rate of ¹S₀ decaying into 3 Photons must vanish a the sym-

metric configuration (120°, 120°, 120°).

The limit for the branching ratio for the decay of p-Ps from 3/2 was measured $\approx 2.8 \times 10^{-6}$ with the 68 % confidence level.

J-PET detector and annihilation chamber

Selection of events based on the life-time of Positronium atom

Angular correlation of annihilation photons originating from the decay of Ps atom based on the positron life-time spectroscopy

Monte Carlo based generation

- The life time of the positron can be estimated based on the measured time difference (Δt) between detection of deexcitation gamma and the annihilation photons.
- Region A presents the time difference where one expect the photons from the decay of p-Ps decay, whereas B represents the expected decay from o-Ps with larger Δt values.
- ✓ Events with three interactions of annihilation photons with different plastic scintillators will be studied. Angular correlation θ₁₂ [deg] and θ₂₃ [deg] will be measured for both selected regions separately. Left figure shows the angular correlation between the three photons originating from the o-Ps decay generated by Monte Carlo. Figure on the right side shows such a distribution but simulated based on the Geant4 simulation package by using the J-PET detector geometry. However, in case of 3γ from the decay of p-Ps, for the symmetrical configuration one should not expect any contribution at the center.

of o-Ps decays and angular correlations b/w the photons [12]

It is planned to compare the angular distributions for the two selected regions (A,B) divided based on the lifetime of positronium atom. The voxelized based () counts will be compared in order to quantify the difference between two measured distributions.

observe the o-Ps decays and angular correlation b/w the photons using the J-PET detector

Summary:

If the second time resolution along with larger geometrical acceptance of J-PET detector provides the opportunity to study the annihilation photons originating from the decay of positronium atoms.

- If the plan to study the C-forbidden decay (p-Ps \rightarrow 3 γ) by analyzing the angular correlation between the 3-photons investigated over two time scales based on the lifetime of positronium decay is explained.
- It is expected that due to the characteristics properties of the J-PET detector, one can expect to measure the branching ratio of p-Ps decay (3γ / 2γ) with better precision so far.

Acknowledgement:

The authors acknowledgement the support by The Polish National Center for Research and Development through grant INNOTECH-K1/IN1/64/159174/NCBR/12, the Foundation for Polish Science through the MPD and TEAM/2017-4/39 programmes, the National Science Centre of Poland through grants no. 2016/21/B/ST2/01222, 2017/25/N/NZ1/00861, the Ministry for Science and Higher Education through grants no. 6673/IA/SP/2016, 7150/E-338/SPUB/2017/1, 7150/E-338/M/2017, 7150/E-338/M/2017, 7150/E-338/M/2017, 7150/E-338/M/2017, 7150/E-338/M/2017, 7150/E-338/M/2017, 7150/E-338/M/2018 and the Austrian Science Fund FWF-P26783.

References:

- [1] W. Bernreuther et al., Z. Phys C **41**, 143 (1988).
- [2] P. Moskal et al., Acta Phys. Polon. B 47, 509 (2016).
- [3] E.Czerwinski et al., Acta Phys. Polon. B 48, 509 (2017).
- [4] B. C. Hiesmayr and P. Moskal, Scientific Reports 7, 15349 (2017).

[5] M. Nowakowski and D. Bedoya Fierro, Acta Phys. Polon. B 48, 1955 (2017).
[6] Allen P. Mills et al., Phys. Rev. Lett. 18, 420-425 (1967).
[7] M. Palka, Jour. Of Instr. 12, P08001 (2017)
[8] G. Korcyl et al., Acta Phys. Polon. B 47, 491 (2016).

 [9] G. Korcyl et al., IEEE Trans. On Med. Imag. DOI:10.1109/TMI.2018.2837741, (2018).
 [10] K. Dulski et al., Hyperfine Interact. 239:40, 1-6 (2018).
 [11] B. Jasinska et al., Acta Phys. Polon. B 47, 453 (2016).
 [12] D. Kaminska et al., Eur. Phys. J. C (2016) DOI 10.1140/epjc/s10052-016-4294-3