Overview over meson-nucleus interactions and mesic states

Volker Metag II. Physikalisches Institut

JUSTUS-LIEBIG-

and University of Bonn, Germany

<u>Outline</u>:

- meson-nucleon interactions: ω, η'
- meson-nucleus interactions: ω , η ' A
- bound few body systems
- search for meson-nucleus bound states (π , η , ω , η ')
- summary & outlook

*funded by the DFG within SFB/TR16

Symposium on Fundamental and Applied Subatomic Physics Cracow, Poland, June 8-12, 2015

meson-nucleon interactions

determination of the scattering length from near-threshold meson production

meson-nucleon interaction:

for short-lived mesons $(\eta, \omega, \eta', \Phi)$ no beams available; study of meson-nucleon interaction by final state interactions in elementary reactions, e.g. $p + p \Rightarrow p + p + \eta'$

 $|M_{pp \to pp\eta'}|^2 \approx |M_0|^2 |M_{\rm FSI}|^2$

 $M_{\rm FSI} = M_{pp}(k_1) \times M_{p_1\eta'}(k_2) \times M_{p_2\eta'}(k_3).$

problem: pp FSI very strong

- \Rightarrow scattering length |a| (only modulus)
- interaction attractive or repulsive ?

E. Czerwinski et al., PRL 113 (2014) 062004

COSYII

A2@MAMI

consistent with scattering amplitude deduced from ω -nucleus optical potential (M. Kotulla et al., PRL 100 (2008) 192302; S. Friedrich et al., PLB 736 (2014) 26) $a_{\omega N} = -((0.17\pm0.40) + i (0.79\pm0.11))$ fm

$$|a_{\omega N}| = (0.81 \pm 0.41) \text{ fm}$$

meson-nucleus interactions: real and imaginary part of the meson-nucleus optical potential

meson-nucleus optical potential

$$U(r) = V(r)$$

$$V(r) = \Delta m(\rho_0) \cdot \frac{\rho(r)}{\rho_0}$$

in-medium mass modification

in-medium mass modification

$$r) + iW(r)$$

$$W(r) = -\Gamma_0/2 \cdot \frac{\rho(r)}{\rho_0}$$

$$= -\frac{1}{2} \cdot \hbar c \cdot \rho(r) \cdot \sigma_{inel} \cdot \beta$$

reduction of lifetime

imaginary part

\hat{U}

in-medium width inelastic cross section

experimental approaches to determine the meson-nucleus optical potential

$$V(r) = \Delta m(\rho_0) \cdot \frac{\rho(r)}{\rho_0}$$

- line shape analysis
- excitation function
- momentum distribution
- meson-nucleus bound states

- line shape analysis
- excitation function
- momentum distribution
- meson-nucleus bound states

transparency ratio measurement

$$\Gamma_A = \frac{\sigma_{\gamma A \to \eta' X}}{A \cdot \sigma_{\gamma N \to \eta' X}}$$

imaginary part of the optical potential from transparency ratio measurements

imaginary part of the ω - and η '-nucleus optical potential

η΄

momentum dependence of $T_A{}^C$, Γ and σ_{inel} for ω mesons

momentum dependence of $T_A{}^C$, Γ and σ_{inel} for ω mesons

momentum dependence of $T_A{}^C$, Γ and σ_{inel} for ω mesons

first information on momentum dependence of the imaginary part of the ω -nucleus optical potential; important for linking optical model parameters at high momenta to scattering length at production threshold

what have we learned from transparency ratio measurements ?

- transparency ratio measurements provide information on absorption of mesons in nuclei \Rightarrow imaginary part W($\rho = \rho_0$) of meson-nucleus potential; applicable for any meson lifetime
- ω, η',Φ mesons show broadening in nuclei;

lifetime shortened (width increased) by inelastic processes

	Γ(ρ₀) [MeV]	[GeV/c]	W(ρ=ρ ₀) [MeV]	σ _{inel} [mb]	experiment
ω	130-150	١,١	65-75	≈ 60	CBELSA/ TAPS
η'	15-25	Ι,Ι	7.5-12.5	3-10	CBELSA/ TAPS
Φ	30-60	0,6-1,4	15-30	14-21	ANKE@ COSY
Φ	100 ⁺⁵⁰ -30	I,8	50 ⁺²⁵ -15	35 ⁺¹⁷ -11	LEPS@ SPring-8

real part of the optical potential from excitation functions and momentum distributions

The real part of the ω -nucleus potential

J.Weil, U. Mosel and V. Metag, PLB 723 (2013) 120 $\omega \rightarrow \pi^0 \gamma$

sensitive to nuclear density at production point

• measurement of the excitation function

of the meson

in case of dropping mass higher meson yield for given \sqrt{s} because of increased phase space due to lowering of the production threshold

\Rightarrow cross section enhancement

 $\pi^0\gamma$ excitation function 10⁻¹ $\gamma^{12}C \rightarrow \pi^0 \gamma N X$ a/A [ub] 10⁻² vac $\mathsf{E}_{\mathsf{Y}}^{\mathsf{thr}}$ 10⁻³ CB+shif shift 0.9 0.8 1 1.1 1.2 1.3 1.4 1.5 E_v[GeV]

The real part of the ω -nucleus potential

J.Weil, U. Mosel and V. Metag, PLB 723 (2013) 120 $\omega \rightarrow \pi^0 \gamma$

sensitive to nuclear density at production point

- <u>measurement of the excitation function</u> of the meson
- in case of dropping mass higher meson yield for given \sqrt{s} because of increased phase space due to lowering of the production threshold

\Rightarrow cross section enhancement

σ/A [μb]

• momentum distribution of the meson:

in case of dropping mass - when leaving the nucleus hadron has to become on-shell; mass generated at the expense of kinetic energy

\Rightarrow downward shift of momentum distribution

 $\pi^0\gamma$ momentum distribution

The real part of the ω -nucleus potential

$$\gamma A \rightarrow \omega X$$

CB/TAPS @ MAMI

V. Metag et al., PPNP, 67 (2012) 530.

M.Thiel et al., EPJA 49 (2013) 132

 $V_{\omega}(\rho = \rho_0) = -(42 \pm 17(\text{stat}) \pm 20(\text{syst})) \text{ MeV}$

ω

The real part of the η '-nucleus potential

Mariana Nanova

data compared to calculations by E. Paryev (priv. com.)

the higher the attraction the lower the kinetic energy of the η ' meson

E. Paryev, arXiv: 1503.09007

the higher the attraction the lower the kinetic energy of the η ' meson

E. Paryev, arXiv: 1503.09007

the higher the attraction the lower the kinetic energy of the η ' meson

 $V_{\eta'}(<\!\!p_{\eta'}\!\!>\approx\!500~MeV/c;\rho\!=\!\rho_0)\approx\text{-}(36\pm\!22)~MeV$

E. Paryev, arXiv: 1503.09007

compilation of results for real and imaginary part of the ω , η '-nucleus optical potential

 $U_{\omega A}(\rho = \rho_0) =$

 $U_{\eta'A}(\rho=\rho_0)=$

-((29±19(stat)±20(syst) + i(70±10)) MeV -((39±11(stat)±15(syst) + i(10±3)) MeV

 $| \text{Im } U | > | \text{Re } U | ; \Rightarrow \omega \text{ not a good candidate}$ to search for meson-nucleus bound states!

 $\begin{array}{|c|c|c|c|c|} Re \cup & >> & Im \cup & ; \Rightarrow \eta' \text{ promising} \\ \hline candidate \text{ to search for mesic states} \end{array}$

first (indirect) observation of in-medium mass shift of η ' at $\rho = \rho_0$ and T=0 in good agreement with QMC model predictions (S. Bass et al., PLB 634 (2006) 368)

summary of theoretical predictions and experimental results on $U_{\eta'}(\rho_0) = V_{real}(\rho_0) + i W_{imag}(\rho_0)$

bound few body systems

The dibaryon d*(2380)

established in various decay channels

Search for kaonic clusters

SIDDHARTA:

x-ray spectroscopy of kaonic hydrogen: strong K⁻N attraction in I=0 channel FINUDA, DISTO: evidence for K⁻pp cluster Laura Fabbietti: HADES@GSI G.Agakishiev et al., PLB 742 (2015) 242

no evidence for K⁻pp cluster in mass range 2.20-2.37 GeV/c²

KLOE@DAΦNE

using low energy K^- from Φ decay

K⁻⁺C $\rightarrow \Sigma^{0}$ +p+X; looking for ppK⁻ $\rightarrow \Sigma^{0}$ +p

KLOE@DAΦNE

using low energy K^- from Φ decay

K⁻⁺C $\rightarrow \Sigma^{0}$ +p+X; looking for ppK⁻ $\rightarrow \Sigma^{0}$ +p

Slawomir Wycech: importance of multi-nucleon clusters in K⁻ capture

Search for kaonic clusters

E27@J-PARC Y. Ichikawa et al., Prog. Theor. Exp. Phys. (2015) 021D01

missing mass spectrum for $d(\pi^+, K^+)$ in coincidence with protons at $39^0 < \theta_p^{lab} < 122^0$

 $B("K^{-}pp") = (95^{+18}_{-17}(stat)^{+30}_{-21}(syst)) MeV; \quad \Gamma("K^{-}pp") = (162^{+87}_{-45}(stat)^{+66}_{-78}(syst)) MeV$ evidence for K⁻pp - like structure 25

search for and study of meson-nucleus bound states

meson-nucleus interactions; mesic states

Electromagnetic (+Strong) interaction

charged pion \Leftrightarrow nucleus

bound by superposition of attractive Coulomband repulsive strong interaction Kenta Itahashi

meson-nucleus interactions; mesic states

Electromagnetic (+Strong) interaction

charged pion \Leftrightarrow nucleus

bound by superposition of attractive Coulomband repulsive strong interaction Kenta Itahashi

$\omega, \eta, \eta' \leftrightarrow nucleus$

bound solely by the strong interaction

?

talks by Kenta Itahashi Magdalena Skurzok Mariana Nanova

deeply bound pionic states

halo-like π^{-} distribution around nucleus

¹¹⁹Sn: $B_{1s} = (3.82 \pm 0.01) \text{ MeV}; \Gamma_{1s} = (0.33 \pm 0.05) \text{ MeV}$

optical potential parameters (real and imaginary part) determined from binding energy and width of bound states

theoretical predictions for η -nucleus bound states

C. Garcia-Recio et al., PLB 550 (2002) 47

for most nuclei $B_{\eta} \leq \Gamma_{\eta}$

most states predicted to have tails into the continuum, allowing for η decays of bound states

η-nucleus or N*-nucleus bound states ?

Neelima Kelkar

N*-nucleus bound states may exist, however very broad: $\Gamma \approx \text{ several 10 MeV}$

search for η -mesic states

A2@MAMI

coherent η photo production on ³He

M. Pfeiffer et al., PRL 92 (2004) 252001
F. Pheron et al., PLB 709 (2012) 21

T.Mersmann et al., PRL 98 (2007) 242301

dp→η³He

ANKE@COSY

very strong rise of cross section directly at threshold in contrast to phase-space expectations \Rightarrow strong ³He- η FSI; quasi bound state close to threshold ??

search for η -mesic states: $\eta \otimes^4 He$

dd $\rightarrow \eta \otimes^4$ He \rightarrow^3 He p π^- , ³He n π^0

WASA@COSY Magdalena Skurzok W. Krzemien

search for η -mesic states

 η bound state formation in d+d fusion

ω -nucleus bound states

CBELSA/TAPS

ω - mesic states

cross section in bound state region compatible with theoretical predictions, but no pronounced structure observed; consistent with tails extending into bound state region due to large imaginary part of the ω -nucleus optical potential

theoretical predictions for η '-nucleus bound states

<u>**n'-** mesic states:</u> $\eta' \otimes^{12} C$

excitation energy spectrum of the $\eta' \otimes^{12}C$ system

theoretical predictions for η '-nucleus bound states

<u> η' - mesic states:</u> $\eta' \otimes {}^{12}C$

of the $\eta' \otimes^{12}C$ system

 $\gamma + {}^{6}Li \rightarrow d + \alpha \otimes \eta'$ recoilless η' production off quasi deuteron in ⁶Li ; $\frac{d^2\sigma}{dE d\Omega} \approx 10 \text{ pb/(MeV sr)}$ 35

search for η '-mesic states in hadronic reactions

¹²C(p,d)η'⊗¹¹C

K. Itahashi et al., PETP 128 (2012) 601 H. Nagahiro et al., PRC 87 (2013) 045201

particle identification by time-of-flight

analysis ongoing

BGO-OD@ELSA

¹²C(γ,p) η'X @ 1.5-2.8 GeV

formation and decay of η '-mesic state

BGO-OD ideally suited for exclusive measurement

approved proposal: ELSA/3-2012-BGO

BGO-OD@ELSA

¹²C(γ,p) η'X @ 1.5-2.8 GeV

formation and decay of η '-mesic state

BGO-OD ideally suited for exclusive measurement

approved proposal: ELSA/3-2012-BGO

<u>outlook</u>: search for η '-mesic states in photo-nuclear reactions

approved proposal: ELSA/3-2012-BGO

2 m (Vert)

4 m (Hori)

z=12 m

Resistive Plate

Chamber (RPC)

summary

meson-nucleus optical potential:

 ω : weak attraction; strong absorption; $|V_{real}| \le |V_{imag}|$

 η : weak attraction, small absorption; $|V_{real}| > |V_{imag}|$

measure momentum dependence of potential parameters to provide link to scattering length at production threshold

few body systems:

 $d^*(2380)$ well established in various reactions and decay channels existence of K⁻pp clusters still controversial

search for mesic states:

π: deeply bound pionic states well established

 η : indication for bound $\eta \otimes^4 He$ state with large width ??

ω: no evidence for bound state due to large in-medium width

η': promising candidate for meson-nucleus bound state: search ongoing at FRS@GSI, BGO-OD@ELSA, LEPS2@Spring8