

Jagiellonian Symposium on Fundamental and Applied Subatomic Physics

Critical overview of experimental results on kaonic clusters"

Laura Fabbietti Technische Universitaet Muenchen

HADES and KLOE-AMADEUS collaborations

Kaonic Cluster

Ρ

 Λ/Σ

		Part of the A(1405	5) Resonance ?		K		
Theoretical Predictions			Binding Energy (BE): 10-100 MeV				
			Mesonic Decay (Γ _m): 30-110 MeV				
			Non-Mesonic Decay (Γ _{nm}): 4-30 MeV				
	Chiral, energy depende		lent				
		var. [DHW09, DHW08]	Fad. [BO12b, BO12a]	var. [BGL12]	Fad. [IKS10]	Fad. [RS14]	
BI	E	17–23	26–35	16	9–16	32	
Γ_r	n	40-70	50	41	34–46	49	
Γ_r	าฑ	4–12	30				
		Non-chiral, static calcu	ulations				
		var. [YA02, AY02]	Fad. [SGM07, SGMR07]	Fad. [IS07, IS09]	var. [WG09]	var. [FIK+11]	
BI	E	48	50–70	60–95	40–80	40	
Γr	n	61	90–110	45–80	40–85	64–86	
Γ _r	าฑ	12			~20	~21	

Experimental Results on ppK⁻

Example: DISTO analysis

Experimental data divided by Phase Space simulation Or a data sample divided by another

Eliane Epple, Laura Fabbietti. Apr 8, 2015. 9 pp. e-Print: arXiv:1504.02060 [nucl-ex]

$\Lambda(1405)$ Doorway for the DISTO energies Excellenzcluster Universe

arXiv:1504.02060

X claim by DISTO for p+p at 2.85 GeV but not for 2.5 GeV Reason: small $\Lambda(1405)$ cross-section at 2.5 GeV??

P. Kienle et al., Eur. Phys. J. A 48, 183 (2012).

 $\sigma_{pK+\Lambda(1405)}(2.5GeV)/\sigma_{pK+\Lambda(1405)}(2.85GeV) = 0.23$

If the $\Lambda(1405)$ argument holds true, one should see the X also at 2.5 GeV Even more than 23%, because of smaller phase-space!!

Deviation Spectra: the HADES Data

Exzellenzcluster Universe

 $|\cos\theta_p| < 0.6$

пп

The HADES experiment

High Acceptance Di-electron Spectrometer **GSI**, Darmstadt

Beam Energy: 3.5 GeV

- Fixed-target Setup
- Full azimuthal coverage, 15°-185° in polar angle
- Momentum resolution \approx 1% 5 %
- Particle identification via dE/dx & ToF

HADES Coll. (G. Agakishiev et al.), Eur. Phys. J. A41 (2009)

Total Number of exclusive Events: 21000

The HADES Data Sample

Exzellenzcluster Universe

HADES data

13,000 events of pK⁺ Λ Background from wrong PID $\approx 6\%$ Background from pK⁺ $\Sigma^0 \approx 1\%$ WALL data 8000 events of pK⁺ Λ Background from wrong PID \approx 11.7% Background from pK⁺ $\Sigma^0 \approx 3\%$

Deviation Spectra: the HADES Data

Phase Space Model

Exzellenzcluster Universe

пп

Kaonic Cluster

J. Beringer Phys.Rev. D86 (2012)

Kaonic Cluster

The PWA Framework

 $A_{2b}^{\beta}(s_{K^{+}\Lambda}) = \frac{M\Gamma_{K^{+}\Lambda}}{M^{2} - s_{K^{+}\Lambda} - iM\Gamma_{tot}}$

Bonn Gatchina PWA http://pwa.hiskp.uni-bonn.de/

A.V. Anisovich, V.V. Anisovich, E. Klempt, V.A. Nikonov and A.V. Sarantsev Eur. Phys. J. **A** 34, 129152 (2007)

Notation in PDG	Old notation	Mass [GeV/c ²]	Width [GeV/c ²]	Γ _{ΛΚ} /Γ _{Αll} %
N(1650) $\frac{1}{2}^{-}$	N(1650)S ₁₁	1.655	0.150	3-11
N(1710) $\frac{1}{2}^{+}$	N(1710)P ₁₁	1.710	0.200	5-25
N(1720) $\frac{3}{2}^{+}$	N(1720)D ₁₃	1.720	0.250	1-15
N(1875) $\frac{3}{2}^{-}$	N(1875)D ₁₃	1.875	0.220	4±2
N(1880) ¹ / ₂ ⁺	N(1880)P ₁₁	1.870	0.235	2±1
N(1895) ¹ / ₂	N(1895)S ₁₁	1.895	0.090	18±5
N(1900) ³⁺ / ₂	N(1900)P ₁₃	1.900	0.250	0-10

Systematic variation of different N* waves in the input of the PWA fit

PWA Model

Deviation Spectra reloaded

Test of the Null Hypothesis

Exzellenzcluster Universe

These waves are included into the four best solutions of the PWA

$$2S+1L_{J}$$
WaveA: $'p+p' \ ^{1}S_{0} \rightarrow \ 'ppK(2250) - K' \ ^{1}S_{0}$
WaveB: $'p+p' \ ^{3}P_{1} \rightarrow \ 'ppK(2250) - K' \ ^{1}P_{1}$
WaveC: $'p+p' \ ^{1}D_{2} \rightarrow \ 'ppK(2250) - K' \ ^{1}D_{2}$

```
Scanned masses:
2220 – 2370 MeV/c<sup>2</sup> (in steps of 10 MeV/c<sup>2</sup>)
Scanned widths:
30 MeV, 50 MeV, and 70 MeV
```


Test of the Signal Hypothesis

Exzellenzcluster Universe

... Interferences

The minimum has to be found by the fit

<u>Measured total cross-section</u>: $\sigma_{pK^+\Lambda} = 38.12 \pm 0.43^{+3.55}_{-2.83} \pm 2.67(p+p-error) - 2.9(background) \ \mu b$.

Upper limit of ppK⁻ Cross Section:

Г (MeVc ⁻²)	Cross Section (µb)
0+	1.9 – 3.9
1-	2.1 – 4.2
2+	0.7 – 2.1

Production Cross Section $\Lambda(1405)$

$$9.2 \pm 0.9 \pm 0.7 + 3.3 - 1.0 \, \mu b$$

HADES coll. (G. Agakishiev et al.) Phys. Rev. **C 87**, 025201 (2013)

Incoherent Upper limits

Exzellenzcluster Universe

The cross-section extracted from the DISTO analysis does not fit in the trend Coherent (calculated only by HADES with PWA for p+p at 3.5 GeV) and uncoherent upper li mits are rather high ~ μ b

New data are necessary to either observe the state or decrease the upper limit.

Exzellenzcluster Universe

Example: KLOE-AMADEUS analysis

Fits similar to the FINUDA analysis

K⁻ + C reactions at Daφne

KLOE and Pre-AMADEUS (C. Curceanu, L. Fabbietti, O. Vasquez-Doce, K. Piscicchia, A. Scordo , I. Tukanovic, H. Zmeskal ..)

- K^{-} Momentum = 127 MeV/c
- $\sigma_p/p \sim 0.4$ MeV/c
- 96% geometrical acceptance
- Calorimeter for $\gamma s: \sigma_m \sim 18 \text{ MeV/c}^2$
- Vertex resolution: 1 mm
- Gas: 90% He, 10% C₄H₁₀

KLOE Experiment

K⁻ + C Reactions at Daφne

- $\sigma_p/p \sim 0.4$ MeV/c
- •96% geometrical acceptance
- Calorimeter for $\gamma s: \sigma_m \sim 18 \text{ MeV/c}^2$
- Vertex resolution: 1 mm
- Gas: 90% He, 10% C₄H₁₀

KLOE Experiment

Clear Σ^0 signal and sound estimation of the background

Fit results

2NA= K- absorption on 2 nucleons QF: No final state interaction

Fit results

2NA= K- absorption on 2 nucleons QF: No final state interaction

	yield / $K_{stop}^- \cdot 10^{-2}$	$\sigma_{stat} \cdot 10^{-2}$	$\sigma_{syst} \cdot 10^{-2}$
2NA-QF	0.075	± 0.012	+0.0025 -0.0031
2NA-FSI	0.16	± 0.014	+0.0028 -0.0032
Tot 2NA	0.23	± 0.019	+0.013 -0.004
3NA	0.19	± 0.041	+0.015 -0.025
Tot 3body	0.35	± 0.043	+0.011 -0.012
4NA + Uncorr. bkg.	0.43	± 0.021	+0.021 -0.024

Inclusion of the kaonic bound state

Scan of several Width and Binding energy for the intermediate state: $K^- + C \to ppK^- (\to \Sigma^0 + p) + X$

Slightly Improved χ^2 (from 1.31 to 1.27)

Pvalues and F-Test

A statistical analysis including a kaonic bound state $ppK^- \rightarrow \Sigma^0 + p$ delivers a better χ^2 (for Γ = 30 MeV/c² and BE= 45 MeV/c²) but the local pValues is o nly slightly different than the one obtained fitting the data without the kaonic boun d state.

Yield (ppK⁻) / K⁻ stop = $0.027 \pm 0.013 stat + 0.008 - 0.04 syst \cdot 10^{-2}$

Conclusions

Exzellenzcluster Universe

Test of the Null Hypothesis

$$p-value = \int_{\chi^2_{P,d}}^{\infty} P(\chi^2, Ndf) d\chi^2$$

 $\chi_P^2 = \frac{(m - \lambda)^2}{\lambda}$

 $\begin{array}{l} \mathsf{m}_{i} \text{ measured events in bin i} \\ \boldsymbol{\lambda}_{i} \text{ expected events in bin i} \\ \text{ according to the model} \end{array}$

Test of the Null Hypothesis

Exzellenzcluster Universe

