

CPT SYMMETRY AND GRAVITY TESTS WITH ANTIHYDROGEN

Chloé Malbrunot ^{1,2}

¹ CERN, Geneva, SWITZERLAND ² Stefan Meyer Institute for Subatomic Physics, Vienna, AUSTRIA

No evidence of primary antimatter anywhere in the universe

• Baryon asymmetry produced by a <u>very</u> small deviation

$$\frac{n(B) - n(\bar{b})}{n(\gamma)} < 10^{-9}$$

13.8 billions years ago :

Today :

Possible explanations:

◆ CP or CPT violations

• Anomalous antimatter gravity: segregation of matter and antimatter in different parts of the universe

CPT SYMMETRY TEST

Charge conjugation

Parity transformation

CPT Theorem assumptions: Lorentz invariance Locality Unitarity

<u>Γi</u>me reversal

· · · · · · · ·

000

If **CPT symmetry holds**: properties of matter & antimatter particles have to be exactly equal (mass) or opposite (charge, magnetic moment). Atomic structures identical

Tests in <u>different systems</u> $[m(K^0) - m(\bar{K}^0)]/m(average) < 10^{-18}$ proton / antiproton (compare m, q, $\vec{\mu}$) hydrogen / antihydrogen (1S – 2S, HFS)

ANTIMATTER GRAVITY

Weak Equivalence principle never tested for antimatter

No <u>direct</u> "precise" measurement of the fall of \overline{H} in the Earth gravitational field so far

0

Gravity is the only force not described by quantum field theory : QFT formulation could include non-newtonian gravity (S=1,S=0 components), WEP violation etc

earth

anti-apple

"Anti-gravity" could be a possible explanation for baryon asymmetry ant other cosmological puzzles

TESTS WITH ANTIHYDROGEN

Most simple anti-atom.

00000

Only <u>neutral</u> antimatter made in large & <u>controlled</u> quantities so far

ASACUSA, ATRAP, ALPHA

AEGIS, GBAR

Antihydrogen: ideal test body for fundamental physics 5 – JAGIELLONIAN SYMPOSIUM ON FUNDAMENTAL AND APPLIED SUBATOMIC PHYSICS – CHLOÉ MALBRUNOT **JUNE 8TH 2015**

ANTIHYDROGEN EXPERIMENTS @ CERN

HFS

CERN-AD is the <u>only</u> facility in the word which can produce <u>low energy</u> antiprotons

ANTIHYDROGEN EXPERIMENTS @ CERN

<u>The Antiproton Decelerator</u>: cools antiprotons from ~3GeV to 5.3MeV few eV needed for trapping

Other research foci with p̄: ASACUSA, BASE, ACE

HFS

0

0

ANTIHYDROGEN EXPERIMENTS @ CERN

<u>The Antiproton Decelerator</u>: cools antiprotons from ~3GeV to 5.3MeV few eV needed for trapping

Other research foci with p̄: ASACUSA, BASE, ACE

0

0

00000

0 00

H.HFS

3 experimental groups focus on antihydrogen spectroscopy - ATRAP -> *trap*

- ALPHA -> trap
- ASACUSA -> beam

1 group focusses on WEP test (and spectroscopy) -AEGIS -> *beam* -(GBAR to come in 2017)

20 YEARS OF H EXPERIMENTS @ CERN

STATUS OF ANTIHYDROGEN EXPERIMENTS @ CERN

0 () () ()

JUNE 8TH 2015

– JAGIELLONIAN SYMPOSIUM ON FUNDAMENTAL AND APPLIED SUBATOMIC PHYSICS – CHLOÉ MALBRUNOT

HOW TO MAKE "COLD" ANTIHYDROGEN

- Trap p̄ in an electromagnetic trap (Penning traps)
- ◆ Cool p̄

000

0000

00000

- ◆ Accumulate and cool e+ from Na²² source
- ◆ "Store" p̄ and e+ in a nested well (3-body recombination technique)
- Combine the two plamas

Trap very cold (<0.5K) H
, wait for deexcitation to ground state

◆ Form **H**

Produce a cold (<100K) and low QS beam of \overline{H}

==> Perform SPECTROSCOPY

MEASUREMENT PRINCIPLE

Atomic beam with RF resonance

- 1) no \overline{H} trapping needed \rightarrow no need for ultra-cold (< 1 K) \overline{H}
- 2) atomic beam method can work up to 50-100 K

3) \overline{H} atoms can be guided with inhomogeneous magnetic field

ANTIHYDROGEN PRODUCTION IN ASACUSA

– JAGIELLONIAN SYMPOSIUM ON FUNDAMENTAL AND APPLIED SUBATOMIC PHYSICS – CHLOÉ MALBRUNOT **JUNE 8TH 2015**

– JAGIELLONIAN SYMPOSIUM ON FUNDAMENTAL AND APPLIED SUBATOMIC PHYSICS – CHLOÉ MALBRUNOT **JUNE 8TH 2015**

H DETECTORS

Annihilation: BGO crystal (position sensitive calorimeter)

read out by MchPMT array of 16x16 for position resolution

Pion tracking:

Event display

000

00

JUNE 8TH 2015

- 2 layers hodoscope
- 32 (8x4) scintillator bars each
- SiPMs on each side
- axial resol. by time difference

Cosmics suppression

- energy deposit
- trigger: triple coincidence

200

150

- fast timing
- >50% efficiency < 5% false IDs

<u>Solid angle (mixing point -</u> detector): ~0.004%

14 É MAI BRIINC

– JAGIELLONIAN SYMPOSIUM ON FUNDAMENTAL AND APPLIED SUBATOMIC PHYSICS – CHLOÉ MALBRUNOT

LATEST BREAKTHROUGHTS

<u>Coming next</u>: Determine the polarization of the beam, velocity and quantum states at the cavity

==> IN PREPARATION FOR SPECTROSCOPY MEASUREMENT

Characterization of spectroscopy beamline

HFS

CHARACTERIZATION WITH H BEAM

– JAGIELLONIAN SYMPOSIUM ON FUNDAMENTAL AND APPLIED SUBATOMIC PHYSICS – CHLOÉ MALBRUNOT

H BEAM APPARATUS

– JAGIELLONIAN SYMPOSIUM ON FUNDAMENTAL AND APPLIED SUBATOMIC PHYSICS – CHLOÉ MALBRUNOT

HYDROGEN MEASUREMENT

FM=

- Ħ

1.5

Fitting the theoretical curve to the data Helmholtz coil currents: external B field is a fit paramete

AEgIS Goal

- First goal is to measure \bar{g} (i.e $g(\bar{H})$) to 1% accuracy
- Test of WEP on antimatter in Earth's gravitational field
 - * First direct measurement for an anti-atom free of any assumptions
 - * Need "large" amount (~1000) of cold neutral anti-atoms.

AEgIS method:

- Produce cold H
 ^{*}
- * Accelerate H
 * into a neutral beam

* Measure the gravitational deflection of such cold $\bar{\rm H}$ beam

0000000

000

19

2015 — JAGIELLONIAN SYMPOSIUM ON FUNDAMENTAL AND APPLIED SUBATOMIC PHYSICS— CHLOÉ MALBRUNOT

ANTIHYDROGEN PRODUCTION IN AEGIS

NEW TECHNIQUE: MORE AND COLDER ANTIHYDROGEN VIA CHARGE EXCHANGE

- 1. Production, moderation & trapping of e⁺
- 2. Capture and accumulation of \bar{p} from the AD
- 3. Cooling of $\bar{\mathbf{p}}$

() () ()

JUNE 8TH 2015

- 4. **o-Ps** production by impact of e+ on SiO₂ target (nano-porous insulator material)
- 5. Ps **laser excitation** into Rydberg levels
- 6. Interaction of **Rydberg Ps** with the cloud of cold antiprotons
- 7. **Recombination** of \bar{H} by resonant charge exchange

$$Ps^* + \bar{p} \rightarrow \bar{H}^* + e^-$$

Formation rate enhanced

$$\sigma \propto n^4$$

 $\sigma(n_{\rm Ps} = 20) \sim 10^{-9} {\rm cm}^2$

- * \bar{H} state defined by Ps state
- * \bar{H} velocity dominated by \bar{p}

20

– JAGIELLONIAN SYMPOSIUM ON FUNDAMENTAL AND APPLIED SUBATOMIC PHYSICS – CHLOÉ MALBRUNOT

ANTIHYDROGEN PRODUCTION IN AEGIS

 Formation of an H beam by Stark acceleration with inhomogeneous electric fields

000

000

JUNE 8TH 2015

 Measurement of ḡ in a two-grating moiré deflectometer coupled to a position-sensitive detector.

- Rydberg atoms are sensitive to el. field gradients.
- Accelerate the H along z-axis to few 100m/s

– JAGIELLONIAN SYMPOSIUM ON FUNDAMENTAL AND APPLIED SUBATOMIC PHYSICS – CHLOÉ MALBRUNOT

EXPERIMENTAL SETUP

EXPERIMENTAL SETUP

HHES

– JAGIELLONIAN SYMPOSIUM ON FUNDAMENTAL AND APPLIED SUBATOMIC PHYSICS – CHLOÉ MALBRUNOT **JUNE 8TH 2015**

FROM e⁺ to Ps

Ps production: implantation of e+ into nano-porous (Ø 8-14 nm) silica target

✤ ~75K o-Ps needed

· · · · · · ·

* Requires deep implantation depth, i.e. high V

 Possibility to tune nano channel dimension (influences the temperature of Ps)

S. Mariazzi et al., Phys. Rev. B 78 085428 (2008).

S. Mariazzi et al., Phys. Rev. B 81 235418 (2010).

Mean positron implantation depth [nm]

24

FROM e⁺ to Ps

- JAGIELLONIAN SYMPOSIUM ON FUNDAMENTAL AND APPLIED SUBATOMIC PHYSICS - CHLOÉ MALBRUNOT

PROOF OF PRINCIPLE

Nature Communications 5 (2014) 4538

Mini-Moiré setup

000

- ~100 keV antiprotons
- 7 hour exposure
- Bare emulsion behind deflectometer
- Alignment of gratings using light and single grating

Parasitic measurements primordial to converge to the optimal detector/deflectometer configuration

- * Shift between \bar{p} and light observed
- $\Delta y = 9.8 \pm 0.9 (\text{stat}) \pm 6.4 (\text{stat}) \mu m$
- * Consistent with B, E residual fields
- * μm sensitivity reached

JUNE 8TH 2015

For \overline{H} beam: $F = x \ 10^{-10}$, resolution similar if $v = x \ 10^{-4}$ & $L = x \ 40$

– JAGIELLONIAN SYMPOSIUM ON FUNDAMENTAL AND APPLIED SUBATOMIC PHYSICS – CHLOÉ MALBRUNOT

TOWARDS PRODUCTION OF COLD P

Possible ways :

◆ Cool the environment to sub-Kelvin level

indirect laser cooling of antiprotons to mK level and below
 La- program in Heidelberg eg: New Journal of Physics 8 (2006) 45
 C₂- program at CERN
 Phys. Rev. Lett 114, 21300 (2015)

challenge: find suitable laser transitions for cooling of negative atoms/molecules

SUMMARY

First proof-of-principle measurements in traps
 First "beam" of H observed in field-free region
 HFS measurement of H beam ~5 ppb achieved

· · · · · · ·

000

JUNE 8^{1H} 2015

Colder H needed for "precise" trap and gravity experiments

- development of \bar{H} laser cooling
- sympathetic cooling of \bar{p} and e+
- Higher yield of G-S H for beam experiments
 - polarization, velocity measurement

Time scale for precision exp. : 5-10 years

<== STAY TUNED ==>

