Pion assisted dibaryons JU symposium, Krakow, June 2015 Avraham Gal, Hebrew University, Jerusalem

- Non-strange dibaryons: from Dyson-Xuong (1964) to $N\Delta$ & $\Delta\Delta$ dibaryon status (2015).
- Experimental discoveries: JLab & COSY.
- Long-range dynamics of pions, nucleons & Δ's:
 3-body calculations of NΔ & ΔΔ dibaryons.
 A. Gal, H. Garcilazo, PRL 111, 172301 (2013) and Nucl. Phys. A 928 (2014) 73-88.
- Strange dibaryons: expectations & status. Pion-assisted S=-1 studies; C=1 & beyond.

Nonstrange s-wave dibaryon SU(6) predictions F.J. Dyson, N.-H. Xuong, PRL 13 (1964) 815

dibaryon	Ι	S	SU(3)	legend	mass
\mathcal{D}_{01}	0	1	$\overline{10}$	deuteron	A
\mathcal{D}_{10}	1	0	27	nn	A
\mathcal{D}_{12}	1	2	27	$N\Delta$	A + 6B
\mathcal{D}_{21}	2	1	35	$N\Delta$	A + 6B
\mathcal{D}_{03}	0	3	$\overline{10}$	$\Delta\Delta$	A + 10B
\mathcal{D}_{30}	3	0	28	$\Delta\Delta$	A + 10B

Assuming 'lowest' SU(6) multiplet, 490, within 56 × 56. M=A+B[I(I+1)+S(S+1)-2], A=1878 MeV from $M(d)\approx M(v)$. B = 47 MeV from $M(\mathcal{D}_{12})\approx 2160$ MeV observed in $\pi^+d \rightarrow pp$. Hence, $M(\mathcal{D}_{03}) = M(\mathcal{D}_{30}) \approx 2350$ MeV $[2M(\Delta) \approx 2465$ MeV]. Kamae-Fujita, PRL 38 (1977) 468, 471: proton polarization in $\gamma d \rightarrow pn$ supports a dibaryon at $M \approx 2380$ MeV.

Evidence for $\mathcal{D}_{03}(2380)$, $B \sim 80$ & $\Gamma \sim 70$ MeV Adlarson et al. PRL 106 (2011) 242302 & 112 (2014) 202301

from $pd \to d\pi^0 \pi^0 + p_s$ also in $pd \to d\pi^+ \pi^- + p_s$ $^{3}D_{3} - {}^{3}G_{3} pn$ resonance *np* analyzing power

SAID NN fit requires a resonance pole WASA@COSY & SAID, PRC 90 (2014) 035204

Given $\Gamma(\Delta) \approx 120$ MeV, what makes \mathcal{D}_{03} that narrow?

Quark-based model calculations of \mathcal{D}_{03} & \mathcal{D}_{12}									
$M({\rm GeV})$	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	$\exp/phen$
$\mathcal{D}_{03} (\Delta \Delta)$	2.35	2.36	2.44	2.38	≤ 2.26	2.40	2.46	2.36**	2.38
$\mathcal{D}_{12} \ (N\Delta)$	2.16^{*}	2.36	—	2.36	—	—	2.17	—	≈ 2.15

- 1. Dyson-Xuong, PRL 13 (1964) 815; *input **postdiction.
- 2. Mulders-Aerts-de Swart, PRD 21 (1980) 2653.
- 3. 1980: Oka-Yazaki, PLB 90, 41 (2.46) Cvetic et al. 93, 489 (2.42)
- 4. Mulders-Thomas, JPG 9 (1983) 1159.
- 5. Goldman-Maltman-Stephenson-Schmidt-Wang, PRC 39 (1989) 1889.
- 6. ...Zhang-Shen..., PRC 60 (1999) 045203; arXiv:1505.05395 & therein.
- 7. Mota-Valcarce-Fernandez-Entem-Garcilazo, PRC 65 (2002) 034006.
- 8. Ping-Huang-Pang-Wang, PRC 79 (2009) 024001, 89 (2014) 034001. BOTH \mathcal{D}_{12} & \mathcal{D}_{03} predicted correctly only by [1].

Long-range dynamics of dibaryons A.Gal, H.Garcilazo, PRL 111, 172301 (2013) Nucl. Phys. A 928 (2014) 73-88

$\mathcal{D}_{12} N\Delta$ dibaryon candidate

$\Delta N | (J^P) = 1(2^+)$ Dibaryon

 $NN \leftrightarrow \pi d$ reactions resonate near $N\Delta$ threshold Hoshizaki, PTP 89 (1993) 563: W=2144-i55 MeV Arndt et al. PRD 35 (1987) 128: W=2148-i63 MeV

$\mathcal{D}_{12}(2150) \ N\Delta \ \text{dibaryon}$ near threshold (2.17 GeV)

- Long ago established in coupled-channel pp(¹D₂) ↔ π⁺d(³P₂) scattering & reactions. Hoshizaki's & Arndt et al's analyses: M ≈ 2.15 GeV, Γ ≈ 110 - 130.
- Nonrelativistic πNN Faddeev calculation, Ueda (1982): M = 2.12 GeV, $\Gamma = 120$ MeV.
- Our relativistic-kinematics Faddeev calculation gives $M \approx 2.15$ GeV, $\Gamma \approx 120$ MeV. M & Γ robust to variations of NN & πN input.
- CLAS $\gamma d \rightarrow d\pi^+\pi^-$ data [APS 04/2015] suggest $M_{BW} \approx 2.12$ GeV, $\Gamma_{BW} \approx 125$ MeV.

\mathcal{D}_{12} $N\Delta$ dibaryon search at JLab

 $M_{d\pi^+}$ vs. $M_{d\pi^-}$ in $\gamma d \rightarrow d\pi^+\pi^-$ (APS 04/2015). Acceptance-corrected CLAS (g13) data. Suggests $d\pi^{\pm}$ correlation below $N\Delta$ threshold.

Separable potential fits to $NN \& \pi N$ data

Separable s-wave potentials $v_j \Rightarrow$ sparable t matrices t_j entering πNN Faddeev equations: $T_i = t_i + t_i G_0 \sum_{j \neq i} T_j$ Solve for $I(J^P) = 1(1^+), 1(2^+), 2(1^+), 2(2^+)$ corresponding to $N\Delta$ -acceptable $I(J^P)$ values.

- For separable interactions, Faddeev equations reduce to one effective 2-body equation.
 Resonance poles: IJ = 12, 21 (yes), 11, 22 (no).
 W(D₁₂) ≈ 2153 i65, W(D₂₁) ≈ 2167 i67 (MeV)
- Given this D₁₂(2150) NΔ dibaryon, how does one find a related NΔ-isobar form factor?

Construction of $N\Delta$ form factor

- Construct (NN)_{ℓ=2}-(NN')_{ℓ=0}-(NΔ')_{ℓ=0} separable potential. N'-fictitious P₁₃ baryon with
 m_{N'} = m_π + m_N to generate πNN inelastic cut.
 Δ'- stable Δ with m_{Δ'} = 1232 MeV.
- No ad-hoc pole is introduced into $(N\Delta')_{\ell=0}$.
- Require form-factor cutoff mommenta $\leq 3 \text{ fm}^{-1}$ to be consistent with long-range physics e.g. no $\pi N \rightarrow \rho N$.
- Fitting $NN \ \delta({}^{1}D_{2})$ & $\eta({}^{1}D_{2})$ determines the $\mathcal{D}_{12}(2150)$ -isobar $(N\Delta')_{\ell=0}$ form factor.

Fitting NN $\delta(^1D_2)$ & $\eta(^1D_2)$

Dashed: gwdac.phys.gwu.edu [SAID], Solid: best fit

Calculation of $\mathcal{D}_{03}(2380) \Delta \Delta$ dibaryon in terms of π 's, N's & Δ 's

- Approximate $\pi\pi NN$ problem by $\pi N\Delta'$ problem.
- Separable pair interactions: $\pi N \Delta$ -isobar form factor by fitting $\delta(P_{33})$; $N\Delta' \mathcal{D}_{12}(2150)$ -isobar form factor by fitting $NN(^1D_2)$ scattering.
- 3-body S-matrix pole equation reduces to effective $\Delta \Delta'$ diagram:

- Searching numerically for S-matrix resonance poles by going complex, q_j → q_j exp(-iφ), thus opening sections of the unphysical Riemann sheet to accommodate poles of the form W = M − iΓ/2.
- In the πN propagator, where Δ' is a spectator, replace real mass m_{Δ'}=1232 MeV by Δ-pole complex mass m_Δ=1211-i49.5×(2/3) MeV, x=2/3 accounting for quantum-statistics correlations for decay products of two I(JP)=0(3+) Δ's, assuming s-wave decay nucleons.

Results & Discussion

- Using 0.9 & 1.3 fm sized P₃₃ form factors: M=2363±20, Γ=65±17, (x=1: 78±17 MeV) in good agreement with WASA@COSY.
- Although bound w.r.t. ΔΔ, D₀₃(2380) is resonating w.r.t. the π – D₁₂(2150) threshold. The subsequent decay D₁₂(2150) → πd is seen in the πd Dalitz plot projection.
- NN-decoupled dibaryon resonances D₂₁ & D₃₀ predicted 10-30 MeV higher, respectively; see also Bashkanov-Brodsky-Clement, Novel 6q Hidden-Color Dibaryons in QCD, PLB 727 (2013) 438. Width calculation?

Recent Quark Model Calculations

- Orbitally symmetric [6] I(JP)=0(3+) w.f. is $\sqrt{1/5}\Delta\Delta + \sqrt{4/5}CC$. How do CC hidden-color components affect the mass & width?
- H. Huang et al., PRC 89 (2014) 034001, use the Salamanca chiral quark model (CQM) to go from 1→4 ΔΔ channels, then to full 10: M = 2425 → 2413 → 2393 MeV Γ=177→175→150 MeV, so Γ is too big.
- F. Huang et al., arXiv 1505.05395, find in their CQM: M≈2400±20 MeV & 67% CC, arguing for a strongly suppressed ∆∆ width since strong decay cannot occur from CC components...

Extension to Strangeness

	, ,		-	- 0	
	$\Sigma\Sigma$	$\Lambda \Xi$	$\Sigma \Xi$	$\Sigma \Xi$	ΞΞ
	$(I = 2, {}^{1}S_{0})$	$(I = \frac{1}{2}, {}^1S_0)$	$(I = \frac{3}{2}, {}^1S_0)$	$(I = \frac{3}{2}, {}^3S_1)$	$(I = 1, {}^{1}S_{0})$
NSC97	+	—	+	+	+
EFT (LO)	—	+	+	—	+
EFT (NLO)	_	_	_	_	_

S = -2, -3, -4 deuteron-like $8_F \times 8_F$ dibaryons?

NSC97: V.G.J. Stoks, T.A. Rijken, Phys. Rev. C **59** (1999) 3009 EFT (LO): J. Haidenbauer, U.-G. Meißner, Phys. Lett. B **684** (2010) 275 EFT (NLO): JH, UGM, S. Petschauer, Eur. Phys. J. A **51** (2015) 17

- Based on $\approx 40 \Lambda p, \Sigma p, \Xi^- p$ low-energy data points.
- Systematics of EFT (LO): The S = -3, -4 sectors require only the 5 LECs determined in the YN sector fit, independently of the 6th LEC required in the S = -2 sector (this LEC is consistent with zero). Hence get PREDICTIONS.
- ${}^{1}S_{0}$ in SU(3)_f **27** (as nn), ${}^{3}S_{1}$ in SU(3)_f **10** (as deuteron).
- Model dependence is assessed by varying a cutoff momentum in the range 550 - 700 MeV/c. SU(3) breaking aborts binding at NLO.

Color Magnetic (CM) gluon exchange interaction For orbitally symmetric L = 0 color-singlet *n*-quark cluster:

$$V_{CM} \approx \sum_{i < j} -(\lambda_i \cdot \lambda_j)(s_i \cdot s_j)\mathcal{M}_0 \to \left[-\frac{n(10-n)}{4} + \Delta \mathcal{P}_{\mathrm{f}} + \frac{S(S+1)}{3}\right]\mathcal{M}_0$$

where $\mathcal{M}_0 \sim 75$ MeV, $\mathcal{P}_f = \pm 1$ for any symmetric/antisymmetric flavor pair, $\Delta \mathcal{P}_f$ means with respect to the SU(3)_f 1 antisymmetric representation of *n* quarks, n = 3 for a baryon (B) and n = 6 for BB.

For n = 6, SU(3)_f 1 [2,2,2] is Jaffe's $\mathcal{H}(uuddss)$ [PRL 38 (1977) 195]:

$$\mathcal{H} \sim \mathcal{A}[\sqrt{1/8} \Lambda \Lambda + \sqrt{1/2} N\Xi - \sqrt{3/8} \Sigma\Sigma,]_{I=S=0}$$
$$< V_{CM} >_{\mathcal{H}} -2 < V_{CM} >_{\Lambda} = -2\mathcal{M}_0$$

where $4\mathcal{M}_0 = \langle V_{CM} \rangle_{\Delta} - \langle V_{CM} \rangle_N \sim M_{\Delta} - M_N \approx 300 \text{ MeV}$

Leading dibaryon candidates: Oka, PRD 38 (1988) 298

S	$\mathrm{SU}(3)_{\mathrm{f}}$	Ι	J^{π}	BB structure	$\Delta < V_{CM} >$
0	$[3,3,0] \ \overline{10}$	0	3^{+}	$\mathcal{D}_{03}~(\Delta\Delta)$	0
-1	[3,2,1] 8	1/2	2^{+}	$\sqrt{1/5} \ (N\Sigma^* + 2 \ \Delta\Sigma)$	$-\mathcal{M}_0$
-2	[2,2,2] 1	0	0^+	$\mathcal{H} = \sqrt{1/8} \left(\Lambda \Lambda + 2 N \Xi - \sqrt{3} \Sigma \Sigma \right)$	$-2\mathcal{M}_0$
-3	[3,2,1] 8	1/2	2^{+}	$\sqrt{1/5} \left[\sqrt{2} N\Omega - (\Lambda \Xi^* - \Sigma^* \Xi + \Sigma \Xi^*) \right]$	$-\mathcal{M}_0$

- A bound H overbinds ⁶_{ΛΛ}He [Gal, PRL 110 (2013) 179201].
 SU(3)_f breaking pushes it to ≈NΞ threshold, 26 MeV above ΛΛ threshold [HAL QCD, NPA 881 (2012) 28; Haidenbauer & Meißner, ibid. 44].
- $N\Omega$ dibaryon: HAL QCD, Nucl. Phys. A 928 (2014) 89.
- Let's focus on S = -1.

Missing-mass spectrum in $d(\pi^+, K^+)$ at 1.69 GeV/c J-PARC E27, PTEP 2014, 101D03 (i) ΣN threshold cusp at \approx 2130 MeV. (ii) Y^* quasi-free peak shifted by \approx -22 MeV, indicating Y^*N attraction $[Y^* = \Sigma(1385) \& \Lambda(1405)]$.

$\Lambda(1405)N$: K^-pp bound-state calculations

(MeV)	chiral	, energy o	lep. calcul	lations	non-chiral, static calculations			
	var. [1]	var. [2]	Fad. [3]	Fad. [4]	var. $[5]$	Fad. [6]	Fad. [7]	var. [8]
В	16	17-23	9-16	32	48	50-70	60-95	40-80
Γ	41	40-70	34-46	49	61	90-110	45-80	40-85
Debugt hinding & large widther chiral models give weak hinding								

Robust binding & large widths; chiral models give weak binding. Searches at Frascati, GSI, J-PARC are inconclusive.

- 1. N. Barnea, A. Gal, E.Z. Liverts, PLB **712** (2012)
- 2. A. Doté, T. Hyodo, W. Weise, NPA 804 (2008) 197, PRC 79 (2009) 014003
- 3. Y. Ikeda, H. Kamano, T. Sato, PTP **124** (2010) 533
- 4. J Revai, N.V. Shevchenko, PRC 90 (2014) 034004
- 5. T. Yamazaki, Y. Akaishi, PLB **535** (2002) 70
- 6. N.V. Shevchenko, A. Gal, J. Mareš, PRL $\mathbf{98}$ (2007) 082301
- 7. Y. Ikeda, T. Sato, PRC **76** (2007) 035203, PRC **79** (2009) 035201
- 8. S. Wycech, A.M. Green, PRC **79** (2009) 014001 (including p waves)

from $\Lambda(1405)N$ to $\Sigma(1385)N$

- $\Lambda(1405)N$ is in a way a doorway to the quasibound $I = 1/2, J^P = 0^- \bar{K}NN$ dibaryon. Lower S = -1 components are $\pi\Lambda N$ and $\pi\Sigma N$, the lowest of which is $\pi\Lambda N$, but it cannot support any strongly attractive meson-baryon *s*-wave interaction.
- The πΛN system can benefit from strong meson-baryon p-wave interactions fitted to the Δ(1232) → πN and Σ(1385) → πΛ form factors. Maximize isospin and angular momentum couplings by full alignment: I = 3/2, J^P = 2⁺. In particular, ΛN is in ³S₁. This is a Pion Assisted Dibaryon, see Gal & Garcilazo, PRD 78 (2008) 014013.

- Add the πΣN channel [PRC 81 (2010) 055205, and finalized in NPA 897 (2013) 167].
 A πΛN resonance about 10–20 MeV below the πΣN threshold is found by solving coupled-channel Faddeev equations. Results are sensitive to the pion-baryon p-wave form factors.
- This resonance is a pion assisted quasibound dibaryon, suggesting doorway states of the type Σ(1385)N and Δ(1232)Y, the lower of which is Σ(1385)N with I = 3/2 and ⁵S₂, J^P = 2⁺. These are different labels from the I = 1/2 and ¹S₀, J^P = 0⁻ for Λ(1405)N viewed as a doorway to K⁻pp.

- Adding a KNN channel does not help, because the leading ${}^{3}S_{1}$ NN configuration is Pauli forbidden.
- Search for this \mathcal{Y} dibaryon at GSI & J-PARC in: $p + p \rightarrow \mathcal{Y}^{++} + K^0, \quad \mathcal{Y}^{++} \rightarrow \Sigma^+ + p,$ or $\pi^+ + d \rightarrow \mathcal{Y}^{++} + K^0, \quad \mathcal{Y}^{++} \rightarrow \Sigma^+ + p.$
- A (π⁺, K⁺) reaction as in E27 would lead to YN decay states similar to those anticipated in searches of K⁻pp. Another possibility at J-PARC or GSI is:
 π⁻ + d → Y⁻ + K⁺, Y⁻ → Σ⁻ + n.

Summary

- The two experimentally established nonstrange dibaryons D₁₂(2150) & D₀₃(2380) are derived quantitatively with long-range hadronic physics guidelines using pions, nucleons & Δs input.
- Search for *NN*-decoupled \mathcal{D}_{21} & \mathcal{D}_{30} dibaryons.
- Develop EFT description for these dibaryons.
- Does $\Sigma(1385)$ play the role of $\Delta(1232)$ for strange dibaryon candidates? $\Sigma(1385)N$ $(I = \frac{3}{2}, 2^+)$ vs. $\Lambda(1405)N$ $(I = \frac{1}{2}, 0^-)$.
- Charmed dibaryons?

 $\pi \Lambda_c N \ (I = \frac{3}{2}, 2^+)$ Gal..., PRD 90 (2014) vs. DNN $(I = \frac{1}{2}, 0^-)$...Oset, PRC 86 (2012)].