

Recent results from LHCb

Agnieszka Obłąkowska-Mucha, Tomasz Szumlak, AGH UST Kraków

on behalf of LHCb Collaboration

Jagiellonian Symposium of Fundamental and Applied Subatomic Physics Kraków 7-12.06.2015

Outline

- I. Why Flavour Physics?
- II. Three ways of CPV
- III. Selected results from LHCb:
 - CP Violation
 - Weak phase ϕ_S
 - CKM γ angle
 - Rare decays
 - Exotic states
- IV. Summary
- V. Prospects for measurements in Run II and Upgrade

Standard Model

Why Flavour Physics?

- 1. To constrain Standard Model
- 2. To find a reason for only three generations.
- 3. To search for CP violation in both quark and neutrino sector

Why Flavour Physics? Three ways of CPV Selected results from LHCb CP Violation, mixing Weak phase, γ angle Rare decays Exotic states

All three generations of -1/3e quarks (d,s,b) are mixed

Summary

The parameters of mixing (V_{CKM} matrix) are fundamental constants of Nature in the SM

Two roads to New Physics

1. Direct searches for production of new objects (higher and higher energies, luminosities – ATLAS, CMS)

- 2. Indirect searches (a low energy "window" for discoveries) LHCb
 - a) test the SM with very precision measurements, especially processes which are very well predicted and calculated.
 - b) if disagreements are found this is a sign of the existence of new objects via indirect method
 - c) very successful in the past (charm and top quarks predictions)
- 3. Of a special interest are:
 - a) CP violation in B and D decays (CPV in SM is too small to explain the observed domination of matter over the antimatter)
 - b) Very rare decays of B and D mesons

V_{ts}∝e^{iβs}

AGH

II Three ways of CPV – selected results

Why Flavour Physics?OThree ways of CPVVSelected results from LHCbFSummaryF

CP Violation, mixing Weak phase, γ angle Rare decays Exotic states

1. Direct – in decay amplitudes; when two amplitudes with different phases interfere:

 $B^{\pm}
ightarrow h^+ h^- h^{\pm}$

2. Indirect – in mixing; if $B^0 \to f$ decay then but $\overline{B^0} \to f$ only possible after mixing

 $B_S \rightarrow D_S^{\pm} \pi^{\mp}$

3. Indirect – in interference between direct decays $B^0 \to f$ and decays after mixing, $B^0 \to \overline{B^0_{d,s}} \to f$, both final states f, \overline{f} are possible (although one is usually suppressed)

$$B^0 \to J/\psi X$$
 $B_S \to D_S^{\pm} K^{\mp}$

LHCb Spectrometer

Why Flavour Physics? Three ways of CPV Selected results from LHCb Summary CP Violation, mixing Weak phase, γ angle Rare decays Exotic states

AGH

The detector dedicated for studying flavour physics at LHC. Especially CP violation and rare decays of beau

Especially CP violation and rare decays of beauty and charm mesons.

Physics program:

- CP Violation ,
- Rare B decays,
- B decays to charmonium and open charm,
- Charmless B decays,
- Semileptonic B decays,
- Charm physics
- B hadron and quarkonia
- QCD, electroweak, exotica ...

Excellent performance:

3fb⁻¹ accumulated in RUN I Excellent Vertex Resolution Precise tracking: $\delta p/p \sim 0.4 - 0.6\%$ Particle identification 2-100 GeV/c

 $\sigma_{b\bar{b}} = (75.3 \pm 14.1) \, \mu b$ $\sigma_{c\bar{c}} = (1419 \pm 133) \, \mu b$

 \sqrt{s} = 7 TeV

III Direct CP violation

Why Flavour Physics? Three ways of CPV Selected results from LHCb

Summary

CP Violation, mixing Weak phase, γ angle Rare decays Exotic states AGH

The values are consistent with the current world averages and with the Standard Model expectations. The most precise time-dependent CP violation measurement at hadron colliders.

arXiv:1503.07089 (3.0 fb⁻¹2015)

$\frac{WCb}{WCP}$ III LHCb results: weak phase ϕ_S

Why Flavour Physics?CP VThree ways of CPVWeSelected results from LHCbRareSummaryExo

AGH

Why Flavour Physics?CP Violation, mixingThree ways of CPVWeak phase, γ angleSelected results from LHCbRare decaysSummaryExotic states

 ϕ_S is very sensitive to New Physics, but no NP effects have been seen, yet...

SM:	$\phi_S^{SM} = -0.0363^{+0.0014}_{-0.0012}$
HFAG:	$\phi_S^{exp} = -0.015 \pm 0.035$

Great progress but still plenty of possibilities for NP

BO

 B^0

Three ways of CPV

 $\gamma \equiv \arg\left(-\frac{V_{ud}V_{ub}^*}{V_{cd}V_{ch}^*}\right)$

Y

Summary

0.6

0.5

0.4

0.2

0,1

0.0

-0.4

E 0.3 trees - direct

litter

- γ angle is the only one that can be determined from tree only processes, 1.
- Theoretically clean: $\delta \gamma / \gamma \leq \mathcal{O}(10^{-7})$ 2.

CKM γ angle

- So far has the worst precision: 3.
 - direct measurements: BaBar: $\gamma = (69 \pm 17)^{\circ}$, Belle: $\gamma = (68 \pm 15)^{\circ}$ a)
 - indirect measurements (dominated by loops): $(66.9^{+1.0}_{-3.7})^{\circ}$ b)

some tension between direct and indirect methodsneed better precision from trees measurements

0.0 0.2 0.4 -0.2 0.6

no trees - indirect

0.8

Why Flavour Physics?CP Violation, mixingThree ways of CPVWeak phase, γ angleSelected results from LHCbRare decaysSummaryExotic states

Time integrated measurement

- 1. Sensitive to γ when D^0 and $\overline{D^0}$ decay to the same final state.
- 2. Interference of the two amplitudes dependent on relative magnitudes of amplitudes one of them is usually suppressed.
- 3. Different experimental techniques (GLW, ADS, GGSZ).

world most precise single γ measurement

Why Flavour Physics? Three ways of CPV Selected results from LHCb Summary

CP Violation, mixing Weak phase, **γ angle** Rare decays Exotic states

AGH

 $B_S^0 \rightarrow D_S^{\pm} K^{\pm}$

Time dependent

- 1. Interference between mixing and direct decay, large effect because decays are not colour suppressed,
- 2. Sensitive to $(\gamma + \phi_s)$, strong phase δ ,
- 3. Need to measure 4 time dependent decay rates

 $D_S^{\pm}K^{\pm}$ K^+ W Vub B_{c}^{0} $D_s^ \Gamma_{B^0_s \to f}(t)$ $= \left|A_{f}\right|^{2} \left(1 + \left|\lambda_{f}\right|^{2}\right) \frac{e^{-\Gamma_{s}t}}{2} \cdot \left(\cosh\frac{\Delta\Gamma_{s}t}{2} + \boldsymbol{D}_{f}\sinh\frac{\Delta\Gamma_{s}t}{2} + C_{f}\cos\Delta m_{s}t - \boldsymbol{S}_{f}\sin\Delta m_{s}t\right)$ $D_f \propto cos(\delta - (\gamma - 2\beta_S))$ $S_f \propto sin(\delta - (\gamma - 2\beta_S))$

First measurement with this technique, 1fb⁻¹

 $\gamma = \left(115^{+28}_{-43}\right)^{\circ}$

09.06.2015 Jagiellonian Symposium

14

JHEP 11 (2014) 060

Very rare decay

Why Flavour Physics?OThree ways of CPVVSelected results from LHCbISummaryI

CP Violation, mixing Weak phase, γ angle Rare decays Exotic states AG H

- CMS & LHCb first observation of the decay $B_S \rightarrow \mu\mu$
- Statistical significance above 6σ
- The best measurement of branching fraction to date
- 3σ evidence for $B \rightarrow \mu\mu$

 $BR(B_S \to \mu\mu) = (2.8^{+0.7}_{-0.6}) \times 10^{-9}$ $BR(B_S \to \mu\mu)SM = (3.66 \pm 0.23) \times 10^{-9}$

 $BR(B \to \mu\mu) = (3.9^{+1.6}_{-1.4}) \times 10^{-10}$

Nature 13 May 2015 doi:10.1038/nature14474

Very rare decay

Why Flavour Physics?CThree ways of CPVVSelected results from LHCbRSummaryE

CP Violation, mixing Weak phase, γ angle Rare decays Exotic states AG H

• Both results are statistically compatible with Standard Model predictions

Stringent constraints on theories beyond SM

 $BR(B_S \to \mu\mu) = (2.8^{+0.7}_{-0.6}) \times 10^{-9}$ $BR(B_S \to \mu\mu)SM = (3.66 \pm 0.23) \times 10^{-9}$ $BR(B \to \mu\mu) = (3.9^{+1.6}_{-1.4}) \times 10^{-10}$ $BR(B \to \mu\mu)SM = (1.06 \pm 0.09) \times 10^{-10}$

Nature 13 May 2015 doi:10.1038/nature14474

Why so rare?

Why Flavour Physics?CFThree ways of CPVWSelected results from LHCbRaSummaryEx

CP Violation, mixing Weak phase, γ angle Rare decays Exotic states AGH

Forbidden! No direct Flavour Changing Neutral Currents Only higher order transitions

 $B
ightarrow \mu\mu$ even more suppressed due the transitions from III to I generation

New, heavy particles can enter in competing processes and significantly change:

- the branching fraction BR of the decay
- and the angular distribution of the final state particles

Why Flavour Physics?CThree ways of CPVVSelected results from LHCbRSummaryE

CP Violation, mixing Weak phase, γ angle Rare decays Exotic states AG H

Exotic hadrons – have structures more complex than $|q\bar{q}\rangle$ or $|qqq\rangle$

- 1. In quantum theory one can express a meson as a linear superposition of allowed basis states
 - a) This basis spanning $|q\bar{q}q\bar{q}\rangle$, $|q\bar{q}g\rangle$, $|gg\rangle$,....
 - b) Respective amplitudes in this linear expansion are govern by the QCD interactions
- 2. Depending on the dominating component we can classify mesons as quarkonia, hybrids, glueballs, dibarions, tetraquarks

Diquark – antidiquarks (tetraquarks)

- quark pairs tightly bound in diquarks
- diquarks interact by strong QCD force
- rich spectrum of mass states (not necessary close to the mass threshold) possible
- large number of decay channels with open and hidden charm

Why Flavour Physics? Three ways of CPV Selected results from LHCb Rare decays Summary Exotic states

XYZ meson are seen to decay to final states with heavy quark and antiquark (c or b) but hardly fit to $q\bar{q}$ spectrum

Bottonium

Olsen, arXiv:1403.1254 [hep-ex]

Exotic mesons

Why Flavour Physics? Three ways of CPV Selected results from LHCb Summary

CP Violation, mixing Weak phase, γ angle Rare decays Exotic states

 $B^+ \rightarrow X(3872)K^+$

The narrow X(3872) was discovered by the Belle experiment, confirmed by several other 6 experiments. Unlikely to be conventional charmonium Interpretation as an exotic state: tetraquark $c\bar{c}u\bar{u}$, molecule $D^0 D^{*0} = (c\bar{u})(\bar{c}u)$, hybrid $c\bar{c}g$

LHCb 3fb⁻¹, 1011±38 events

Determination of quantum numbers:

- Angular analysis in helicity basic
- No assumptions about orbital momentum \boldsymbol{L}

Consistent with all models....

Phys.Rev.Lett 110 (2013) 222001 NEW! LHCb-PAPER-2015-015

Exotic mesons

Why Flavour Physics?CThree ways of CPVVSelected results from LHCbFSummaryE

CP Violation Weak phase, γ angle Rare decays Exotic stetes AG H

Exotic mesons

Why Flavour Physics?CP ViolationThree ways of CPVWeak phase, γ angleSelected results from LHCbRare decaysSummaryExotic stetes

angle

$$Z(4430)^-
ightarrow \Psi' \pi^-$$

1. Confirmation of Belle results:

 $M_{Z^{-}} = 4475 \pm 7 \, MeV$ $\Gamma_{Z^{-}} = 172 \pm 13 \, MeV$ $J^{PC} = 1^{++}$

2. Resonant behaviour?

Model independent Argand diagram technique:

- Replace the BW amplitude by 6 independent complex numbers in 6 bins of $\Psi'\pi^-$ mass near $Z(4430)^-$ mass.
- Only $K\pi$ amplitudes in Z mass shape
- If phase changes rapidly near maximum \rightarrow resonance!

The diagram shows clearly resonant behavior of the Z(4430)

Phys.Rev.Lett. 112, 222002 (2014)

- 1. LHCb is the experiment to study CP Violation and rare decays:
- 2. After three years of data taking in data with B decays:
 - a) Direct CP Violation
 - b) CP Violation in mixing (mixing of neutral mesons, both B^0 and B_S^0
 - c) CP Violation in interference between direct decay and decay after mixing
 - d) Rare decays
- 3. In charm sector mixing is observed, approaching CPV SM limits
- 4. Exotic states confirmation of B factories result with more statistic.

What's next? Run II & Upgrade!

very precise measurements of:

- weak phase ϕ_S
- CKM γ angle

ALL within the Standard Model limits

۲

