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~ = c = kB = 1

But not always



1. Motivation

Have an unbiased look at the following (interaction)
potentials
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The first one resembles the Wood-Saxon potential
with depth of −3 MeV. The second one has
minimum at −0.3 MeV , but also a repulsive core



with a height of 2 × 103 MeV . Nuclear potentials?
A variational principle reveals that the ground state
is close to −13 eV Indeed, the potentials reflect the
Finite Size of the proton.

2. Scalar forced in the Hydrogen atom

Formalism: potentials from QFT
scattering amplitude ∼ FourierTransform[potential]
Breit equation ∼ InverseFourierTransform[elastic

e-p amplitude]

vertex with two electromagnetic form-factors:

eγµ → e

(
F1(q2)γµ +

F2(q2)
2mp

σµνq
ν

)



Sachs form-factors:

GE = F1 +
q2

4mp
F2

GM = F1 + F2

The Breit Hamiltonian (H. A. Bethe and E. E.
Salpeter “Quantum Mechanics of one- and two-
electron atoms”):

Vep(q) = e

[
GE(q)

q2
− 1

8m2
p

GE(q)− 1
8m2

e

GE(q)
]

+F (σe,σp;pp,pe)

= (modified) Coulomb + Proton Darwin

+ electron Darwin

= eVp(q) + VeD(q)

where Vp is the electric potential of the proton in
momentum space.

Vep(r) =
∫

d3q

(2π)3
eiq·rVep(q)



= eVC(r) + VpD(r) + VeD(r) = eVp(r) + VeD(r)

Obviously, we have

VeD(r) ∝ VpD(r) ∝ ρ(r) ∝
∫

dq3eiq·rGE(q)

We have identified the electric potential of the
proton from the Breit equation as terms which are
(i) scalar (no spin and no momentum terms and (ii)
independent form the properties of the test particle.
By this token the proton Darwin term is part of
the electric potential, but the electron Darwin not.
This has some consequences for the electric field
at small distances inside the proton and also for the
charge distribution.
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Via ∇ · E = 2
rE + dE

dr ∝ ρ the charge distribution
is non-zero at the center when we include the
proton Darwin term in the potential. With the dipole



parametrization GE(q2) = 1/(1 + q2/m2)2, one can
obtain analytical formulae, e.g.,

Vp(r) = V C
p + V pD

p

V C
p =

e

r

(
1− e−mr

(
1 +

er

2

))

But the main issues (of this talk) will remain mostly
insensitive to the parametrization of the electric
form-factors.
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One does not see nowadays these results very
often since the simplest estimate of the correction



to the energy level(s) of the hydrogen atom is

∆E =
∫

d3x|Ψ(x)|2
[
eVp(r) +

Ze2

r

]

' |Ψ(0)|2
∫

d3x

[
eVp(r) +

Ze2

r

]
which after integration by parts becomes

e

6
|Ψ(0)|2

∫
d3xr2∇2Vp

Using the Poisson equation the definition of the
radius as the second moment of the charge
distribution

< r2 >=
∫

d3xρr2

one gets finally

∆E =
e

6
|Ψ(0)|2Ze < r2 >

Seemingly one does not need to know anything
about the electric fields inside the proton as



everything is encoded in the proton radius.
However, some obvious questions cross the mind.

• Are these fields really so strong?

• Is there a danger of pairs production? Indeed,
one can calculate the energy content in the
electric field∫

d3xE2 ∝ E (field) ' 1 MeV

which is very close to 2me and given the
uncertainty of the form-factors at the border to
the pair production threshold.

• By e → −e one obtains the positron proton
potential with a potential depth of 106 MeV!

Below I will discuss the possibility how γγ
contribution lower the electric field strength well
below the pair production threshold, but at the price



that the simple and useful relation ∆E ∝< r2 >
cannot be maintained anymore. Before going into
the details let me recall some special quantum
mechanical aspects of the Finite Size contribution
of the proton.

• The field/potential of the proton at small r is large
but still finite as compared to 1/r. Therefore, it is
not a correction, but its short range allows us to
treat in as a correction in ∆E .

Figure 1: Don’t be afraid of strong fields, but
take care of pair production danger.

• Classically, by Gauss law the electron will not
“feel” the Finite Size of the proton (assuming its
charge distribution to be spherically symmetric).
Hence, the fact that we can calculate it and



measure it is indeed an unappreciated quantum
effect (of the wave function).
Is it non-local?
Can it be macroscopic? Yes, en electron around
a Back Hole will know that it is a Black Hole and
not a spherically symmetric mass distribution.

E → E − i
Γ
2

which means we have an unstable bound state
(orbit in the macroscopic language)

• For l = 0, we learn that classically there is
no ground state and the electron by emitting
electromagnetic radiation will fall into the center.
This is not true as minimum of the true potential
is now the classical ground state (E ≥ V = Veff ).
Quantum Mechanics chooses, however, another
ground state.



Figure 2: Smile, Hydrogen atom, you are on a
quantum camera.
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To describe the microscopic properties of matter, quantum mechanics uses wave functions, whose

structure and time dependence is governed by the Schrödinger equation. In atoms the charge distributions

described by the wave function are rarely observed. The hydrogen atom is unique, since it only has one

electron and, in a dc electric field, the Stark Hamiltonian is exactly separable in terms of parabolic

coordinates (�, �, ’). As a result, the microscopic wave function along the � coordinate that exists in the

vicinity of the atom, and the projection of the continuum wave function measured at a macroscopic

distance, share the same nodal structure. In this Letter, we report photoionization microscopy experiments

where this nodal structure is directly observed. The experiments provide a validation of theoretical

predictions that have been made over the last three decades.

DOI: 10.1103/PhysRevLett.110.213001 PACS numbers: 32.80.Fb, 32.60.+i

The development of quantum mechanics in the early

part of the last century has had a profound influence on

the way that scientists understand the world. Central

to quantum mechanics is the concept of a wave function

that satisfies the time-dependent Schrödinger equation

[1]. According to the Copenhagen interpretation, the

wave function describes the probability of observing the

outcome of measurements on a quantum mechanical

system, such as measurements of the energy or the position

or momenta of constituents [2]. The Copenhagen interpre-

tation thus allows reconciling the occurrence of nonclass-

ical phenomena on the nanoscale with manifestations and

observations made on the macroscale, which correspond to

viewing one of a number of possible realizations allowed

for by the wave function.

Despite the overwhelming impact on modern electronics

and photonics, understanding quantum mechanics and the

many possibilities that it describes continues to be intellec-

tually challenging, and has motivated numerous experi-

ments that illustrate the intriguing predictions contained

in the theory [3]. Using ultrafast lasers, Rydberg wave

packet experiments have been performed illustrating how

coherent superpositions of quantum mechanical stationary

states describe electrons that move on periodic orbits

around nuclei [4]. The wave function of each of these

electronic stationary states is a standing wave, with a

nodal pattern that reflects the quantum numbers of the

state. Mapping of atomic and molecular momentum wave

functions has been extensively explored by means of

(e, 2e) spectroscopy, using coincident detection of the

momentum of both an ejected and a scattered electron to

retrieve the momentum distribution of the former prior to

ionization [5]. In the spirit of scanning tunneling methods,

orbital tomography based on high harmonic generation

was developed as a method allowing the determination of

atomic and molecular orbitals [6,7]. In this Letter we will

present experiments where the nodal structure of electronic

wave functions of hydrogen atoms is measured, making

use of a photoionization microscopy experiment, where

photoelectrons resulting from ionization after excitation

of a quasibound Stark state are measured on a two-

dimensional detector.

The hydrogen is a unique atom, since it only has one

electron and, in a dc electric field, the Stark Hamiltonian is

exactly separable in terms of parabolic coordinates. For

this reason, an experimental method was proposed about

thirty years ago, when it was suggested that experiments

ought to be performed projecting low-energy photoelec-

trons resulting from the ionization of hydrogen atoms onto

a position-sensitive two-dimensional detector placed per-

pendicularly to the static electric field, thereby allowing the

experimental measurement of interference patterns directly

reflecting the nodal structure of the quasibound atomic

wave function [8–10].

In a static electric field F the wave function of atomic

hydrogen can be separated in terms of the parabolic

coordinates �, �, ’ (� ¼ r� z and � ¼ rþ z, where r
is the distance of the electron from the proton, z is the

displacement along the electric field axis and ’ ¼
tan

�1ðy=xÞ is the azimuthal angle [see Fig. 1(a) and

Ref. [11]]). Note that atomic units are used, unless speci-

fied otherwise. Consequently, the wave function may be

written as a product of functions �1ð�Þ and �2ð�Þ that

separately describe the dependence along � and �,
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Figure 3: An electron in a hydrogen atom
with a Finite Size potential and an electron
around a Black Hole display a similar quantum
mechanical effect.

3. The role of γγ corrections

So far we have obtained a potential by the
Fourier transform of a (non-relativistic) scattering
amplitude. The famous light-light “correction”
follows a different logic:
Classically light does not interact with light (abelian
gauge theory). Quantum Mechanics (Quantum
Field Theory) introduces light-light scattering via
one loop box diagram



Figure 4: Light-light scattering

Effectively, this is a four-photon vertex and a new
quantum effect. We can incorporate it back into the
Lagrangian of Electrodynamics:

Euler-Heisenberg Theory

V. B. Berestetskii, E. M. Lifshitz and L .P. Pitaevskii,
“Quantum Electrodynamics”, Landau-Lifschitz IV
with contribution of Schwinger, Weisskopf and many
others.
Lagrangian
The Lagrangian must be gauge invariant, hence in



general a function of

T = −1
4
FµνF

µν =
1
2
(E2 −B2)

G =
1
4
FµνF̃

µν = E ·B

Then, we can expect that first approximation is
quadratic in the invariants T, G. Indeed,

L = L0 + LEH

L0 = T

LEH = η
(
(E2 −B2)2 + 7(E ·B)2

)
∝ κT2 + λG2

with
η =

α2

360π2m2
e

Conditions on validity



• weak fields
L ∼ F 2(1 + ηF 2)

F ∼ E, B

ηE2, ηB2 � 1

It follows then

E � 2× 103 MeV

• Slow varying fields (sometimes paraphrased as
constant fields)

• No pair production, .i.e.,∫
d3xE2 ∝ E (field) < 2me

We will come back to these conditions after solving
for the electric field.

New Maxwell equations



The homogeneous Maxwell equations remain
unchanged (since they define simply the electromagnetic
potentials)

∇ ·B = 0

∇×E +
∂B

∂t
= 0

The inhomogeneous new Maxwell equations can be
written in a form resembling the Maxwell theory in
matter. Define:

D ≡ E + 4πP

P = η
[
4E(E2 −B2) + 14B(E ·B)

]
H ≡ B − 4πM

M = η
[
−4B(E2 −B2) + 14E(E ·B)

]
The new inhomogeneous Maxwell read now:

∇ ·D = ρ

∇×H − ∂D

∂t
= j



Electrostatics

Put B = 0 and neglect time derivatives. Then
Gauss law for D reads

∇ ·D = ρ = ∇ ·E0

where E0 is the electric fields arsing in the Maxwell
theory given the charge distribution (we treat the
charge distribution as a given source) ρ. Hence we
end up with an algebraic equations

E + 4πP = E + η′E3E = E0

where
η′ = 16πη

For the spherical symmetric case we obtain a third
order polynomial equation for the electric field E
given the “standard” Maxwellian field E0

E + η′E3 = E0

The solution is E[E0].



Figure 5: Heisenberg, Weizsäcker and Euler

For the Coulomb field (of point-like proton), i.e.,
E0 = e/r2 one can get an non-pertubative solution

E =
(

e

2η′r2

)1/3

×

 3

√√√√1 +

√
1 +

1
27η′

(
2r2

e

)2

+
3

√√√√1 +

√
1− 1

27η′

(
2r2

e

)2


For large r one obtains the pertubative solution,



linear in powers of the charge

E ' e

r2

(
1− η′

( e

r2

)2
)

For small r the behaviour is softer than 1/r i.e.

E '
(

e

η′r

)2/3

This approximation is equivalent to neglect the
linear terms in the cubic equations for the field
(strong fields).

Extended charge distribution

Taking now E0 = Ep where Ep is the proton electric
field including the form-factor effects, we arrive at

E =
(

Ep

2η′

)1/3

×



 3

√√√√1 +

√
1 +

4
27η′E2

p

+ 3

√√√√1 +

√
1− 1

27η′E2
p


Again for strong fields (small distances) one would
expect that E ∝ (Ep)2/3, i.e., the field becomes
weaker.

Effects of Higher loops

Before presenting the results it is instructive to look
at the effect of higher loops: two loops in
B. Körs and M. G. Schmidt, Eur. Phys. J. C6 (1999)
175
The polynomial equation for E is now a quintic

E + η1E
3 + η2E

5 = E0

where η1 ' η′.

Effects of γγ corrections

The energy content of the electric field:

E [Ep] ' 1 MeV



E [Eγγ,1loop] ' 0.26 MeV

E [Eγγ,2loop] ' 0.076 MeV

where Eγγ = E[Ep].One can see that the loop
results are well below the pair production threshold.

Field strength
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For small distances the light-light contribution
reduces the field strength considerably. The “3-
loop” result is an educated guess. i.e. by



dimensional analysis (there is only one scale, the
electron mass) and by properly introducing the
powers of α and by guessing the rest of the
numerical factors we wrote a polynomial equation
of seventh order for E if the effect saturates.

3. Consequences for the energy levels
Recall the formula of the Finite Size correction to the
energy levels within the framework of the Maxwell
theory

∆E =
e

6
|Ψ(0)|2

∫
d3xr2∇ ·Ep

with ∇ · Ep = ρ. In the Euler-Heisenberg theory
∇ ·Eγγ 6= ρ and one gets with Eγγ = E[Ep]

∆E =
e

6
|Ψ(0)|2

∫
d3xr2∇ ·Eγγ

Now from our polynomial equation for the electric
field

E + η1EE2 + η2EE4 = Ep



we can get ∇ ·E (E = Eγγ) as

∇ ·E =
ρ + 4η2E ·∇E + 2η1E ·∇E

η1E2 + η1E4 + 1

using the fact ∇ ·Ep = ρ One would be tempted to
assume

η2E
4 + η1E

2 � 1
In such a case the first term of the divergence would
be the the charge distribution and

∆E =
e

6
|Ψ(0)|2 < r2 > +...

One could handle theoretically the other contributions
and the charged proton radius would be, in
principle, “measurable” from spectroscopy. However,
the requirement of the denominator of the
divergence being small imposes

E � 300 MeV 2

in one loop and

E � 23 MeV 2



in two loop approximation. Both these inequalities
are not satisfied and therefore it seems that we
cannot disentangle the Finite Size Correction (FSC)
from the γγ correction.

∆E(FSC) ' 4.1× 10−9 eV

∆E(FSC + γγ) ' 8.54× 10−8 eV

∆E(point− like γγ) ' 8.50× 10−8 eV

If we take the difference of the last two equations
as a rough measure of the FSC in the Euler-
Heisenberg theory then its importance is one order
of magnitude less than in the Maxwell theory.
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Figure 6: ∆E ∝
∫

d3x|Ψ(x)|2(V + e/r). The effect
is: the smaller |V | the bigger the correction.



Where could this be relevant?

∆E with Finite Size Corrections (FSC) is the
simplest expression with FSC in the hydrogen
atom. Already here the FSC could not be
disentangled from the light-light contribution. There
are FSC’s also for other levels and transitions like,



e.g., hyperfine interaction (spin-spin) with claims of
unprecedented precision.



Figure 7: New York Times, Spiegel etc reported
on “Honey, I shrank the proton”



Figure 8: To extract static properties of the
proton from spectroscopy is an especially
“theory dependent measurement”.

4. Outlook



• Beyond the electric potential of the proton: e.g.
The electron Darwin term

V γγ
ep = eV γγ

p +
e

8m2
e

∇ ·Eγγ

This would be supported by the Dirac equation
where the potential is given from “outside”.

V γγ
ep = eV γγ

p +
e

8m2
e

ρ

This would be supported by the Breit equation.

• More complicated transitions



•

Other nuclei

Z
Aρ →Z

A E ≡ E0 →Z
A Eγγ = E[E0]



Figure 9: UNESCO has declared 2015 as the
Year of Light.



Figure 10: Light from Mega parsecs



Figure 11: and light from the atoms are, of
course, connected. We argued that the quantum
mechanical correction leading to light-light
interaction might change our picture of the
atoms at very small distances. This might also
change the way how we handle the correction to
the energy levels in the hydrogen atom.

T. H. Huxley: “The great tragedy of science -
the slaying of a beautiful hypothesis by an ugly
fact.”

THANK YOU!


