DESIGN OF THE SABAT SYSTEM FOR UNDERWATER DETECTION OF DANGEREUS SUBSTANCES

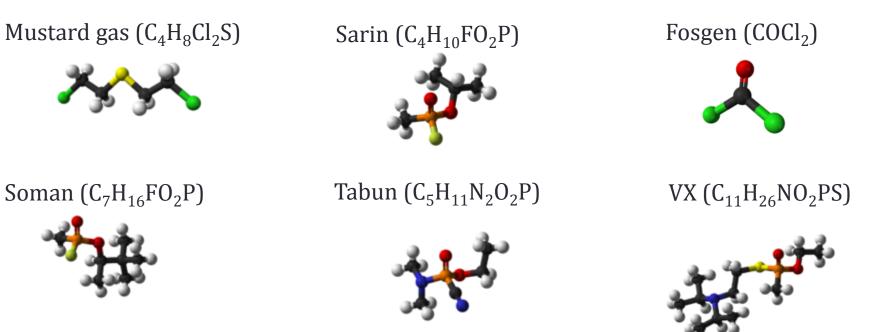
M. Silarski Jagiellonian University on behalf of the SABAT collaboration

- Introduction
- Neutron Activation Techniques
- Application in the underwater environment
- Status of the project
- Summary

Jagiellonian Symposium of Fundamental and Applied Subatomic Physics, Kraków, 11.06. 2015

Introduction

- "Ghosts" of World Wars: ~250 kt of munition (including 65 kt of chemical agents) sunk in the Baltic Sea
- Main known contamined areas: Little Belt, Bornholm Deep (east of Bornholm) and the south-western part of the Gotland Deep
- Unknown amount of chemical leftovers are spread around the Baltic Sea
- Serious threat for people and environment
 - ✤ "Fake amber" on the coast
 - Mustard gas "fished" out the sea
 - Menace to navy
 - Genetic mutations of marine fauna



http://www.sfora.pl/polska/Napalm-w-Baltyku-Przed-katastrofa-nie-ma-ratunku-a52539

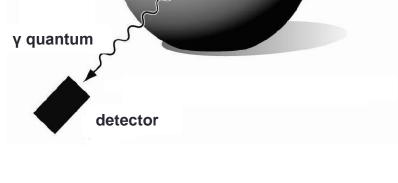
Introduction

Main agents do deal with:

- Presently used detection methods:
 - Sonars (shape and localization) + diver/robot inspection (evaluation of the ammunition shell and type)
 - "By chance": during fishing, etc.
- High economic and environmental costs has been preventing so far any activities aiming at extraction o these hazardous substances

neutron

Novel methods of nondestructive chemical threat detection based on neutron activation:



Thermal neutron capture (sources, D+Dgenerators)

Neutron inelastic scattering (D+D/**D+T** generator)

Excited nuclei emit gamma quanta of energy characteristic of the element

 $D+T \rightarrow \alpha + n$

n + nucleus \rightarrow nucleus + γ + **n**

Relative content of elements \Leftrightarrow Stoichiometry

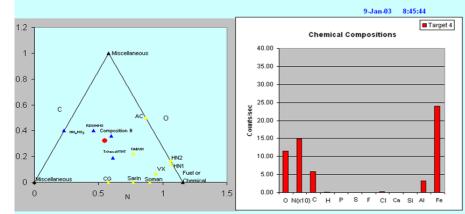
nucleus

Signature:

gamma quanta of the following nuclei: ¹²C (4.44 MeV), ¹⁶O (6.13 MeV), ¹⁴N (2.31 MeV, 5.11 MeV), ³⁷Cl (1.73 MeV, 3.1 MeV) ³²S (3.78 MeV) ³¹P (1.27 MeV) ¹⁹F (0.11 MeV, 0.197 MeV)

- High penetration allows detection of explosives/ which are hidden in vehicles, buried, etc.
- The use of pulse generators and detection of correlated α particles allows to measure the neutron time of flight ⇔ topographical picture of the chemical composition of the substance

http://www.calseco.com/

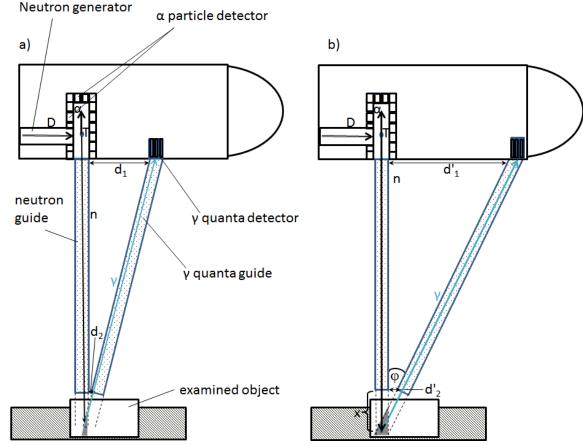

http://www.uncoss-project.org/

γ quanta detection Data analysis (Urea [77] inside artillery Shell) - (Shell [78] -- alpha normalized) CENDL-3.1:C-12 JENDL-4.0:N-14 100 JENDL-4.0:O-16 JENDL-4.0:F-19 JENDL-4.0:P-31 90 JENDL-4.0:S-32 Oxygen Nitrogen & Oxygen Cross Section (barns) JENDL-4.0:CL-37 80 in 4pi 70 Oxygen Carbon Oxygen 60 10-2 50 No. Events / 10^9 40 30 10-4 20 10 380 390 400 410 420 430 440 450 460 470 480 490 500 510 520 530 540 550 560 570 580 590 600 610 620 630 5 10 15 20 KeV Incident Energy (MeV) http://www.calseco.com/ Comparison with database of known substances & identification **C**_{1.0} **N**_{1.0} **O**_{1.2} **H**_{0.1} This is explosive/Chemical 9-Jan-03 8:45:44 Target 4 **Chemical Compositions** 40.00 1 Miscellaneous 35.00 8.0 30.00 25.00 0.6 Counts/sec С 0 20.00 0.4 15.00 0.2 10.00 HN2 Fuel or 5.00 0 0 0.5 1.5 0.00 M 0 N(x10) C H P S F CI Ca Si Al Fe

http://www.calseco.com/

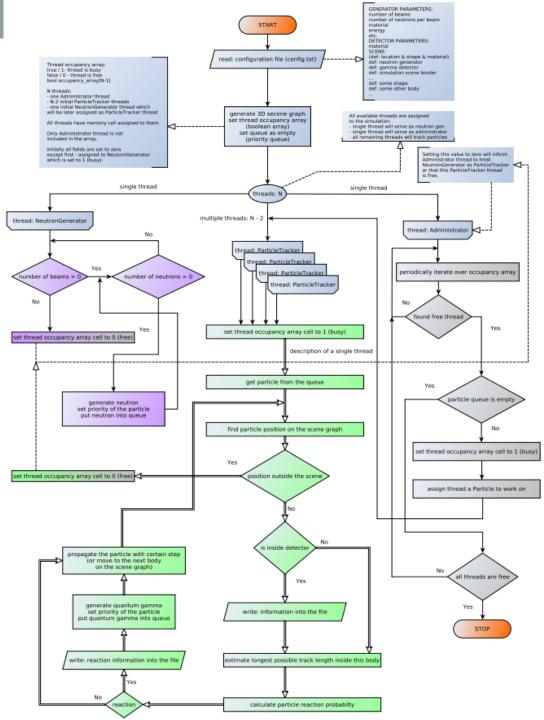
γ quanta detection Data analysis (Urea [77] inside artillery Shell) - (Shell [78] -- alpha normalized) CENDL-ENDL 100 ENDL 90 Oxyger Nitrogen & Oxygen Cross Section (barns) JENDL-4.0:CL-3 80 in 4pi 70 Oxygen Carbon Oxygen 60 10^{-2} 50 Vo. Events / 10^9 40 30 10-4 20 380 390 400 410 420 430 440 450 460 470 480 490 0 0 0 0 0 0 5 10 15 20 Kel Incident Energy (MeV) http://www.calseco.com/ Comparison with database of known substances & identification **Drawbacks: C**_{1.0} **N**_{1.0} **O**_{1.2} **H**_{0.1} This is explosive/Chemical

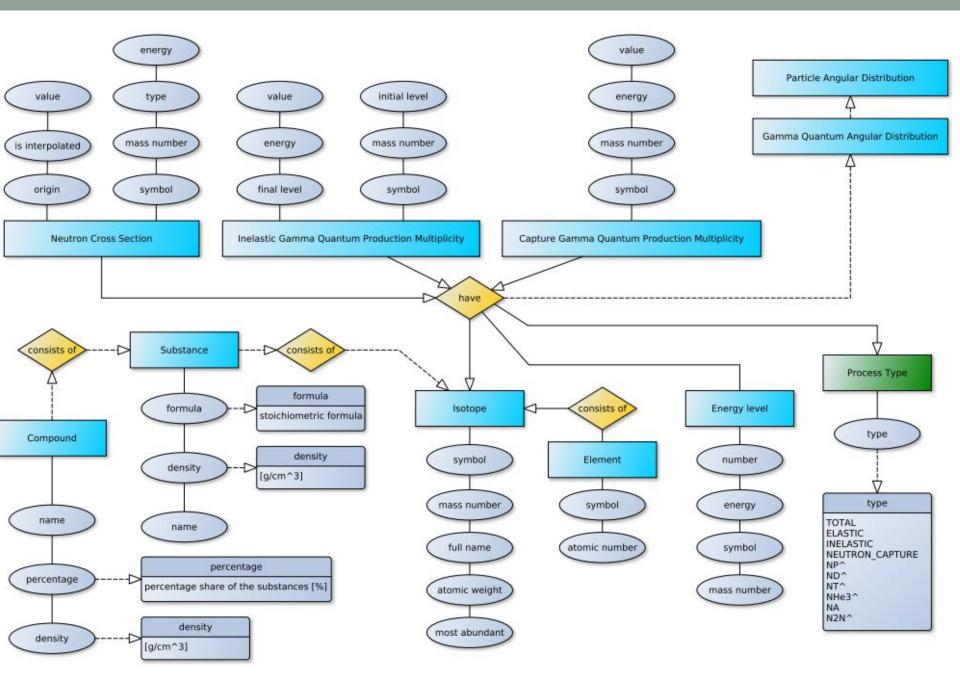
- Small cross sections for some of the elements
- Decreased mobility due to detector cooling
- High neutron flux needed
- Insensitivity to the structure of molecul
- High neutron attenuation in water
- High background from oxygen and nitrogen

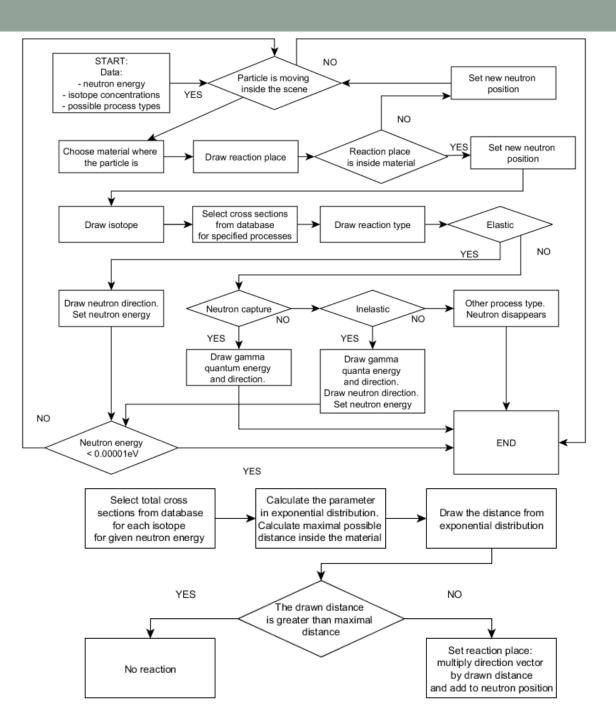

7

http://www.calseco.com/

Underwater application

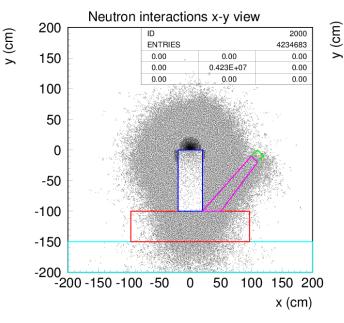

- The 14.1 MeV neutron generator with α particle detection
- Neutron and γ quanta attenuation in water minimized by guides filled with air or some other gas
- Changeable position and orientation of guides
- Position sensitive detector (scintillator)
- Depth of neutron interaction determined from the time difference between neutron and γ quantum registration times:

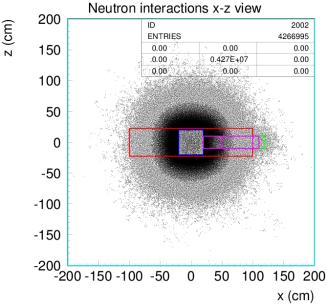

$$x = \left(\Delta t + \frac{l_{\alpha}}{v_{\alpha}} - \frac{l_{n}}{v_{n}} - \frac{l_{\gamma}}{c}\right) \frac{cv_{n}\cos\varphi}{c\cos\varphi + v_{n}}$$



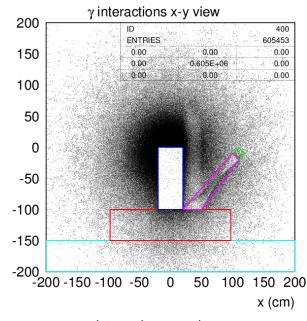
Design of the first prototype: Monte Carlo simulations

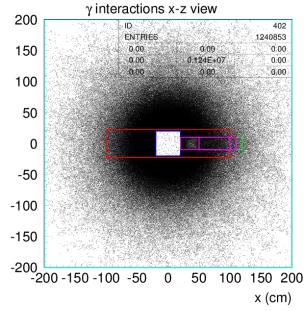
- Fast independent simulations devoted only to the NAA applications
- Open source code (C++ as default programming language, standard version C++11)
- Target OS: Linux (Debian or Red Hat based)
- Multiple cores/threads (Open MPI standard & library)
- Parallel computing
- Physics: ENDF/ENSDF libraries used
- Database : SQLite3
- Relational DataBase Management System, most tables in the second normal or third normal form (2NF & 3NF)
- Novel method of geometry definition and particle tracking based on hypergraphs



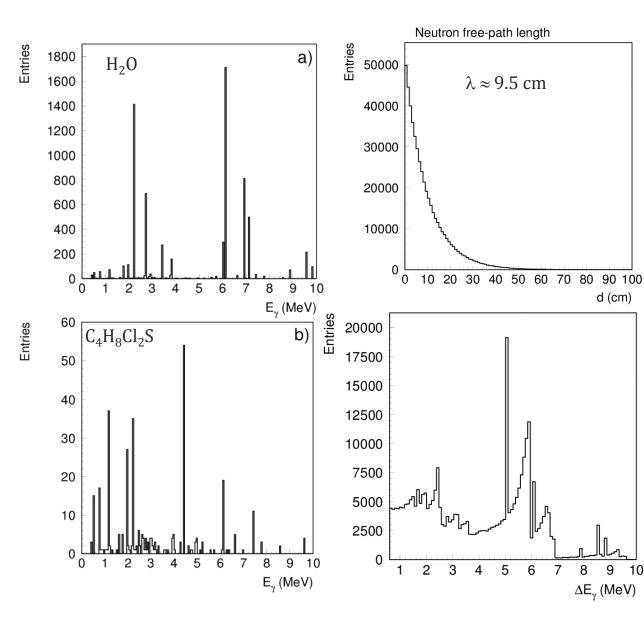


First results and validation of simulations


- The first test "scene":
 - Container with mustard gass
 - Neutrons guide
 - Ge detector
 - γ quanta giude
 - Sea bottom (sand)
- Simulated (so far) interaction processes:
 - For neutron: capture, inelastic and elastic scattering
 - For γ quanta: Compton scattering, pair production and photoelectric effect
- Validation of the first version of the software almost finished



(cm)


Ν

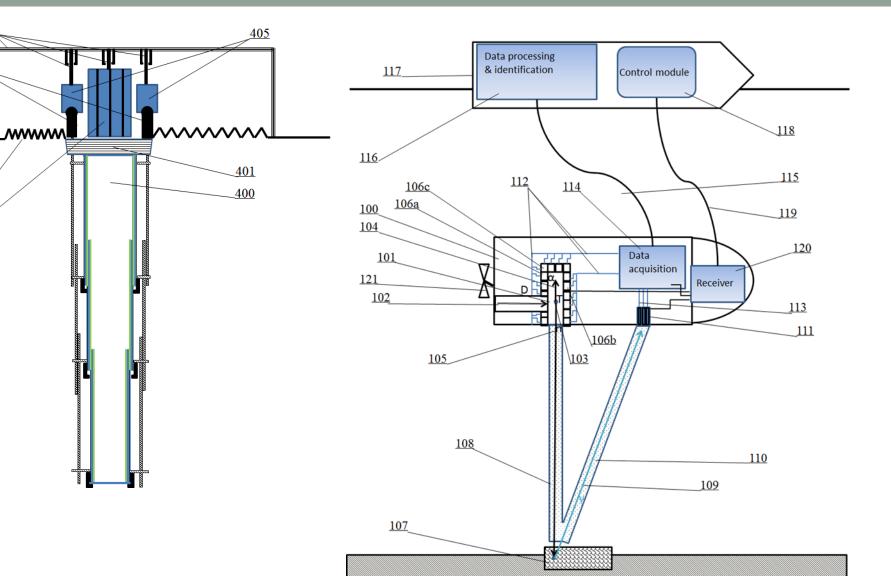
First results and validation of simulations

- Strong lines from the excitation of oxygen (~3 MeV, 6 MeV and 7 MeV), and characteristic line of neutron capture by hydrogen (about 2.2 MeV) visible
- ★ For the container with mustard gas: big peak for gamma quanta emitted by carbon ¹²C (E_γ = 4.43 MeV) and chlorine ³⁷Cl (~6 MeV)
- ★ Hydrogen and sulfur compose one line at E_γ = 2.2 MeV ⇒ hard identification of ³²S.

- The chemical munitions sunk in seas constitute a very serious threat for environment and people
- Methods of detection used so far are not efficient enough to detect all contaminated sea areas
- Promising improvement: neutron activation techniques used on the submarine
- Design of the prototype of such device has started in the Institute of Physics of the Jagiellonian University
- We are developing a new fast simulation tool devoted to the Neutron Activation Analysis applications
- First simulations of complete identification system expected for the end of December 2015

- The chemical munitions sunk in seas constitute a very serious threat for environment and people
- ** Methods of detection used so far are not efficient enough to detect all contaminated sea areas
- Promising improvement: neutron activation techniques used on the submarine **
- Design of the prototype of such device has started in the Institute of Physics of the ** Jagiellonian University
- We are developing a new fast simulation tool devoted to the Neutron Activation ** Analysis applications
- First simulations of complete identification system expected for the end of December * 2015

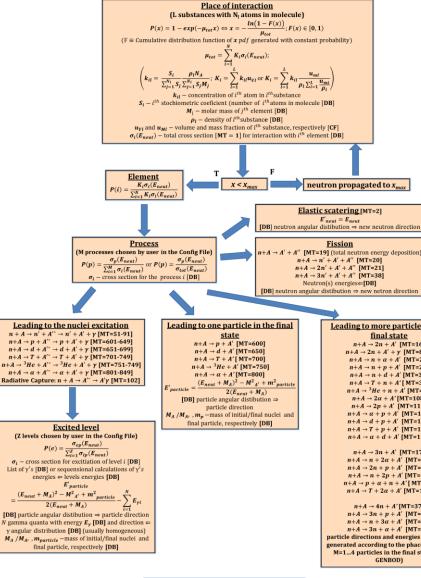
Dominika Hunik


Sławomir Tadeja

Michał Smolis

Thank You for attention 16

<u>406</u>


<u>402</u>/

<u>403</u>

<u>404</u>

17

neutron propagated to x_{max}

+ A" [MT=19] (total neutron energy deposition)

Leading to more particles in the

<u>final state</u>

 $n+A \rightarrow 2n + A'$ [MT=16]

 $n+A \rightarrow 2n + A' + \gamma$ [MT=876] $n+A \rightarrow n + \alpha + A'$ [MT=22]

 $n+A \rightarrow n + p + A'$ [MT=28]

 $n+A \rightarrow n + d + A'$ [MT=32]

 $n+A \rightarrow T + n + A'$ [MT=33]

 $n+A \rightarrow {}^{3}He + n + A'$ [MT=34] $n+A \rightarrow 2\alpha + A'$ [MT=108]

 $n+A \rightarrow 2p + A'$ [MT=111] $n+A \rightarrow \alpha + p + A'$ [MT=112] $n+A \rightarrow d + p + A'$ [MT=115]

 $n+A \rightarrow T + p + A'$ [MT=116]

 $n+A \rightarrow \alpha + d + A'$ [MT=117]

 $n+A \rightarrow 3n + A'$ [MT=17]

 $n+A \rightarrow n + 2\alpha + A'$ [MT=29] $n+A \rightarrow 2n + p + A'$ [MT=41]

 $n+A \rightarrow n + 2p + A'$ [MT=44]

 $n+A \rightarrow p + \alpha + n + A'$ [MT=45]

 $n+A \rightarrow T + 2\alpha + A'$ [MT=113] $n+A \rightarrow 4n + A'$ [MT=37]

 $n+A \rightarrow 3n + p + A'$ [MT=42] $n+A \rightarrow n + 3\alpha + A'$ [MT=28]

 $n+A \rightarrow 3n + \alpha + A'$ [MT=25]

particle directions and energies have to be

generated according to the phace space for M=1...4 particles in the final state (e.g. GENBOD)

Elastic scatering [MT=2]

Fission

 $n+A \rightarrow n' + A' + A''$ [MT=20] $n+A \rightarrow 2n' + A' + A''$ [MT=21]

 $n+A \rightarrow 3n' + A' + A''$ [MT=38] Neutron(s) energies ← [DB]